| /* SPDX-License-Identifier: GPL-2.0 |
| * |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| * |
| */ |
| |
| #ifndef HABANALABSP_H_ |
| #define HABANALABSP_H_ |
| |
| #include "include/armcp_if.h" |
| #include "include/qman_if.h" |
| |
| #include <linux/cdev.h> |
| #include <linux/iopoll.h> |
| #include <linux/irqreturn.h> |
| #include <linux/dma-fence.h> |
| #include <linux/dma-direction.h> |
| #include <linux/scatterlist.h> |
| #include <linux/hashtable.h> |
| |
| #define HL_NAME "habanalabs" |
| |
| #define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT) |
| |
| #define HL_PENDING_RESET_PER_SEC 30 |
| |
| #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ |
| |
| #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ |
| |
| #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ |
| |
| #define HL_ARMCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ |
| #define HL_ARMCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ |
| |
| #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ |
| |
| #define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */ |
| |
| #define HL_MAX_QUEUES 128 |
| |
| #define HL_MAX_JOBS_PER_CS 64 |
| |
| /* MUST BE POWER OF 2 and larger than 1 */ |
| #define HL_MAX_PENDING_CS 64 |
| |
| #define HL_IDLE_BUSY_TS_ARR_SIZE 4096 |
| |
| /* Memory */ |
| #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| |
| /* MMU */ |
| #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ |
| |
| /** |
| * struct pgt_info - MMU hop page info. |
| * @node: hash linked-list node for the pgts shadow hash of pgts. |
| * @phys_addr: physical address of the pgt. |
| * @shadow_addr: shadow hop in the host. |
| * @ctx: pointer to the owner ctx. |
| * @num_of_ptes: indicates how many ptes are used in the pgt. |
| * |
| * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop) |
| * is needed during mapping, a new page is allocated and this structure holds |
| * its essential information. During unmapping, if no valid PTEs remained in the |
| * page, it is freed with its pgt_info structure. |
| */ |
| struct pgt_info { |
| struct hlist_node node; |
| u64 phys_addr; |
| u64 shadow_addr; |
| struct hl_ctx *ctx; |
| int num_of_ptes; |
| }; |
| |
| struct hl_device; |
| struct hl_fpriv; |
| |
| /** |
| * enum hl_queue_type - Supported QUEUE types. |
| * @QUEUE_TYPE_NA: queue is not available. |
| * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the |
| * host. |
| * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's |
| * memories and/or operates the compute engines. |
| * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. |
| */ |
| enum hl_queue_type { |
| QUEUE_TYPE_NA, |
| QUEUE_TYPE_EXT, |
| QUEUE_TYPE_INT, |
| QUEUE_TYPE_CPU |
| }; |
| |
| /** |
| * struct hw_queue_properties - queue information. |
| * @type: queue type. |
| * @driver_only: true if only the driver is allowed to send a job to this queue, |
| * false otherwise. |
| */ |
| struct hw_queue_properties { |
| enum hl_queue_type type; |
| u8 driver_only; |
| }; |
| |
| /** |
| * enum vm_type_t - virtual memory mapping request information. |
| * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. |
| * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. |
| */ |
| enum vm_type_t { |
| VM_TYPE_USERPTR, |
| VM_TYPE_PHYS_PACK |
| }; |
| |
| /** |
| * enum hl_device_hw_state - H/W device state. use this to understand whether |
| * to do reset before hw_init or not |
| * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset |
| * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute |
| * hw_init |
| */ |
| enum hl_device_hw_state { |
| HL_DEVICE_HW_STATE_CLEAN = 0, |
| HL_DEVICE_HW_STATE_DIRTY |
| }; |
| |
| /** |
| * struct asic_fixed_properties - ASIC specific immutable properties. |
| * @hw_queues_props: H/W queues properties. |
| * @armcp_info: received various information from ArmCP regarding the H/W, e.g. |
| * available sensors. |
| * @uboot_ver: F/W U-boot version. |
| * @preboot_ver: F/W Preboot version. |
| * @sram_base_address: SRAM physical start address. |
| * @sram_end_address: SRAM physical end address. |
| * @sram_user_base_address - SRAM physical start address for user access. |
| * @dram_base_address: DRAM physical start address. |
| * @dram_end_address: DRAM physical end address. |
| * @dram_user_base_address: DRAM physical start address for user access. |
| * @dram_size: DRAM total size. |
| * @dram_pci_bar_size: size of PCI bar towards DRAM. |
| * @max_power_default: max power of the device after reset |
| * @va_space_host_start_address: base address of virtual memory range for |
| * mapping host memory. |
| * @va_space_host_end_address: end address of virtual memory range for |
| * mapping host memory. |
| * @va_space_dram_start_address: base address of virtual memory range for |
| * mapping DRAM memory. |
| * @va_space_dram_end_address: end address of virtual memory range for |
| * mapping DRAM memory. |
| * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page |
| * fault. |
| * @pcie_dbi_base_address: Base address of the PCIE_DBI block. |
| * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. |
| * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. |
| * @mmu_dram_default_page_addr: DRAM default page physical address. |
| * @mmu_pgt_size: MMU page tables total size. |
| * @mmu_pte_size: PTE size in MMU page tables. |
| * @mmu_hop_table_size: MMU hop table size. |
| * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. |
| * @dram_page_size: page size for MMU DRAM allocation. |
| * @cfg_size: configuration space size on SRAM. |
| * @sram_size: total size of SRAM. |
| * @max_asid: maximum number of open contexts (ASIDs). |
| * @num_of_events: number of possible internal H/W IRQs. |
| * @psoc_pci_pll_nr: PCI PLL NR value. |
| * @psoc_pci_pll_nf: PCI PLL NF value. |
| * @psoc_pci_pll_od: PCI PLL OD value. |
| * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. |
| * @completion_queues_count: number of completion queues. |
| * @high_pll: high PLL frequency used by the device. |
| * @cb_pool_cb_cnt: number of CBs in the CB pool. |
| * @cb_pool_cb_size: size of each CB in the CB pool. |
| * @tpc_enabled_mask: which TPCs are enabled. |
| */ |
| struct asic_fixed_properties { |
| struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES]; |
| struct armcp_info armcp_info; |
| char uboot_ver[VERSION_MAX_LEN]; |
| char preboot_ver[VERSION_MAX_LEN]; |
| u64 sram_base_address; |
| u64 sram_end_address; |
| u64 sram_user_base_address; |
| u64 dram_base_address; |
| u64 dram_end_address; |
| u64 dram_user_base_address; |
| u64 dram_size; |
| u64 dram_pci_bar_size; |
| u64 max_power_default; |
| u64 va_space_host_start_address; |
| u64 va_space_host_end_address; |
| u64 va_space_dram_start_address; |
| u64 va_space_dram_end_address; |
| u64 dram_size_for_default_page_mapping; |
| u64 pcie_dbi_base_address; |
| u64 pcie_aux_dbi_reg_addr; |
| u64 mmu_pgt_addr; |
| u64 mmu_dram_default_page_addr; |
| u32 mmu_pgt_size; |
| u32 mmu_pte_size; |
| u32 mmu_hop_table_size; |
| u32 mmu_hop0_tables_total_size; |
| u32 dram_page_size; |
| u32 cfg_size; |
| u32 sram_size; |
| u32 max_asid; |
| u32 num_of_events; |
| u32 psoc_pci_pll_nr; |
| u32 psoc_pci_pll_nf; |
| u32 psoc_pci_pll_od; |
| u32 psoc_pci_pll_div_factor; |
| u32 high_pll; |
| u32 cb_pool_cb_cnt; |
| u32 cb_pool_cb_size; |
| u8 completion_queues_count; |
| u8 tpc_enabled_mask; |
| }; |
| |
| /** |
| * struct hl_dma_fence - wrapper for fence object used by command submissions. |
| * @base_fence: kernel fence object. |
| * @lock: spinlock to protect fence. |
| * @hdev: habanalabs device structure. |
| * @cs_seq: command submission sequence number. |
| */ |
| struct hl_dma_fence { |
| struct dma_fence base_fence; |
| spinlock_t lock; |
| struct hl_device *hdev; |
| u64 cs_seq; |
| }; |
| |
| /* |
| * Command Buffers |
| */ |
| |
| #define HL_MAX_CB_SIZE 0x200000 /* 2MB */ |
| |
| /** |
| * struct hl_cb_mgr - describes a Command Buffer Manager. |
| * @cb_lock: protects cb_handles. |
| * @cb_handles: an idr to hold all command buffer handles. |
| */ |
| struct hl_cb_mgr { |
| spinlock_t cb_lock; |
| struct idr cb_handles; /* protected by cb_lock */ |
| }; |
| |
| /** |
| * struct hl_cb - describes a Command Buffer. |
| * @refcount: reference counter for usage of the CB. |
| * @hdev: pointer to device this CB belongs to. |
| * @lock: spinlock to protect mmap/cs flows. |
| * @debugfs_list: node in debugfs list of command buffers. |
| * @pool_list: node in pool list of command buffers. |
| * @kernel_address: Holds the CB's kernel virtual address. |
| * @bus_address: Holds the CB's DMA address. |
| * @mmap_size: Holds the CB's size that was mmaped. |
| * @size: holds the CB's size. |
| * @id: the CB's ID. |
| * @cs_cnt: holds number of CS that this CB participates in. |
| * @ctx_id: holds the ID of the owner's context. |
| * @mmap: true if the CB is currently mmaped to user. |
| * @is_pool: true if CB was acquired from the pool, false otherwise. |
| */ |
| struct hl_cb { |
| struct kref refcount; |
| struct hl_device *hdev; |
| spinlock_t lock; |
| struct list_head debugfs_list; |
| struct list_head pool_list; |
| u64 kernel_address; |
| dma_addr_t bus_address; |
| u32 mmap_size; |
| u32 size; |
| u32 id; |
| u32 cs_cnt; |
| u32 ctx_id; |
| u8 mmap; |
| u8 is_pool; |
| }; |
| |
| |
| /* |
| * QUEUES |
| */ |
| |
| struct hl_cs_job; |
| |
| /* |
| * Currently, there are two limitations on the maximum length of a queue: |
| * |
| * 1. The memory footprint of the queue. The current allocated space for the |
| * queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE, |
| * the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE, |
| * which currently is 4096/16 = 256 entries. |
| * |
| * To increase that, we need either to decrease the size of the |
| * BD (difficult), or allocate more than a single page (easier). |
| * |
| * 2. Because the size of the JOB handle field in the BD CTL / completion queue |
| * is 10-bit, we can have up to 1024 open jobs per hardware queue. |
| * Therefore, each queue can hold up to 1024 entries. |
| * |
| * HL_QUEUE_LENGTH is in units of struct hl_bd. |
| * HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE |
| */ |
| |
| #define HL_PAGE_SIZE 4096 /* minimum page size */ |
| /* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */ |
| #define HL_QUEUE_LENGTH 256 |
| #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) |
| |
| /* |
| * HL_CQ_LENGTH is in units of struct hl_cq_entry. |
| * HL_CQ_LENGTH should be <= HL_PAGE_SIZE |
| */ |
| #define HL_CQ_LENGTH HL_QUEUE_LENGTH |
| #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) |
| |
| /* Must be power of 2 (HL_PAGE_SIZE / HL_EQ_ENTRY_SIZE) */ |
| #define HL_EQ_LENGTH 64 |
| #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) |
| |
| /* Host <-> ArmCP shared memory size */ |
| #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M |
| |
| /** |
| * struct hl_hw_queue - describes a H/W transport queue. |
| * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. |
| * @queue_type: type of queue. |
| * @kernel_address: holds the queue's kernel virtual address. |
| * @bus_address: holds the queue's DMA address. |
| * @pi: holds the queue's pi value. |
| * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). |
| * @hw_queue_id: the id of the H/W queue. |
| * @int_queue_len: length of internal queue (number of entries). |
| * @valid: is the queue valid (we have array of 32 queues, not all of them |
| * exists). |
| */ |
| struct hl_hw_queue { |
| struct hl_cs_job **shadow_queue; |
| enum hl_queue_type queue_type; |
| u64 kernel_address; |
| dma_addr_t bus_address; |
| u32 pi; |
| u32 ci; |
| u32 hw_queue_id; |
| u16 int_queue_len; |
| u8 valid; |
| }; |
| |
| /** |
| * struct hl_cq - describes a completion queue |
| * @hdev: pointer to the device structure |
| * @kernel_address: holds the queue's kernel virtual address |
| * @bus_address: holds the queue's DMA address |
| * @hw_queue_id: the id of the matching H/W queue |
| * @ci: ci inside the queue |
| * @pi: pi inside the queue |
| * @free_slots_cnt: counter of free slots in queue |
| */ |
| struct hl_cq { |
| struct hl_device *hdev; |
| u64 kernel_address; |
| dma_addr_t bus_address; |
| u32 hw_queue_id; |
| u32 ci; |
| u32 pi; |
| atomic_t free_slots_cnt; |
| }; |
| |
| /** |
| * struct hl_eq - describes the event queue (single one per device) |
| * @hdev: pointer to the device structure |
| * @kernel_address: holds the queue's kernel virtual address |
| * @bus_address: holds the queue's DMA address |
| * @ci: ci inside the queue |
| */ |
| struct hl_eq { |
| struct hl_device *hdev; |
| u64 kernel_address; |
| dma_addr_t bus_address; |
| u32 ci; |
| }; |
| |
| |
| /* |
| * ASICs |
| */ |
| |
| /** |
| * enum hl_asic_type - supported ASIC types. |
| * @ASIC_INVALID: Invalid ASIC type. |
| * @ASIC_GOYA: Goya device. |
| */ |
| enum hl_asic_type { |
| ASIC_INVALID, |
| ASIC_GOYA |
| }; |
| |
| struct hl_cs_parser; |
| |
| /** |
| * enum hl_pm_mng_profile - power management profile. |
| * @PM_AUTO: internal clock is set by the Linux driver. |
| * @PM_MANUAL: internal clock is set by the user. |
| * @PM_LAST: last power management type. |
| */ |
| enum hl_pm_mng_profile { |
| PM_AUTO = 1, |
| PM_MANUAL, |
| PM_LAST |
| }; |
| |
| /** |
| * enum hl_pll_frequency - PLL frequency. |
| * @PLL_HIGH: high frequency. |
| * @PLL_LOW: low frequency. |
| * @PLL_LAST: last frequency values that were configured by the user. |
| */ |
| enum hl_pll_frequency { |
| PLL_HIGH = 1, |
| PLL_LOW, |
| PLL_LAST |
| }; |
| |
| /** |
| * struct hl_asic_funcs - ASIC specific functions that are can be called from |
| * common code. |
| * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. |
| * @early_fini: tears down what was done in early_init. |
| * @late_init: sets up late driver/hw state (post hw_init) - Optional. |
| * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. |
| * @sw_init: sets up driver state, does not configure H/W. |
| * @sw_fini: tears down driver state, does not configure H/W. |
| * @hw_init: sets up the H/W state. |
| * @hw_fini: tears down the H/W state. |
| * @halt_engines: halt engines, needed for reset sequence. This also disables |
| * interrupts from the device. Should be called before |
| * hw_fini and before CS rollback. |
| * @suspend: handles IP specific H/W or SW changes for suspend. |
| * @resume: handles IP specific H/W or SW changes for resume. |
| * @cb_mmap: maps a CB. |
| * @ring_doorbell: increment PI on a given QMAN. |
| * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific |
| * function because the PQs are located in different memory areas |
| * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of |
| * writing the PQE must match the destination memory area |
| * properties. |
| * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling |
| * dma_alloc_coherent(). This is ASIC function because |
| * its implementation is not trivial when the driver |
| * is loaded in simulation mode (not upstreamed). |
| * @asic_dma_free_coherent: Free coherent DMA memory by calling |
| * dma_free_coherent(). This is ASIC function because |
| * its implementation is not trivial when the driver |
| * is loaded in simulation mode (not upstreamed). |
| * @get_int_queue_base: get the internal queue base address. |
| * @test_queues: run simple test on all queues for sanity check. |
| * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. |
| * size of allocation is HL_DMA_POOL_BLK_SIZE. |
| * @asic_dma_pool_free: free small DMA allocation from pool. |
| * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. |
| * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. |
| * @hl_dma_unmap_sg: DMA unmap scatter-gather list. |
| * @cs_parser: parse Command Submission. |
| * @asic_dma_map_sg: DMA map scatter-gather list. |
| * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB. |
| * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. |
| * @update_eq_ci: update event queue CI. |
| * @context_switch: called upon ASID context switch. |
| * @restore_phase_topology: clear all SOBs amd MONs. |
| * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM. |
| * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM. |
| * @add_device_attr: add ASIC specific device attributes. |
| * @handle_eqe: handle event queue entry (IRQ) from ArmCP. |
| * @set_pll_profile: change PLL profile (manual/automatic). |
| * @get_events_stat: retrieve event queue entries histogram. |
| * @read_pte: read MMU page table entry from DRAM. |
| * @write_pte: write MMU page table entry to DRAM. |
| * @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or |
| * hard (L0 & L1) flush. |
| * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with |
| * ASID-VA-size mask. |
| * @send_heartbeat: send is-alive packet to ArmCP and verify response. |
| * @debug_coresight: perform certain actions on Coresight for debugging. |
| * @is_device_idle: return true if device is idle, false otherwise. |
| * @soft_reset_late_init: perform certain actions needed after soft reset. |
| * @hw_queues_lock: acquire H/W queues lock. |
| * @hw_queues_unlock: release H/W queues lock. |
| * @get_pci_id: retrieve PCI ID. |
| * @get_eeprom_data: retrieve EEPROM data from F/W. |
| * @send_cpu_message: send buffer to ArmCP. |
| * @get_hw_state: retrieve the H/W state |
| * @pci_bars_map: Map PCI BARs. |
| * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns |
| * old address the bar pointed to or U64_MAX for failure |
| * @init_iatu: Initialize the iATU unit inside the PCI controller. |
| * @rreg: Read a register. Needed for simulator support. |
| * @wreg: Write a register. Needed for simulator support. |
| * @halt_coresight: stop the ETF and ETR traces. |
| */ |
| struct hl_asic_funcs { |
| int (*early_init)(struct hl_device *hdev); |
| int (*early_fini)(struct hl_device *hdev); |
| int (*late_init)(struct hl_device *hdev); |
| void (*late_fini)(struct hl_device *hdev); |
| int (*sw_init)(struct hl_device *hdev); |
| int (*sw_fini)(struct hl_device *hdev); |
| int (*hw_init)(struct hl_device *hdev); |
| void (*hw_fini)(struct hl_device *hdev, bool hard_reset); |
| void (*halt_engines)(struct hl_device *hdev, bool hard_reset); |
| int (*suspend)(struct hl_device *hdev); |
| int (*resume)(struct hl_device *hdev); |
| int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, |
| u64 kaddress, phys_addr_t paddress, u32 size); |
| void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); |
| void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, |
| struct hl_bd *bd); |
| void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag); |
| void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, |
| void *cpu_addr, dma_addr_t dma_handle); |
| void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, |
| dma_addr_t *dma_handle, u16 *queue_len); |
| int (*test_queues)(struct hl_device *hdev); |
| void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, |
| gfp_t mem_flags, dma_addr_t *dma_handle); |
| void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, |
| dma_addr_t dma_addr); |
| void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, |
| size_t size, dma_addr_t *dma_handle); |
| void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, |
| size_t size, void *vaddr); |
| void (*hl_dma_unmap_sg)(struct hl_device *hdev, |
| struct scatterlist *sgl, int nents, |
| enum dma_data_direction dir); |
| int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); |
| int (*asic_dma_map_sg)(struct hl_device *hdev, |
| struct scatterlist *sgl, int nents, |
| enum dma_data_direction dir); |
| u32 (*get_dma_desc_list_size)(struct hl_device *hdev, |
| struct sg_table *sgt); |
| void (*add_end_of_cb_packets)(struct hl_device *hdev, |
| u64 kernel_address, u32 len, |
| u64 cq_addr, u32 cq_val, u32 msix_num); |
| void (*update_eq_ci)(struct hl_device *hdev, u32 val); |
| int (*context_switch)(struct hl_device *hdev, u32 asid); |
| void (*restore_phase_topology)(struct hl_device *hdev); |
| int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val); |
| int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val); |
| void (*add_device_attr)(struct hl_device *hdev, |
| struct attribute_group *dev_attr_grp); |
| void (*handle_eqe)(struct hl_device *hdev, |
| struct hl_eq_entry *eq_entry); |
| void (*set_pll_profile)(struct hl_device *hdev, |
| enum hl_pll_frequency freq); |
| void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, |
| u32 *size); |
| u64 (*read_pte)(struct hl_device *hdev, u64 addr); |
| void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); |
| void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard); |
| void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, |
| u32 asid, u64 va, u64 size); |
| int (*send_heartbeat)(struct hl_device *hdev); |
| int (*debug_coresight)(struct hl_device *hdev, void *data); |
| bool (*is_device_idle)(struct hl_device *hdev, u32 *mask, |
| struct seq_file *s); |
| int (*soft_reset_late_init)(struct hl_device *hdev); |
| void (*hw_queues_lock)(struct hl_device *hdev); |
| void (*hw_queues_unlock)(struct hl_device *hdev); |
| u32 (*get_pci_id)(struct hl_device *hdev); |
| int (*get_eeprom_data)(struct hl_device *hdev, void *data, |
| size_t max_size); |
| int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, |
| u16 len, u32 timeout, long *result); |
| enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev); |
| int (*pci_bars_map)(struct hl_device *hdev); |
| u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); |
| int (*init_iatu)(struct hl_device *hdev); |
| u32 (*rreg)(struct hl_device *hdev, u32 reg); |
| void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); |
| void (*halt_coresight)(struct hl_device *hdev); |
| }; |
| |
| |
| /* |
| * CONTEXTS |
| */ |
| |
| #define HL_KERNEL_ASID_ID 0 |
| |
| /** |
| * struct hl_va_range - virtual addresses range. |
| * @lock: protects the virtual addresses list. |
| * @list: list of virtual addresses blocks available for mappings. |
| * @start_addr: range start address. |
| * @end_addr: range end address. |
| */ |
| struct hl_va_range { |
| struct mutex lock; |
| struct list_head list; |
| u64 start_addr; |
| u64 end_addr; |
| }; |
| |
| /** |
| * struct hl_ctx - user/kernel context. |
| * @mem_hash: holds mapping from virtual address to virtual memory area |
| * descriptor (hl_vm_phys_pg_list or hl_userptr). |
| * @mmu_phys_hash: holds a mapping from physical address to pgt_info structure. |
| * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. |
| * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). |
| * @hdev: pointer to the device structure. |
| * @refcount: reference counter for the context. Context is released only when |
| * this hits 0l. It is incremented on CS and CS_WAIT. |
| * @cs_pending: array of DMA fence objects representing pending CS. |
| * @host_va_range: holds available virtual addresses for host mappings. |
| * @dram_va_range: holds available virtual addresses for DRAM mappings. |
| * @mem_hash_lock: protects the mem_hash. |
| * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the |
| * MMU hash or walking the PGT requires talking this lock |
| * @debugfs_list: node in debugfs list of contexts. |
| * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed |
| * to user so user could inquire about CS. It is used as |
| * index to cs_pending array. |
| * @dram_default_hops: array that holds all hops addresses needed for default |
| * DRAM mapping. |
| * @cs_lock: spinlock to protect cs_sequence. |
| * @dram_phys_mem: amount of used physical DRAM memory by this context. |
| * @thread_ctx_switch_token: token to prevent multiple threads of the same |
| * context from running the context switch phase. |
| * Only a single thread should run it. |
| * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run |
| * the context switch phase from moving to their |
| * execution phase before the context switch phase |
| * has finished. |
| * @asid: context's unique address space ID in the device's MMU. |
| * @handle: context's opaque handle for user |
| */ |
| struct hl_ctx { |
| DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); |
| DECLARE_HASHTABLE(mmu_phys_hash, MMU_HASH_TABLE_BITS); |
| DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); |
| struct hl_fpriv *hpriv; |
| struct hl_device *hdev; |
| struct kref refcount; |
| struct dma_fence *cs_pending[HL_MAX_PENDING_CS]; |
| struct hl_va_range host_va_range; |
| struct hl_va_range dram_va_range; |
| struct mutex mem_hash_lock; |
| struct mutex mmu_lock; |
| struct list_head debugfs_list; |
| u64 cs_sequence; |
| u64 *dram_default_hops; |
| spinlock_t cs_lock; |
| atomic64_t dram_phys_mem; |
| atomic_t thread_ctx_switch_token; |
| u32 thread_ctx_switch_wait_token; |
| u32 asid; |
| u32 handle; |
| }; |
| |
| /** |
| * struct hl_ctx_mgr - for handling multiple contexts. |
| * @ctx_lock: protects ctx_handles. |
| * @ctx_handles: idr to hold all ctx handles. |
| */ |
| struct hl_ctx_mgr { |
| struct mutex ctx_lock; |
| struct idr ctx_handles; |
| }; |
| |
| |
| |
| /* |
| * COMMAND SUBMISSIONS |
| */ |
| |
| /** |
| * struct hl_userptr - memory mapping chunk information |
| * @vm_type: type of the VM. |
| * @job_node: linked-list node for hanging the object on the Job's list. |
| * @vec: pointer to the frame vector. |
| * @sgt: pointer to the scatter-gather table that holds the pages. |
| * @dir: for DMA unmapping, the direction must be supplied, so save it. |
| * @debugfs_list: node in debugfs list of command submissions. |
| * @addr: user-space virtual pointer to the start of the memory area. |
| * @size: size of the memory area to pin & map. |
| * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. |
| */ |
| struct hl_userptr { |
| enum vm_type_t vm_type; /* must be first */ |
| struct list_head job_node; |
| struct frame_vector *vec; |
| struct sg_table *sgt; |
| enum dma_data_direction dir; |
| struct list_head debugfs_list; |
| u64 addr; |
| u32 size; |
| u8 dma_mapped; |
| }; |
| |
| /** |
| * struct hl_cs - command submission. |
| * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. |
| * @ctx: the context this CS belongs to. |
| * @job_list: list of the CS's jobs in the various queues. |
| * @job_lock: spinlock for the CS's jobs list. Needed for free_job. |
| * @refcount: reference counter for usage of the CS. |
| * @fence: pointer to the fence object of this CS. |
| * @work_tdr: delayed work node for TDR. |
| * @mirror_node : node in device mirror list of command submissions. |
| * @debugfs_list: node in debugfs list of command submissions. |
| * @sequence: the sequence number of this CS. |
| * @submitted: true if CS was submitted to H/W. |
| * @completed: true if CS was completed by device. |
| * @timedout : true if CS was timedout. |
| * @tdr_active: true if TDR was activated for this CS (to prevent |
| * double TDR activation). |
| * @aborted: true if CS was aborted due to some device error. |
| */ |
| struct hl_cs { |
| u8 jobs_in_queue_cnt[HL_MAX_QUEUES]; |
| struct hl_ctx *ctx; |
| struct list_head job_list; |
| spinlock_t job_lock; |
| struct kref refcount; |
| struct dma_fence *fence; |
| struct delayed_work work_tdr; |
| struct list_head mirror_node; |
| struct list_head debugfs_list; |
| u64 sequence; |
| u8 submitted; |
| u8 completed; |
| u8 timedout; |
| u8 tdr_active; |
| u8 aborted; |
| }; |
| |
| /** |
| * struct hl_cs_job - command submission job. |
| * @cs_node: the node to hang on the CS jobs list. |
| * @cs: the CS this job belongs to. |
| * @user_cb: the CB we got from the user. |
| * @patched_cb: in case of patching, this is internal CB which is submitted on |
| * the queue instead of the CB we got from the IOCTL. |
| * @finish_work: workqueue object to run when job is completed. |
| * @userptr_list: linked-list of userptr mappings that belong to this job and |
| * wait for completion. |
| * @debugfs_list: node in debugfs list of command submission jobs. |
| * @id: the id of this job inside a CS. |
| * @hw_queue_id: the id of the H/W queue this job is submitted to. |
| * @user_cb_size: the actual size of the CB we got from the user. |
| * @job_cb_size: the actual size of the CB that we put on the queue. |
| * @ext_queue: whether the job is for external queue or internal queue. |
| */ |
| struct hl_cs_job { |
| struct list_head cs_node; |
| struct hl_cs *cs; |
| struct hl_cb *user_cb; |
| struct hl_cb *patched_cb; |
| struct work_struct finish_work; |
| struct list_head userptr_list; |
| struct list_head debugfs_list; |
| u32 id; |
| u32 hw_queue_id; |
| u32 user_cb_size; |
| u32 job_cb_size; |
| u8 ext_queue; |
| }; |
| |
| /** |
| * struct hl_cs_parser - command submission paerser properties. |
| * @user_cb: the CB we got from the user. |
| * @patched_cb: in case of patching, this is internal CB which is submitted on |
| * the queue instead of the CB we got from the IOCTL. |
| * @job_userptr_list: linked-list of userptr mappings that belong to the related |
| * job and wait for completion. |
| * @cs_sequence: the sequence number of the related CS. |
| * @ctx_id: the ID of the context the related CS belongs to. |
| * @hw_queue_id: the id of the H/W queue this job is submitted to. |
| * @user_cb_size: the actual size of the CB we got from the user. |
| * @patched_cb_size: the size of the CB after parsing. |
| * @ext_queue: whether the job is for external queue or internal queue. |
| * @job_id: the id of the related job inside the related CS. |
| */ |
| struct hl_cs_parser { |
| struct hl_cb *user_cb; |
| struct hl_cb *patched_cb; |
| struct list_head *job_userptr_list; |
| u64 cs_sequence; |
| u32 ctx_id; |
| u32 hw_queue_id; |
| u32 user_cb_size; |
| u32 patched_cb_size; |
| u8 ext_queue; |
| u8 job_id; |
| }; |
| |
| |
| /* |
| * MEMORY STRUCTURE |
| */ |
| |
| /** |
| * struct hl_vm_hash_node - hash element from virtual address to virtual |
| * memory area descriptor (hl_vm_phys_pg_list or |
| * hl_userptr). |
| * @node: node to hang on the hash table in context object. |
| * @vaddr: key virtual address. |
| * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). |
| */ |
| struct hl_vm_hash_node { |
| struct hlist_node node; |
| u64 vaddr; |
| void *ptr; |
| }; |
| |
| /** |
| * struct hl_vm_phys_pg_pack - physical page pack. |
| * @vm_type: describes the type of the virtual area descriptor. |
| * @pages: the physical page array. |
| * @npages: num physical pages in the pack. |
| * @total_size: total size of all the pages in this list. |
| * @mapping_cnt: number of shared mappings. |
| * @asid: the context related to this list. |
| * @page_size: size of each page in the pack. |
| * @flags: HL_MEM_* flags related to this list. |
| * @handle: the provided handle related to this list. |
| * @offset: offset from the first page. |
| * @contiguous: is contiguous physical memory. |
| * @created_from_userptr: is product of host virtual address. |
| */ |
| struct hl_vm_phys_pg_pack { |
| enum vm_type_t vm_type; /* must be first */ |
| u64 *pages; |
| u64 npages; |
| u64 total_size; |
| atomic_t mapping_cnt; |
| u32 asid; |
| u32 page_size; |
| u32 flags; |
| u32 handle; |
| u32 offset; |
| u8 contiguous; |
| u8 created_from_userptr; |
| }; |
| |
| /** |
| * struct hl_vm_va_block - virtual range block information. |
| * @node: node to hang on the virtual range list in context object. |
| * @start: virtual range start address. |
| * @end: virtual range end address. |
| * @size: virtual range size. |
| */ |
| struct hl_vm_va_block { |
| struct list_head node; |
| u64 start; |
| u64 end; |
| u64 size; |
| }; |
| |
| /** |
| * struct hl_vm - virtual memory manager for MMU. |
| * @dram_pg_pool: pool for DRAM physical pages of 2MB. |
| * @dram_pg_pool_refcount: reference counter for the pool usage. |
| * @idr_lock: protects the phys_pg_list_handles. |
| * @phys_pg_pack_handles: idr to hold all device allocations handles. |
| * @init_done: whether initialization was done. We need this because VM |
| * initialization might be skipped during device initialization. |
| */ |
| struct hl_vm { |
| struct gen_pool *dram_pg_pool; |
| struct kref dram_pg_pool_refcount; |
| spinlock_t idr_lock; |
| struct idr phys_pg_pack_handles; |
| u8 init_done; |
| }; |
| |
| |
| /* |
| * DEBUG, PROFILING STRUCTURE |
| */ |
| |
| /** |
| * struct hl_debug_params - Coresight debug parameters. |
| * @input: pointer to component specific input parameters. |
| * @output: pointer to component specific output parameters. |
| * @output_size: size of output buffer. |
| * @reg_idx: relevant register ID. |
| * @op: component operation to execute. |
| * @enable: true if to enable component debugging, false otherwise. |
| */ |
| struct hl_debug_params { |
| void *input; |
| void *output; |
| u32 output_size; |
| u32 reg_idx; |
| u32 op; |
| bool enable; |
| }; |
| |
| /* |
| * FILE PRIVATE STRUCTURE |
| */ |
| |
| /** |
| * struct hl_fpriv - process information stored in FD private data. |
| * @hdev: habanalabs device structure. |
| * @filp: pointer to the given file structure. |
| * @taskpid: current process ID. |
| * @ctx: current executing context. TODO: remove for multiple ctx per process |
| * @ctx_mgr: context manager to handle multiple context for this FD. |
| * @cb_mgr: command buffer manager to handle multiple buffers for this FD. |
| * @debugfs_list: list of relevant ASIC debugfs. |
| * @dev_node: node in the device list of file private data |
| * @refcount: number of related contexts. |
| * @restore_phase_mutex: lock for context switch and restore phase. |
| * @is_control: true for control device, false otherwise |
| */ |
| struct hl_fpriv { |
| struct hl_device *hdev; |
| struct file *filp; |
| struct pid *taskpid; |
| struct hl_ctx *ctx; |
| struct hl_ctx_mgr ctx_mgr; |
| struct hl_cb_mgr cb_mgr; |
| struct list_head debugfs_list; |
| struct list_head dev_node; |
| struct kref refcount; |
| struct mutex restore_phase_mutex; |
| u8 is_control; |
| }; |
| |
| |
| /* |
| * DebugFS |
| */ |
| |
| /** |
| * struct hl_info_list - debugfs file ops. |
| * @name: file name. |
| * @show: function to output information. |
| * @write: function to write to the file. |
| */ |
| struct hl_info_list { |
| const char *name; |
| int (*show)(struct seq_file *s, void *data); |
| ssize_t (*write)(struct file *file, const char __user *buf, |
| size_t count, loff_t *f_pos); |
| }; |
| |
| /** |
| * struct hl_debugfs_entry - debugfs dentry wrapper. |
| * @dent: base debugfs entry structure. |
| * @info_ent: dentry realted ops. |
| * @dev_entry: ASIC specific debugfs manager. |
| */ |
| struct hl_debugfs_entry { |
| struct dentry *dent; |
| const struct hl_info_list *info_ent; |
| struct hl_dbg_device_entry *dev_entry; |
| }; |
| |
| /** |
| * struct hl_dbg_device_entry - ASIC specific debugfs manager. |
| * @root: root dentry. |
| * @hdev: habanalabs device structure. |
| * @entry_arr: array of available hl_debugfs_entry. |
| * @file_list: list of available debugfs files. |
| * @file_mutex: protects file_list. |
| * @cb_list: list of available CBs. |
| * @cb_spinlock: protects cb_list. |
| * @cs_list: list of available CSs. |
| * @cs_spinlock: protects cs_list. |
| * @cs_job_list: list of available CB jobs. |
| * @cs_job_spinlock: protects cs_job_list. |
| * @userptr_list: list of available userptrs (virtual memory chunk descriptor). |
| * @userptr_spinlock: protects userptr_list. |
| * @ctx_mem_hash_list: list of available contexts with MMU mappings. |
| * @ctx_mem_hash_spinlock: protects cb_list. |
| * @addr: next address to read/write from/to in read/write32. |
| * @mmu_addr: next virtual address to translate to physical address in mmu_show. |
| * @mmu_asid: ASID to use while translating in mmu_show. |
| * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. |
| * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read. |
| * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read. |
| */ |
| struct hl_dbg_device_entry { |
| struct dentry *root; |
| struct hl_device *hdev; |
| struct hl_debugfs_entry *entry_arr; |
| struct list_head file_list; |
| struct mutex file_mutex; |
| struct list_head cb_list; |
| spinlock_t cb_spinlock; |
| struct list_head cs_list; |
| spinlock_t cs_spinlock; |
| struct list_head cs_job_list; |
| spinlock_t cs_job_spinlock; |
| struct list_head userptr_list; |
| spinlock_t userptr_spinlock; |
| struct list_head ctx_mem_hash_list; |
| spinlock_t ctx_mem_hash_spinlock; |
| u64 addr; |
| u64 mmu_addr; |
| u32 mmu_asid; |
| u8 i2c_bus; |
| u8 i2c_addr; |
| u8 i2c_reg; |
| }; |
| |
| |
| /* |
| * DEVICES |
| */ |
| |
| /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe |
| * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. |
| */ |
| #define HL_MAX_MINORS 256 |
| |
| /* |
| * Registers read & write functions. |
| */ |
| |
| u32 hl_rreg(struct hl_device *hdev, u32 reg); |
| void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); |
| |
| #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) |
| #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) |
| #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ |
| hdev->asic_funcs->rreg(hdev, (reg))) |
| |
| #define WREG32_P(reg, val, mask) \ |
| do { \ |
| u32 tmp_ = RREG32(reg); \ |
| tmp_ &= (mask); \ |
| tmp_ |= ((val) & ~(mask)); \ |
| WREG32(reg, tmp_); \ |
| } while (0) |
| #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) |
| #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) |
| |
| #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT |
| #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK |
| #define WREG32_FIELD(reg, field, val) \ |
| WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \ |
| (val) << REG_FIELD_SHIFT(reg, field)) |
| |
| /* Timeout should be longer when working with simulator but cap the |
| * increased timeout to some maximum |
| */ |
| #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ |
| ({ \ |
| ktime_t __timeout; \ |
| if (hdev->pdev) \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| else \ |
| __timeout = ktime_add_us(ktime_get(),\ |
| min((u64)(timeout_us * 10), \ |
| (u64) HL_SIM_MAX_TIMEOUT_US)); \ |
| might_sleep_if(sleep_us); \ |
| for (;;) { \ |
| (val) = RREG32(addr); \ |
| if (cond) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ |
| (val) = RREG32(addr); \ |
| break; \ |
| } \ |
| if (sleep_us) \ |
| usleep_range((sleep_us >> 2) + 1, sleep_us); \ |
| } \ |
| (cond) ? 0 : -ETIMEDOUT; \ |
| }) |
| |
| /* |
| * address in this macro points always to a memory location in the |
| * host's (server's) memory. That location is updated asynchronously |
| * either by the direct access of the device or by another core. |
| * |
| * To work both in LE and BE architectures, we need to distinguish between the |
| * two states (device or another core updates the memory location). Therefore, |
| * if mem_written_by_device is true, the host memory being polled will be |
| * updated directly by the device. If false, the host memory being polled will |
| * be updated by host CPU. Required so host knows whether or not the memory |
| * might need to be byte-swapped before returning value to caller. |
| */ |
| #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ |
| mem_written_by_device) \ |
| ({ \ |
| ktime_t __timeout; \ |
| if (hdev->pdev) \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| else \ |
| __timeout = ktime_add_us(ktime_get(),\ |
| min((u64)(timeout_us * 10), \ |
| (u64) HL_SIM_MAX_TIMEOUT_US)); \ |
| might_sleep_if(sleep_us); \ |
| for (;;) { \ |
| /* Verify we read updates done by other cores or by device */ \ |
| mb(); \ |
| (val) = *((u32 *) (uintptr_t) (addr)); \ |
| if (mem_written_by_device) \ |
| (val) = le32_to_cpu(*(__le32 *) &(val)); \ |
| if (cond) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ |
| (val) = *((u32 *) (uintptr_t) (addr)); \ |
| if (mem_written_by_device) \ |
| (val) = le32_to_cpu(*(__le32 *) &(val)); \ |
| break; \ |
| } \ |
| if (sleep_us) \ |
| usleep_range((sleep_us >> 2) + 1, sleep_us); \ |
| } \ |
| (cond) ? 0 : -ETIMEDOUT; \ |
| }) |
| |
| #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \ |
| timeout_us) \ |
| ({ \ |
| ktime_t __timeout; \ |
| if (hdev->pdev) \ |
| __timeout = ktime_add_us(ktime_get(), timeout_us); \ |
| else \ |
| __timeout = ktime_add_us(ktime_get(),\ |
| min((u64)(timeout_us * 10), \ |
| (u64) HL_SIM_MAX_TIMEOUT_US)); \ |
| might_sleep_if(sleep_us); \ |
| for (;;) { \ |
| (val) = readl(addr); \ |
| if (cond) \ |
| break; \ |
| if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ |
| (val) = readl(addr); \ |
| break; \ |
| } \ |
| if (sleep_us) \ |
| usleep_range((sleep_us >> 2) + 1, sleep_us); \ |
| } \ |
| (cond) ? 0 : -ETIMEDOUT; \ |
| }) |
| |
| struct hwmon_chip_info; |
| |
| /** |
| * struct hl_device_reset_work - reset workqueue task wrapper. |
| * @reset_work: reset work to be done. |
| * @hdev: habanalabs device structure. |
| */ |
| struct hl_device_reset_work { |
| struct work_struct reset_work; |
| struct hl_device *hdev; |
| }; |
| |
| /** |
| * struct hl_device_idle_busy_ts - used for calculating device utilization rate. |
| * @idle_to_busy_ts: timestamp where device changed from idle to busy. |
| * @busy_to_idle_ts: timestamp where device changed from busy to idle. |
| */ |
| struct hl_device_idle_busy_ts { |
| ktime_t idle_to_busy_ts; |
| ktime_t busy_to_idle_ts; |
| }; |
| |
| /** |
| * struct hl_device - habanalabs device structure. |
| * @pdev: pointer to PCI device, can be NULL in case of simulator device. |
| * @pcie_bar: array of available PCIe bars. |
| * @rmmio: configuration area address on SRAM. |
| * @cdev: related char device. |
| * @cdev_ctrl: char device for control operations only (INFO IOCTL) |
| * @dev: related kernel basic device structure. |
| * @dev_ctrl: related kernel device structure for the control device |
| * @work_freq: delayed work to lower device frequency if possible. |
| * @work_heartbeat: delayed work for ArmCP is-alive check. |
| * @asic_name: ASIC specific nmae. |
| * @asic_type: ASIC specific type. |
| * @completion_queue: array of hl_cq. |
| * @cq_wq: work queue of completion queues for executing work in process context |
| * @eq_wq: work queue of event queue for executing work in process context. |
| * @kernel_ctx: Kernel driver context structure. |
| * @kernel_queues: array of hl_hw_queue. |
| * @hw_queues_mirror_list: CS mirror list for TDR. |
| * @hw_queues_mirror_lock: protects hw_queues_mirror_list. |
| * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs. |
| * @event_queue: event queue for IRQ from ArmCP. |
| * @dma_pool: DMA pool for small allocations. |
| * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address. |
| * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address. |
| * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool. |
| * @asid_bitmap: holds used/available ASIDs. |
| * @asid_mutex: protects asid_bitmap. |
| * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue. |
| * @debug_lock: protects critical section of setting debug mode for device |
| * @asic_prop: ASIC specific immutable properties. |
| * @asic_funcs: ASIC specific functions. |
| * @asic_specific: ASIC specific information to use only from ASIC files. |
| * @mmu_pgt_pool: pool of available MMU hops. |
| * @vm: virtual memory manager for MMU. |
| * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context. |
| * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone. |
| * @hwmon_dev: H/W monitor device. |
| * @pm_mng_profile: current power management profile. |
| * @hl_chip_info: ASIC's sensors information. |
| * @hl_debugfs: device's debugfs manager. |
| * @cb_pool: list of preallocated CBs. |
| * @cb_pool_lock: protects the CB pool. |
| * @fpriv_list: list of file private data structures. Each structure is created |
| * when a user opens the device |
| * @fpriv_list_lock: protects the fpriv_list |
| * @compute_ctx: current compute context executing. |
| * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy |
| * and vice-versa |
| * @dram_used_mem: current DRAM memory consumption. |
| * @timeout_jiffies: device CS timeout value. |
| * @max_power: the max power of the device, as configured by the sysadmin. This |
| * value is saved so in case of hard-reset, the driver will restore |
| * this value and update the F/W after the re-initialization |
| * @in_reset: is device in reset flow. |
| * @curr_pll_profile: current PLL profile. |
| * @cs_active_cnt: number of active command submissions on this device (active |
| * means already in H/W queues) |
| * @major: habanalabs kernel driver major. |
| * @high_pll: high PLL profile frequency. |
| * @soft_reset_cnt: number of soft reset since the driver was loaded. |
| * @hard_reset_cnt: number of hard reset since the driver was loaded. |
| * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr |
| * @id: device minor. |
| * @id_control: minor of the control device |
| * @disabled: is device disabled. |
| * @late_init_done: is late init stage was done during initialization. |
| * @hwmon_initialized: is H/W monitor sensors was initialized. |
| * @hard_reset_pending: is there a hard reset work pending. |
| * @heartbeat: is heartbeat sanity check towards ArmCP enabled. |
| * @reset_on_lockup: true if a reset should be done in case of stuck CS, false |
| * otherwise. |
| * @dram_supports_virtual_memory: is MMU enabled towards DRAM. |
| * @dram_default_page_mapping: is DRAM default page mapping enabled. |
| * @init_done: is the initialization of the device done. |
| * @mmu_enable: is MMU enabled. |
| * @device_cpu_disabled: is the device CPU disabled (due to timeouts) |
| * @dma_mask: the dma mask that was set for this device |
| * @in_debug: is device under debug. This, together with fpriv_list, enforces |
| * that only a single user is configuring the debug infrastructure. |
| * @cdev_sysfs_created: were char devices and sysfs nodes created. |
| */ |
| struct hl_device { |
| struct pci_dev *pdev; |
| void __iomem *pcie_bar[6]; |
| void __iomem *rmmio; |
| struct cdev cdev; |
| struct cdev cdev_ctrl; |
| struct device *dev; |
| struct device *dev_ctrl; |
| struct delayed_work work_freq; |
| struct delayed_work work_heartbeat; |
| char asic_name[16]; |
| enum hl_asic_type asic_type; |
| struct hl_cq *completion_queue; |
| struct workqueue_struct *cq_wq; |
| struct workqueue_struct *eq_wq; |
| struct hl_ctx *kernel_ctx; |
| struct hl_hw_queue *kernel_queues; |
| struct list_head hw_queues_mirror_list; |
| spinlock_t hw_queues_mirror_lock; |
| struct hl_cb_mgr kernel_cb_mgr; |
| struct hl_eq event_queue; |
| struct dma_pool *dma_pool; |
| void *cpu_accessible_dma_mem; |
| dma_addr_t cpu_accessible_dma_address; |
| struct gen_pool *cpu_accessible_dma_pool; |
| unsigned long *asid_bitmap; |
| struct mutex asid_mutex; |
| struct mutex send_cpu_message_lock; |
| struct mutex debug_lock; |
| struct asic_fixed_properties asic_prop; |
| const struct hl_asic_funcs *asic_funcs; |
| void *asic_specific; |
| struct gen_pool *mmu_pgt_pool; |
| struct hl_vm vm; |
| struct mutex mmu_cache_lock; |
| void *mmu_shadow_hop0; |
| struct device *hwmon_dev; |
| enum hl_pm_mng_profile pm_mng_profile; |
| struct hwmon_chip_info *hl_chip_info; |
| |
| struct hl_dbg_device_entry hl_debugfs; |
| |
| struct list_head cb_pool; |
| spinlock_t cb_pool_lock; |
| |
| struct list_head fpriv_list; |
| struct mutex fpriv_list_lock; |
| |
| struct hl_ctx *compute_ctx; |
| |
| struct hl_device_idle_busy_ts *idle_busy_ts_arr; |
| |
| atomic64_t dram_used_mem; |
| u64 timeout_jiffies; |
| u64 max_power; |
| atomic_t in_reset; |
| enum hl_pll_frequency curr_pll_profile; |
| int cs_active_cnt; |
| u32 major; |
| u32 high_pll; |
| u32 soft_reset_cnt; |
| u32 hard_reset_cnt; |
| u32 idle_busy_ts_idx; |
| u16 id; |
| u16 id_control; |
| u8 disabled; |
| u8 late_init_done; |
| u8 hwmon_initialized; |
| u8 hard_reset_pending; |
| u8 heartbeat; |
| u8 reset_on_lockup; |
| u8 dram_supports_virtual_memory; |
| u8 dram_default_page_mapping; |
| u8 init_done; |
| u8 device_cpu_disabled; |
| u8 dma_mask; |
| u8 in_debug; |
| u8 cdev_sysfs_created; |
| |
| /* Parameters for bring-up */ |
| u8 mmu_enable; |
| u8 cpu_enable; |
| u8 reset_pcilink; |
| u8 cpu_queues_enable; |
| u8 fw_loading; |
| u8 pldm; |
| }; |
| |
| |
| /* |
| * IOCTLs |
| */ |
| |
| /** |
| * typedef hl_ioctl_t - typedef for ioctl function in the driver |
| * @hpriv: pointer to the FD's private data, which contains state of |
| * user process |
| * @data: pointer to the input/output arguments structure of the IOCTL |
| * |
| * Return: 0 for success, negative value for error |
| */ |
| typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); |
| |
| /** |
| * struct hl_ioctl_desc - describes an IOCTL entry of the driver. |
| * @cmd: the IOCTL code as created by the kernel macros. |
| * @func: pointer to the driver's function that should be called for this IOCTL. |
| */ |
| struct hl_ioctl_desc { |
| unsigned int cmd; |
| hl_ioctl_t *func; |
| }; |
| |
| |
| /* |
| * Kernel module functions that can be accessed by entire module |
| */ |
| |
| /** |
| * hl_mem_area_inside_range() - Checks whether address+size are inside a range. |
| * @address: The start address of the area we want to validate. |
| * @size: The size in bytes of the area we want to validate. |
| * @range_start_address: The start address of the valid range. |
| * @range_end_address: The end address of the valid range. |
| * |
| * Return: true if the area is inside the valid range, false otherwise. |
| */ |
| static inline bool hl_mem_area_inside_range(u64 address, u32 size, |
| u64 range_start_address, u64 range_end_address) |
| { |
| u64 end_address = address + size; |
| |
| if ((address >= range_start_address) && |
| (end_address <= range_end_address) && |
| (end_address > address)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. |
| * @address: The start address of the area we want to validate. |
| * @size: The size in bytes of the area we want to validate. |
| * @range_start_address: The start address of the valid range. |
| * @range_end_address: The end address of the valid range. |
| * |
| * Return: true if the area overlaps part or all of the valid range, |
| * false otherwise. |
| */ |
| static inline bool hl_mem_area_crosses_range(u64 address, u32 size, |
| u64 range_start_address, u64 range_end_address) |
| { |
| u64 end_address = address + size; |
| |
| if ((address >= range_start_address) && |
| (address < range_end_address)) |
| return true; |
| |
| if ((end_address >= range_start_address) && |
| (end_address < range_end_address)) |
| return true; |
| |
| if ((address < range_start_address) && |
| (end_address >= range_end_address)) |
| return true; |
| |
| return false; |
| } |
| |
| int hl_device_open(struct inode *inode, struct file *filp); |
| int hl_device_open_ctrl(struct inode *inode, struct file *filp); |
| bool hl_device_disabled_or_in_reset(struct hl_device *hdev); |
| enum hl_device_status hl_device_status(struct hl_device *hdev); |
| int hl_device_set_debug_mode(struct hl_device *hdev, bool enable); |
| int create_hdev(struct hl_device **dev, struct pci_dev *pdev, |
| enum hl_asic_type asic_type, int minor); |
| void destroy_hdev(struct hl_device *hdev); |
| int hl_hw_queues_create(struct hl_device *hdev); |
| void hl_hw_queues_destroy(struct hl_device *hdev); |
| int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, |
| u32 cb_size, u64 cb_ptr); |
| int hl_hw_queue_schedule_cs(struct hl_cs *cs); |
| u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); |
| void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); |
| void hl_int_hw_queue_update_ci(struct hl_cs *cs); |
| void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); |
| |
| #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) |
| #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) |
| |
| int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); |
| void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); |
| int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); |
| void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); |
| void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); |
| void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); |
| irqreturn_t hl_irq_handler_cq(int irq, void *arg); |
| irqreturn_t hl_irq_handler_eq(int irq, void *arg); |
| u32 hl_cq_inc_ptr(u32 ptr); |
| |
| int hl_asid_init(struct hl_device *hdev); |
| void hl_asid_fini(struct hl_device *hdev); |
| unsigned long hl_asid_alloc(struct hl_device *hdev); |
| void hl_asid_free(struct hl_device *hdev, unsigned long asid); |
| |
| int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); |
| void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); |
| int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); |
| void hl_ctx_do_release(struct kref *ref); |
| void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx); |
| int hl_ctx_put(struct hl_ctx *ctx); |
| struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); |
| void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); |
| void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); |
| |
| int hl_device_init(struct hl_device *hdev, struct class *hclass); |
| void hl_device_fini(struct hl_device *hdev); |
| int hl_device_suspend(struct hl_device *hdev); |
| int hl_device_resume(struct hl_device *hdev); |
| int hl_device_reset(struct hl_device *hdev, bool hard_reset, |
| bool from_hard_reset_thread); |
| void hl_hpriv_get(struct hl_fpriv *hpriv); |
| void hl_hpriv_put(struct hl_fpriv *hpriv); |
| int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq); |
| uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms); |
| |
| int hl_build_hwmon_channel_info(struct hl_device *hdev, |
| struct armcp_sensor *sensors_arr); |
| |
| int hl_sysfs_init(struct hl_device *hdev); |
| void hl_sysfs_fini(struct hl_device *hdev); |
| |
| int hl_hwmon_init(struct hl_device *hdev); |
| void hl_hwmon_fini(struct hl_device *hdev); |
| |
| int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size, |
| u64 *handle, int ctx_id); |
| int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle); |
| int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); |
| struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| u32 handle); |
| void hl_cb_put(struct hl_cb *cb); |
| void hl_cb_mgr_init(struct hl_cb_mgr *mgr); |
| void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr); |
| struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size); |
| int hl_cb_pool_init(struct hl_device *hdev); |
| int hl_cb_pool_fini(struct hl_device *hdev); |
| |
| void hl_cs_rollback_all(struct hl_device *hdev); |
| struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue); |
| |
| void goya_set_asic_funcs(struct hl_device *hdev); |
| |
| int hl_vm_ctx_init(struct hl_ctx *ctx); |
| void hl_vm_ctx_fini(struct hl_ctx *ctx); |
| |
| int hl_vm_init(struct hl_device *hdev); |
| void hl_vm_fini(struct hl_device *hdev); |
| |
| int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, |
| struct hl_userptr *userptr); |
| int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); |
| void hl_userptr_delete_list(struct hl_device *hdev, |
| struct list_head *userptr_list); |
| bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, |
| struct list_head *userptr_list, |
| struct hl_userptr **userptr); |
| |
| int hl_mmu_init(struct hl_device *hdev); |
| void hl_mmu_fini(struct hl_device *hdev); |
| int hl_mmu_ctx_init(struct hl_ctx *ctx); |
| void hl_mmu_ctx_fini(struct hl_ctx *ctx); |
| int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size); |
| int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size); |
| void hl_mmu_swap_out(struct hl_ctx *ctx); |
| void hl_mmu_swap_in(struct hl_ctx *ctx); |
| |
| int hl_fw_push_fw_to_device(struct hl_device *hdev, const char *fw_name, |
| void __iomem *dst); |
| int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode); |
| int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, |
| u16 len, u32 timeout, long *result); |
| int hl_fw_test_cpu_queue(struct hl_device *hdev); |
| void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle); |
| void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, |
| void *vaddr); |
| int hl_fw_send_heartbeat(struct hl_device *hdev); |
| int hl_fw_armcp_info_get(struct hl_device *hdev); |
| int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); |
| |
| int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], |
| bool is_wc[3]); |
| int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); |
| int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar, |
| u64 addr); |
| int hl_pci_init_iatu(struct hl_device *hdev, u64 sram_base_address, |
| u64 dram_base_address, u64 host_phys_base_address, |
| u64 host_phys_size); |
| int hl_pci_init(struct hl_device *hdev, u8 dma_mask); |
| void hl_pci_fini(struct hl_device *hdev); |
| int hl_pci_set_dma_mask(struct hl_device *hdev, u8 dma_mask); |
| |
| long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); |
| void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); |
| long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr); |
| long hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr); |
| long hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr); |
| long hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr); |
| long hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr); |
| void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, |
| long value); |
| u64 hl_get_max_power(struct hl_device *hdev); |
| void hl_set_max_power(struct hl_device *hdev, u64 value); |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| void hl_debugfs_init(void); |
| void hl_debugfs_fini(void); |
| void hl_debugfs_add_device(struct hl_device *hdev); |
| void hl_debugfs_remove_device(struct hl_device *hdev); |
| void hl_debugfs_add_file(struct hl_fpriv *hpriv); |
| void hl_debugfs_remove_file(struct hl_fpriv *hpriv); |
| void hl_debugfs_add_cb(struct hl_cb *cb); |
| void hl_debugfs_remove_cb(struct hl_cb *cb); |
| void hl_debugfs_add_cs(struct hl_cs *cs); |
| void hl_debugfs_remove_cs(struct hl_cs *cs); |
| void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); |
| void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); |
| void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); |
| void hl_debugfs_remove_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr); |
| void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); |
| void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); |
| |
| #else |
| |
| static inline void __init hl_debugfs_init(void) |
| { |
| } |
| |
| static inline void hl_debugfs_fini(void) |
| { |
| } |
| |
| static inline void hl_debugfs_add_device(struct hl_device *hdev) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_device(struct hl_device *hdev) |
| { |
| } |
| |
| static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) |
| { |
| } |
| |
| static inline void hl_debugfs_add_cb(struct hl_cb *cb) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_cb(struct hl_cb *cb) |
| { |
| } |
| |
| static inline void hl_debugfs_add_cs(struct hl_cs *cs) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_cs(struct hl_cs *cs) |
| { |
| } |
| |
| static inline void hl_debugfs_add_job(struct hl_device *hdev, |
| struct hl_cs_job *job) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_job(struct hl_device *hdev, |
| struct hl_cs_job *job) |
| { |
| } |
| |
| static inline void hl_debugfs_add_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, |
| struct hl_userptr *userptr) |
| { |
| } |
| |
| static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| } |
| |
| static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, |
| struct hl_ctx *ctx) |
| { |
| } |
| |
| #endif |
| |
| /* IOCTLs */ |
| long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); |
| long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); |
| int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); |
| int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); |
| int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data); |
| int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); |
| |
| #endif /* HABANALABSP_H_ */ |