blob: f818f060e5a736c830a3de263d68b27231a04c1a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009 - 2018 Intel Corporation. */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/sctp.h>
#include "igbvf.h"
#define DRV_VERSION "2.4.0-k"
char igbvf_driver_name[] = "igbvf";
const char igbvf_driver_version[] = DRV_VERSION;
static const char igbvf_driver_string[] =
"Intel(R) Gigabit Virtual Function Network Driver";
static const char igbvf_copyright[] =
"Copyright (c) 2009 - 2012 Intel Corporation.";
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int igbvf_poll(struct napi_struct *napi, int budget);
static void igbvf_reset(struct igbvf_adapter *);
static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
static struct igbvf_info igbvf_vf_info = {
.mac = e1000_vfadapt,
.flags = 0,
.pba = 10,
.init_ops = e1000_init_function_pointers_vf,
};
static struct igbvf_info igbvf_i350_vf_info = {
.mac = e1000_vfadapt_i350,
.flags = 0,
.pba = 10,
.init_ops = e1000_init_function_pointers_vf,
};
static const struct igbvf_info *igbvf_info_tbl[] = {
[board_vf] = &igbvf_vf_info,
[board_i350_vf] = &igbvf_i350_vf_info,
};
/**
* igbvf_desc_unused - calculate if we have unused descriptors
* @rx_ring: address of receive ring structure
**/
static int igbvf_desc_unused(struct igbvf_ring *ring)
{
if (ring->next_to_clean > ring->next_to_use)
return ring->next_to_clean - ring->next_to_use - 1;
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}
/**
* igbvf_receive_skb - helper function to handle Rx indications
* @adapter: board private structure
* @status: descriptor status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
* @skb: pointer to sk_buff to be indicated to stack
**/
static void igbvf_receive_skb(struct igbvf_adapter *adapter,
struct net_device *netdev,
struct sk_buff *skb,
u32 status, u16 vlan)
{
u16 vid;
if (status & E1000_RXD_STAT_VP) {
if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
(status & E1000_RXDEXT_STATERR_LB))
vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
else
vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
if (test_bit(vid, adapter->active_vlans))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
napi_gro_receive(&adapter->rx_ring->napi, skb);
}
static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
u32 status_err, struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set or checksum is disabled through ethtool */
if ((status_err & E1000_RXD_STAT_IXSM) ||
(adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
return;
/* TCP/UDP checksum error bit is set */
if (status_err &
(E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* It must be a TCP or UDP packet with a valid checksum */
if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
skb->ip_summed = CHECKSUM_UNNECESSARY;
adapter->hw_csum_good++;
}
/**
* igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
* @rx_ring: address of ring structure to repopulate
* @cleaned_count: number of buffers to repopulate
**/
static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
int cleaned_count)
{
struct igbvf_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_adv_rx_desc *rx_desc;
struct igbvf_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
int bufsz;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
if (adapter->rx_ps_hdr_size)
bufsz = adapter->rx_ps_hdr_size;
else
bufsz = adapter->rx_buffer_len;
while (cleaned_count--) {
rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
if (!buffer_info->page) {
buffer_info->page = alloc_page(GFP_ATOMIC);
if (!buffer_info->page) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
buffer_info->page_offset = 0;
} else {
buffer_info->page_offset ^= PAGE_SIZE / 2;
}
buffer_info->page_dma =
dma_map_page(&pdev->dev, buffer_info->page,
buffer_info->page_offset,
PAGE_SIZE / 2,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
buffer_info->page_dma)) {
__free_page(buffer_info->page);
buffer_info->page = NULL;
dev_err(&pdev->dev, "RX DMA map failed\n");
break;
}
}
if (!buffer_info->skb) {
skb = netdev_alloc_skb_ip_align(netdev, bufsz);
if (!skb) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
buffer_info->skb = skb;
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bufsz,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
dev_err(&pdev->dev, "RX DMA map failed\n");
goto no_buffers;
}
}
/* Refresh the desc even if buffer_addrs didn't change because
* each write-back erases this info.
*/
if (adapter->rx_ps_hdr_size) {
rx_desc->read.pkt_addr =
cpu_to_le64(buffer_info->page_dma);
rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
} else {
rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
rx_desc->read.hdr_addr = 0;
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
no_buffers:
if (rx_ring->next_to_use != i) {
rx_ring->next_to_use = i;
if (i == 0)
i = (rx_ring->count - 1);
else
i--;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, adapter->hw.hw_addr + rx_ring->tail);
}
}
/**
* igbvf_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
int *work_done, int work_to_do)
{
struct igbvf_ring *rx_ring = adapter->rx_ring;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_adv_rx_desc *rx_desc, *next_rxd;
struct igbvf_buffer *buffer_info, *next_buffer;
struct sk_buff *skb;
bool cleaned = false;
int cleaned_count = 0;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int i;
u32 length, hlen, staterr;
i = rx_ring->next_to_clean;
rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
while (staterr & E1000_RXD_STAT_DD) {
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
buffer_info = &rx_ring->buffer_info[i];
/* HW will not DMA in data larger than the given buffer, even
* if it parses the (NFS, of course) header to be larger. In
* that case, it fills the header buffer and spills the rest
* into the page.
*/
hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
& E1000_RXDADV_HDRBUFLEN_MASK) >>
E1000_RXDADV_HDRBUFLEN_SHIFT;
if (hlen > adapter->rx_ps_hdr_size)
hlen = adapter->rx_ps_hdr_size;
length = le16_to_cpu(rx_desc->wb.upper.length);
cleaned = true;
cleaned_count++;
skb = buffer_info->skb;
prefetch(skb->data - NET_IP_ALIGN);
buffer_info->skb = NULL;
if (!adapter->rx_ps_hdr_size) {
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
skb_put(skb, length);
goto send_up;
}
if (!skb_shinfo(skb)->nr_frags) {
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_hdr_size,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
skb_put(skb, hlen);
}
if (length) {
dma_unmap_page(&pdev->dev, buffer_info->page_dma,
PAGE_SIZE / 2,
DMA_FROM_DEVICE);
buffer_info->page_dma = 0;
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
buffer_info->page,
buffer_info->page_offset,
length);
if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
(page_count(buffer_info->page) != 1))
buffer_info->page = NULL;
else
get_page(buffer_info->page);
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE / 2;
}
send_up:
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
if (!(staterr & E1000_RXD_STAT_EOP)) {
buffer_info->skb = next_buffer->skb;
buffer_info->dma = next_buffer->dma;
next_buffer->skb = skb;
next_buffer->dma = 0;
goto next_desc;
}
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
dev_kfree_skb_irq(skb);
goto next_desc;
}
total_bytes += skb->len;
total_packets++;
igbvf_rx_checksum_adv(adapter, staterr, skb);
skb->protocol = eth_type_trans(skb, netdev);
igbvf_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
next_desc:
rx_desc->wb.upper.status_error = 0;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = igbvf_desc_unused(rx_ring);
if (cleaned_count)
igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
adapter->total_rx_packets += total_packets;
adapter->total_rx_bytes += total_bytes;
netdev->stats.rx_bytes += total_bytes;
netdev->stats.rx_packets += total_packets;
return cleaned;
}
static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
struct igbvf_buffer *buffer_info)
{
if (buffer_info->dma) {
if (buffer_info->mapped_as_page)
dma_unmap_page(&adapter->pdev->dev,
buffer_info->dma,
buffer_info->length,
DMA_TO_DEVICE);
else
dma_unmap_single(&adapter->pdev->dev,
buffer_info->dma,
buffer_info->length,
DMA_TO_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->time_stamp = 0;
}
/**
* igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
struct igbvf_ring *tx_ring)
{
struct pci_dev *pdev = adapter->pdev;
int size;
size = sizeof(struct igbvf_buffer) * tx_ring->count;
tx_ring->buffer_info = vzalloc(size);
if (!tx_ring->buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
tx_ring->adapter = adapter;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->buffer_info);
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
/**
* igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
struct igbvf_ring *rx_ring)
{
struct pci_dev *pdev = adapter->pdev;
int size, desc_len;
size = sizeof(struct igbvf_buffer) * rx_ring->count;
rx_ring->buffer_info = vzalloc(size);
if (!rx_ring->buffer_info)
goto err;
desc_len = sizeof(union e1000_adv_rx_desc);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->adapter = adapter;
return 0;
err:
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
/**
* igbvf_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
{
struct igbvf_adapter *adapter = tx_ring->adapter;
struct igbvf_buffer *buffer_info;
unsigned long size;
unsigned int i;
if (!tx_ring->buffer_info)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
igbvf_put_txbuf(adapter, buffer_info);
}
size = sizeof(struct igbvf_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
writel(0, adapter->hw.hw_addr + tx_ring->head);
writel(0, adapter->hw.hw_addr + tx_ring->tail);
}
/**
* igbvf_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: ring to free resources from
*
* Free all transmit software resources
**/
void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
{
struct pci_dev *pdev = tx_ring->adapter->pdev;
igbvf_clean_tx_ring(tx_ring);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* igbvf_clean_rx_ring - Free Rx Buffers per Queue
* @adapter: board private structure
**/
static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
{
struct igbvf_adapter *adapter = rx_ring->adapter;
struct igbvf_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
if (!rx_ring->buffer_info)
return;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->dma) {
if (adapter->rx_ps_hdr_size) {
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_hdr_size,
DMA_FROM_DEVICE);
} else {
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
}
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
if (buffer_info->page) {
if (buffer_info->page_dma)
dma_unmap_page(&pdev->dev,
buffer_info->page_dma,
PAGE_SIZE / 2,
DMA_FROM_DEVICE);
put_page(buffer_info->page);
buffer_info->page = NULL;
buffer_info->page_dma = 0;
buffer_info->page_offset = 0;
}
}
size = sizeof(struct igbvf_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
writel(0, adapter->hw.hw_addr + rx_ring->head);
writel(0, adapter->hw.hw_addr + rx_ring->tail);
}
/**
* igbvf_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
{
struct pci_dev *pdev = rx_ring->adapter->pdev;
igbvf_clean_rx_ring(rx_ring);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* igbvf_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte counts during the last
* interrupt. The advantage of per interrupt computation is faster updates
* and more accurate ITR for the current traffic pattern. Constants in this
* function were computed based on theoretical maximum wire speed and thresholds
* were set based on testing data as well as attempting to minimize response
* time while increasing bulk throughput.
**/
static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
enum latency_range itr_setting,
int packets, int bytes)
{
enum latency_range retval = itr_setting;
if (packets == 0)
goto update_itr_done;
switch (itr_setting) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
retval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
retval = bulk_latency;
else if ((packets > 35))
retval = lowest_latency;
} else if (bytes/packets > 2000) {
retval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
retval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
retval = low_latency;
} else if (bytes < 6000) {
retval = low_latency;
}
break;
default:
break;
}
update_itr_done:
return retval;
}
static int igbvf_range_to_itr(enum latency_range current_range)
{
int new_itr;
switch (current_range) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGBVF_70K_ITR;
break;
case low_latency:
new_itr = IGBVF_20K_ITR;
break;
case bulk_latency:
new_itr = IGBVF_4K_ITR;
break;
default:
new_itr = IGBVF_START_ITR;
break;
}
return new_itr;
}
static void igbvf_set_itr(struct igbvf_adapter *adapter)
{
u32 new_itr;
adapter->tx_ring->itr_range =
igbvf_update_itr(adapter,
adapter->tx_ring->itr_val,
adapter->total_tx_packets,
adapter->total_tx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->requested_itr == 3 &&
adapter->tx_ring->itr_range == lowest_latency)
adapter->tx_ring->itr_range = low_latency;
new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
if (new_itr != adapter->tx_ring->itr_val) {
u32 current_itr = adapter->tx_ring->itr_val;
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > current_itr ?
min(current_itr + (new_itr >> 2), new_itr) :
new_itr;
adapter->tx_ring->itr_val = new_itr;
adapter->tx_ring->set_itr = 1;
}
adapter->rx_ring->itr_range =
igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
adapter->total_rx_packets,
adapter->total_rx_bytes);
if (adapter->requested_itr == 3 &&
adapter->rx_ring->itr_range == lowest_latency)
adapter->rx_ring->itr_range = low_latency;
new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
if (new_itr != adapter->rx_ring->itr_val) {
u32 current_itr = adapter->rx_ring->itr_val;
new_itr = new_itr > current_itr ?
min(current_itr + (new_itr >> 2), new_itr) :
new_itr;
adapter->rx_ring->itr_val = new_itr;
adapter->rx_ring->set_itr = 1;
}
}
/**
* igbvf_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
*
* returns true if ring is completely cleaned
**/
static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
{
struct igbvf_adapter *adapter = tx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct igbvf_buffer *buffer_info;
struct sk_buff *skb;
union e1000_adv_tx_desc *tx_desc, *eop_desc;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int i, count = 0;
bool cleaned = false;
i = tx_ring->next_to_clean;
buffer_info = &tx_ring->buffer_info[i];
eop_desc = buffer_info->next_to_watch;
do {
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
buffer_info->next_to_watch = NULL;
for (cleaned = false; !cleaned; count++) {
tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
cleaned = (tx_desc == eop_desc);
skb = buffer_info->skb;
if (skb) {
unsigned int segs, bytecount;
/* gso_segs is currently only valid for tcp */
segs = skb_shinfo(skb)->gso_segs ?: 1;
/* multiply data chunks by size of headers */
bytecount = ((segs - 1) * skb_headlen(skb)) +
skb->len;
total_packets += segs;
total_bytes += bytecount;
}
igbvf_put_txbuf(adapter, buffer_info);
tx_desc->wb.status = 0;
i++;
if (i == tx_ring->count)
i = 0;
buffer_info = &tx_ring->buffer_info[i];
}
eop_desc = buffer_info->next_to_watch;
} while (count < tx_ring->count);
tx_ring->next_to_clean = i;
if (unlikely(count && netif_carrier_ok(netdev) &&
igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_queue_stopped(netdev) &&
!(test_bit(__IGBVF_DOWN, &adapter->state))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
}
netdev->stats.tx_bytes += total_bytes;
netdev->stats.tx_packets += total_packets;
return count < tx_ring->count;
}
static irqreturn_t igbvf_msix_other(int irq, void *data)
{
struct net_device *netdev = data;
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->int_counter1++;
hw->mac.get_link_status = 1;
if (!test_bit(__IGBVF_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
ew32(EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
{
struct net_device *netdev = data;
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct igbvf_ring *tx_ring = adapter->tx_ring;
if (tx_ring->set_itr) {
writel(tx_ring->itr_val,
adapter->hw.hw_addr + tx_ring->itr_register);
adapter->tx_ring->set_itr = 0;
}
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
/* auto mask will automatically re-enable the interrupt when we write
* EICS
*/
if (!igbvf_clean_tx_irq(tx_ring))
/* Ring was not completely cleaned, so fire another interrupt */
ew32(EICS, tx_ring->eims_value);
else
ew32(EIMS, tx_ring->eims_value);
return IRQ_HANDLED;
}
static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
{
struct net_device *netdev = data;
struct igbvf_adapter *adapter = netdev_priv(netdev);
adapter->int_counter0++;
/* Write the ITR value calculated at the end of the
* previous interrupt.
*/
if (adapter->rx_ring->set_itr) {
writel(adapter->rx_ring->itr_val,
adapter->hw.hw_addr + adapter->rx_ring->itr_register);
adapter->rx_ring->set_itr = 0;
}
if (napi_schedule_prep(&adapter->rx_ring->napi)) {
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->rx_ring->napi);
}
return IRQ_HANDLED;
}
#define IGBVF_NO_QUEUE -1
static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
int tx_queue, int msix_vector)
{
struct e1000_hw *hw = &adapter->hw;
u32 ivar, index;
/* 82576 uses a table-based method for assigning vectors.
* Each queue has a single entry in the table to which we write
* a vector number along with a "valid" bit. Sadly, the layout
* of the table is somewhat counterintuitive.
*/
if (rx_queue > IGBVF_NO_QUEUE) {
index = (rx_queue >> 1);
ivar = array_er32(IVAR0, index);
if (rx_queue & 0x1) {
/* vector goes into third byte of register */
ivar = ivar & 0xFF00FFFF;
ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
} else {
/* vector goes into low byte of register */
ivar = ivar & 0xFFFFFF00;
ivar |= msix_vector | E1000_IVAR_VALID;
}
adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
array_ew32(IVAR0, index, ivar);
}
if (tx_queue > IGBVF_NO_QUEUE) {
index = (tx_queue >> 1);
ivar = array_er32(IVAR0, index);
if (tx_queue & 0x1) {
/* vector goes into high byte of register */
ivar = ivar & 0x00FFFFFF;
ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
} else {
/* vector goes into second byte of register */
ivar = ivar & 0xFFFF00FF;
ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
}
adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
array_ew32(IVAR0, index, ivar);
}
}
/**
* igbvf_configure_msix - Configure MSI-X hardware
* @adapter: board private structure
*
* igbvf_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void igbvf_configure_msix(struct igbvf_adapter *adapter)
{
u32 tmp;
struct e1000_hw *hw = &adapter->hw;
struct igbvf_ring *tx_ring = adapter->tx_ring;
struct igbvf_ring *rx_ring = adapter->rx_ring;
int vector = 0;
adapter->eims_enable_mask = 0;
igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
adapter->eims_enable_mask |= tx_ring->eims_value;
writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
adapter->eims_enable_mask |= rx_ring->eims_value;
writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
/* set vector for other causes, i.e. link changes */
tmp = (vector++ | E1000_IVAR_VALID);
ew32(IVAR_MISC, tmp);
adapter->eims_enable_mask = GENMASK(vector - 1, 0);
adapter->eims_other = BIT(vector - 1);
e1e_flush();
}
static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
}
}
/**
* igbvf_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: board private structure
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
{
int err = -ENOMEM;
int i;
/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
for (i = 0; i < 3; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries, 3, 3);
}
if (err < 0) {
/* MSI-X failed */
dev_err(&adapter->pdev->dev,
"Failed to initialize MSI-X interrupts.\n");
igbvf_reset_interrupt_capability(adapter);
}
}
/**
* igbvf_request_msix - Initialize MSI-X interrupts
* @adapter: board private structure
*
* igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int igbvf_request_msix(struct igbvf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0, vector = 0;
if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
} else {
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
}
err = request_irq(adapter->msix_entries[vector].vector,
igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
netdev);
if (err)
goto out;
adapter->tx_ring->itr_register = E1000_EITR(vector);
adapter->tx_ring->itr_val = adapter->current_itr;
vector++;
err = request_irq(adapter->msix_entries[vector].vector,
igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
netdev);
if (err)
goto out;
adapter->rx_ring->itr_register = E1000_EITR(vector);
adapter->rx_ring->itr_val = adapter->current_itr;
vector++;
err = request_irq(adapter->msix_entries[vector].vector,
igbvf_msix_other, 0, netdev->name, netdev);
if (err)
goto out;
igbvf_configure_msix(adapter);
return 0;
out:
return err;
}
/**
* igbvf_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
**/
static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
if (!adapter->tx_ring)
return -ENOMEM;
adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
if (!adapter->rx_ring) {
kfree(adapter->tx_ring);
return -ENOMEM;
}
netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
return 0;
}
/**
* igbvf_request_irq - initialize interrupts
* @adapter: board private structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int igbvf_request_irq(struct igbvf_adapter *adapter)
{
int err = -1;
/* igbvf supports msi-x only */
if (adapter->msix_entries)
err = igbvf_request_msix(adapter);
if (!err)
return err;
dev_err(&adapter->pdev->dev,
"Unable to allocate interrupt, Error: %d\n", err);
return err;
}
static void igbvf_free_irq(struct igbvf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int vector;
if (adapter->msix_entries) {
for (vector = 0; vector < 3; vector++)
free_irq(adapter->msix_entries[vector].vector, netdev);
}
}
/**
* igbvf_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void igbvf_irq_disable(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(EIMC, ~0);
if (adapter->msix_entries)
ew32(EIAC, 0);
}
/**
* igbvf_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void igbvf_irq_enable(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(EIAC, adapter->eims_enable_mask);
ew32(EIAM, adapter->eims_enable_mask);
ew32(EIMS, adapter->eims_enable_mask);
}
/**
* igbvf_poll - NAPI Rx polling callback
* @napi: struct associated with this polling callback
* @budget: amount of packets driver is allowed to process this poll
**/
static int igbvf_poll(struct napi_struct *napi, int budget)
{
struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
struct igbvf_adapter *adapter = rx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
int work_done = 0;
igbvf_clean_rx_irq(adapter, &work_done, budget);
/* If not enough Rx work done, exit the polling mode */
if (work_done < budget) {
napi_complete_done(napi, work_done);
if (adapter->requested_itr & 3)
igbvf_set_itr(adapter);
if (!test_bit(__IGBVF_DOWN, &adapter->state))
ew32(EIMS, adapter->rx_ring->eims_value);
}
return work_done;
}
/**
* igbvf_set_rlpml - set receive large packet maximum length
* @adapter: board private structure
*
* Configure the maximum size of packets that will be received
*/
static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
{
int max_frame_size;
struct e1000_hw *hw = &adapter->hw;
max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
spin_lock_bh(&hw->mbx_lock);
e1000_rlpml_set_vf(hw, max_frame_size);
spin_unlock_bh(&hw->mbx_lock);
}
static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
spin_lock_bh(&hw->mbx_lock);
if (hw->mac.ops.set_vfta(hw, vid, true)) {
dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
spin_unlock_bh(&hw->mbx_lock);
return -EINVAL;
}
spin_unlock_bh(&hw->mbx_lock);
set_bit(vid, adapter->active_vlans);
return 0;
}
static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
spin_lock_bh(&hw->mbx_lock);
if (hw->mac.ops.set_vfta(hw, vid, false)) {
dev_err(&adapter->pdev->dev,
"Failed to remove vlan id %d\n", vid);
spin_unlock_bh(&hw->mbx_lock);
return -EINVAL;
}
spin_unlock_bh(&hw->mbx_lock);
clear_bit(vid, adapter->active_vlans);
return 0;
}
static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
{
u16 vid;
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}
/**
* igbvf_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void igbvf_configure_tx(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct igbvf_ring *tx_ring = adapter->tx_ring;
u64 tdba;
u32 txdctl, dca_txctrl;
/* disable transmits */
txdctl = er32(TXDCTL(0));
ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
e1e_flush();
msleep(10);
/* Setup the HW Tx Head and Tail descriptor pointers */
ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
tdba = tx_ring->dma;
ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
ew32(TDBAH(0), (tdba >> 32));
ew32(TDH(0), 0);
ew32(TDT(0), 0);
tx_ring->head = E1000_TDH(0);
tx_ring->tail = E1000_TDT(0);
/* Turn off Relaxed Ordering on head write-backs. The writebacks
* MUST be delivered in order or it will completely screw up
* our bookkeeping.
*/
dca_txctrl = er32(DCA_TXCTRL(0));
dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
ew32(DCA_TXCTRL(0), dca_txctrl);
/* enable transmits */
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
ew32(TXDCTL(0), txdctl);
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
/* enable Report Status bit */
adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
}
/**
* igbvf_setup_srrctl - configure the receive control registers
* @adapter: Board private structure
**/
static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 srrctl = 0;
srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
E1000_SRRCTL_BSIZEHDR_MASK |
E1000_SRRCTL_BSIZEPKT_MASK);
/* Enable queue drop to avoid head of line blocking */
srrctl |= E1000_SRRCTL_DROP_EN;
/* Setup buffer sizes */
srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
E1000_SRRCTL_BSIZEPKT_SHIFT;
if (adapter->rx_buffer_len < 2048) {
adapter->rx_ps_hdr_size = 0;
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
} else {
adapter->rx_ps_hdr_size = 128;
srrctl |= adapter->rx_ps_hdr_size <<
E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
}
ew32(SRRCTL(0), srrctl);
}
/**
* igbvf_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void igbvf_configure_rx(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct igbvf_ring *rx_ring = adapter->rx_ring;
u64 rdba;
u32 rxdctl;
/* disable receives */
rxdctl = er32(RXDCTL(0));
ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
e1e_flush();
msleep(10);
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
rdba = rx_ring->dma;
ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
ew32(RDBAH(0), (rdba >> 32));
ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
rx_ring->head = E1000_RDH(0);
rx_ring->tail = E1000_RDT(0);
ew32(RDH(0), 0);
ew32(RDT(0), 0);
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= IGBVF_RX_PTHRESH;
rxdctl |= IGBVF_RX_HTHRESH << 8;
rxdctl |= IGBVF_RX_WTHRESH << 16;
igbvf_set_rlpml(adapter);
/* enable receives */
ew32(RXDCTL(0), rxdctl);
}
/**
* igbvf_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
**/
static void igbvf_set_multi(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list = NULL;
int i;
if (!netdev_mc_empty(netdev)) {
mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
GFP_ATOMIC);
if (!mta_list)
return;
}
/* prepare a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
spin_lock_bh(&hw->mbx_lock);
hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
spin_unlock_bh(&hw->mbx_lock);
kfree(mta_list);
}
/**
* igbvf_set_uni - Configure unicast MAC filters
* @netdev: network interface device structure
*
* This routine is responsible for configuring the hardware for proper
* unicast filters.
**/
static int igbvf_set_uni(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
pr_err("Too many unicast filters - No Space\n");
return -ENOSPC;
}
spin_lock_bh(&hw->mbx_lock);
/* Clear all unicast MAC filters */
hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
spin_unlock_bh(&hw->mbx_lock);
if (!netdev_uc_empty(netdev)) {
struct netdev_hw_addr *ha;
/* Add MAC filters one by one */
netdev_for_each_uc_addr(ha, netdev) {
spin_lock_bh(&hw->mbx_lock);
hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
ha->addr);
spin_unlock_bh(&hw->mbx_lock);
udelay(200);
}
}
return 0;
}
static void igbvf_set_rx_mode(struct net_device *netdev)
{
igbvf_set_multi(netdev);
igbvf_set_uni(netdev);
}
/**
* igbvf_configure - configure the hardware for Rx and Tx
* @adapter: private board structure
**/
static void igbvf_configure(struct igbvf_adapter *adapter)
{
igbvf_set_rx_mode(adapter->netdev);
igbvf_restore_vlan(adapter);
igbvf_configure_tx(adapter);
igbvf_setup_srrctl(adapter);
igbvf_configure_rx(adapter);
igbvf_alloc_rx_buffers(adapter->rx_ring,
igbvf_desc_unused(adapter->rx_ring));
}
/* igbvf_reset - bring the hardware into a known good state
* @adapter: private board structure
*
* This function boots the hardware and enables some settings that
* require a configuration cycle of the hardware - those cannot be
* set/changed during runtime. After reset the device needs to be
* properly configured for Rx, Tx etc.
*/
static void igbvf_reset(struct igbvf_adapter *adapter)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
spin_lock_bh(&hw->mbx_lock);
/* Allow time for pending master requests to run */
if (mac->ops.reset_hw(hw))
dev_err(&adapter->pdev->dev, "PF still resetting\n");
mac->ops.init_hw(hw);
spin_unlock_bh(&hw->mbx_lock);
if (is_valid_ether_addr(adapter->hw.mac.addr)) {
memcpy(netdev->dev_addr, adapter->hw.mac.addr,
netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac.addr,
netdev->addr_len);
}
adapter->last_reset = jiffies;
}
int igbvf_up(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */
igbvf_configure(adapter);
clear_bit(__IGBVF_DOWN, &adapter->state);
napi_enable(&adapter->rx_ring->napi);
if (adapter->msix_entries)
igbvf_configure_msix(adapter);
/* Clear any pending interrupts. */
er32(EICR);
igbvf_irq_enable(adapter);
/* start the watchdog */
hw->mac.get_link_status = 1;
mod_timer(&adapter->watchdog_timer, jiffies + 1);
return 0;
}
void igbvf_down(struct igbvf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 rxdctl, txdctl;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__IGBVF_DOWN, &adapter->state);
/* disable receives in the hardware */
rxdctl = er32(RXDCTL(0));
ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
netif_carrier_off(netdev);
netif_stop_queue(netdev);
/* disable transmits in the hardware */
txdctl = er32(TXDCTL(0));
ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
/* flush both disables and wait for them to finish */
e1e_flush();
msleep(10);
napi_disable(&adapter->rx_ring->napi);
igbvf_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
/* record the stats before reset*/
igbvf_update_stats(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
igbvf_reset(adapter);
igbvf_clean_tx_ring(adapter->tx_ring);
igbvf_clean_rx_ring(adapter->rx_ring);
}
void igbvf_reinit_locked(struct igbvf_adapter *adapter)
{
might_sleep();
while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igbvf_down(adapter);
igbvf_up(adapter);
clear_bit(__IGBVF_RESETTING, &adapter->state);
}
/**
* igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
* @adapter: board private structure to initialize
*
* igbvf_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int igbvf_sw_init(struct igbvf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
s32 rc;
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
adapter->rx_ps_hdr_size = 0;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
adapter->tx_int_delay = 8;
adapter->tx_abs_int_delay = 32;
adapter->rx_int_delay = 0;
adapter->rx_abs_int_delay = 8;
adapter->requested_itr = 3;
adapter->current_itr = IGBVF_START_ITR;
/* Set various function pointers */
adapter->ei->init_ops(&adapter->hw);
rc = adapter->hw.mac.ops.init_params(&adapter->hw);
if (rc)
return rc;
rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
if (rc)
return rc;
igbvf_set_interrupt_capability(adapter);
if (igbvf_alloc_queues(adapter))
return -ENOMEM;
spin_lock_init(&adapter->tx_queue_lock);
/* Explicitly disable IRQ since the NIC can be in any state. */
igbvf_irq_disable(adapter);
spin_lock_init(&adapter->stats_lock);
spin_lock_init(&adapter->hw.mbx_lock);
set_bit(__IGBVF_DOWN, &adapter->state);
return 0;
}
static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
adapter->stats.last_gprc = er32(VFGPRC);
adapter->stats.last_gorc = er32(VFGORC);
adapter->stats.last_gptc = er32(VFGPTC);
adapter->stats.last_gotc = er32(VFGOTC);
adapter->stats.last_mprc = er32(VFMPRC);
adapter->stats.last_gotlbc = er32(VFGOTLBC);
adapter->stats.last_gptlbc = er32(VFGPTLBC);
adapter->stats.last_gorlbc = er32(VFGORLBC);
adapter->stats.last_gprlbc = er32(VFGPRLBC);
adapter->stats.base_gprc = er32(VFGPRC);
adapter->stats.base_gorc = er32(VFGORC);
adapter->stats.base_gptc = er32(VFGPTC);
adapter->stats.base_gotc = er32(VFGOTC);
adapter->stats.base_mprc = er32(VFMPRC);
adapter->stats.base_gotlbc = er32(VFGOTLBC);
adapter->stats.base_gptlbc = er32(VFGPTLBC);
adapter->stats.base_gorlbc = er32(VFGORLBC);
adapter->stats.base_gprlbc = er32(VFGPRLBC);
}
/**
* igbvf_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int igbvf_open(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int err;
/* disallow open during test */
if (test_bit(__IGBVF_TESTING, &adapter->state))
return -EBUSY;
/* allocate transmit descriptors */
err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
if (err)
goto err_setup_rx;
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
igbvf_configure(adapter);
err = igbvf_request_irq(adapter);
if (err)
goto err_req_irq;
/* From here on the code is the same as igbvf_up() */
clear_bit(__IGBVF_DOWN, &adapter->state);
napi_enable(&adapter->rx_ring->napi);
/* clear any pending interrupts */
er32(EICR);
igbvf_irq_enable(adapter);
/* start the watchdog */
hw->mac.get_link_status = 1;
mod_timer(&adapter->watchdog_timer, jiffies + 1);
return 0;
err_req_irq:
igbvf_free_rx_resources(adapter->rx_ring);
err_setup_rx:
igbvf_free_tx_resources(adapter->tx_ring);
err_setup_tx:
igbvf_reset(adapter);
return err;
}
/**
* igbvf_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int igbvf_close(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
igbvf_down(adapter);
igbvf_free_irq(adapter);
igbvf_free_tx_resources(adapter->tx_ring);
igbvf_free_rx_resources(adapter->rx_ring);
return 0;
}
/**
* igbvf_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int igbvf_set_mac(struct net_device *netdev, void *p)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
spin_lock_bh(&hw->mbx_lock);
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
spin_unlock_bh(&hw->mbx_lock);
if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
return 0;
}
#define UPDATE_VF_COUNTER(reg, name) \
{ \
u32 current_counter = er32(reg); \
if (current_counter < adapter->stats.last_##name) \
adapter->stats.name += 0x100000000LL; \
adapter->stats.last_##name = current_counter; \
adapter->stats.name &= 0xFFFFFFFF00000000LL; \
adapter->stats.name |= current_counter; \
}
/**
* igbvf_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void igbvf_update_stats(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* Prevent stats update while adapter is being reset, link is down
* or if the pci connection is down.
*/
if (adapter->link_speed == 0)
return;
if (test_bit(__IGBVF_RESETTING, &adapter->state))
return;
if (pci_channel_offline(pdev))
return;
UPDATE_VF_COUNTER(VFGPRC, gprc);
UPDATE_VF_COUNTER(VFGORC, gorc);
UPDATE_VF_COUNTER(VFGPTC, gptc);
UPDATE_VF_COUNTER(VFGOTC, gotc);
UPDATE_VF_COUNTER(VFMPRC, mprc);
UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
/* Fill out the OS statistics structure */
adapter->netdev->stats.multicast = adapter->stats.mprc;
}
static void igbvf_print_link_info(struct igbvf_adapter *adapter)
{
dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
}
static bool igbvf_has_link(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 ret_val = E1000_SUCCESS;
bool link_active;
/* If interface is down, stay link down */
if (test_bit(__IGBVF_DOWN, &adapter->state))
return false;
spin_lock_bh(&hw->mbx_lock);
ret_val = hw->mac.ops.check_for_link(hw);
spin_unlock_bh(&hw->mbx_lock);
link_active = !hw->mac.get_link_status;
/* if check for link returns error we will need to reset */
if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
schedule_work(&adapter->reset_task);
return link_active;
}
/**
* igbvf_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void igbvf_watchdog(struct timer_list *t)
{
struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
static void igbvf_watchdog_task(struct work_struct *work)
{
struct igbvf_adapter *adapter = container_of(work,
struct igbvf_adapter,
watchdog_task);
struct net_device *netdev = adapter->netdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
struct igbvf_ring *tx_ring = adapter->tx_ring;
struct e1000_hw *hw = &adapter->hw;
u32 link;
int tx_pending = 0;
link = igbvf_has_link(adapter);
if (link) {
if (!netif_carrier_ok(netdev)) {
mac->ops.get_link_up_info(&adapter->hw,
&adapter->link_speed,
&adapter->link_duplex);
igbvf_print_link_info(adapter);
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
dev_info(&adapter->pdev->dev, "Link is Down\n");
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
if (netif_carrier_ok(netdev)) {
igbvf_update_stats(adapter);
} else {
tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
tx_ring->count);
if (tx_pending) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
}
/* Cause software interrupt to ensure Rx ring is cleaned */
ew32(EICS, adapter->rx_ring->eims_value);
/* Reset the timer */
if (!test_bit(__IGBVF_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + (2 * HZ)));
}
#define IGBVF_TX_FLAGS_CSUM 0x00000001
#define IGBVF_TX_FLAGS_VLAN 0x00000002
#define IGBVF_TX_FLAGS_TSO 0x00000004
#define IGBVF_TX_FLAGS_IPV4 0x00000008
#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
u32 type_tucmd, u32 mss_l4len_idx)
{
struct e1000_adv_tx_context_desc *context_desc;
struct igbvf_buffer *buffer_info;
u16 i = tx_ring->next_to_use;
context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->seqnum_seed = 0;
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
buffer_info->time_stamp = jiffies;
buffer_info->dma = 0;
}
static int igbvf_tso(struct igbvf_ring *tx_ring,
struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
unsigned char *hdr;
} l4;
u32 paylen, l4_offset;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_checksum_start(skb);
/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
unsigned char *csum_start = skb_checksum_start(skb);
unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
/* IP header will have to cancel out any data that
* is not a part of the outer IP header
*/
ip.v4->check = csum_fold(csum_partial(trans_start,
csum_start - trans_start,
0));
type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
ip.v4->tot_len = 0;
} else {
ip.v6->payload_len = 0;
}
/* determine offset of inner transport header */
l4_offset = l4.hdr - skb->data;
/* compute length of segmentation header */
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
/* remove payload length from inner checksum */
paylen = skb->len - l4_offset;
csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
/* MSS L4LEN IDX */
mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
/* VLAN MACLEN IPLEN */
vlan_macip_lens = l4.hdr - ip.hdr;
vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
return 1;
}
static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
{
unsigned int offset = 0;
ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
return offset == skb_checksum_start_offset(skb);
}
static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
u32 tx_flags, __be16 protocol)
{
u32 vlan_macip_lens = 0;
u32 type_tucmd = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
return false;
goto no_csum;
}
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
/* fall through */
case offsetof(struct udphdr, check):
break;
case offsetof(struct sctphdr, checksum):
/* validate that this is actually an SCTP request */
if (((protocol == htons(ETH_P_IP)) &&
(ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
((protocol == htons(ETH_P_IPV6)) &&
igbvf_ipv6_csum_is_sctp(skb))) {
type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
break;
}
default:
skb_checksum_help(skb);
goto csum_failed;
}
vlan_macip_lens = skb_checksum_start_offset(skb) -
skb_network_offset(skb);
no_csum:
vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
return true;
}
static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
/* there is enough descriptors then we don't need to worry */
if (igbvf_desc_unused(adapter->tx_ring) >= size)
return 0;
netif_stop_queue(netdev);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again just in case room has been made available */
if (igbvf_desc_unused(adapter->tx_ring) < size)
return -EBUSY;
netif_wake_queue(netdev);
++adapter->restart_queue;
return 0;
}
#define IGBVF_MAX_TXD_PWR 16
#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
struct igbvf_ring *tx_ring,
struct sk_buff *skb)
{
struct igbvf_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned int len = skb_headlen(skb);
unsigned int count = 0, i;
unsigned int f;
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
buffer_info->length = len;
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
const struct skb_frag_struct *frag;
count++;
i++;
if (i == tx_ring->count)
i = 0;
frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
buffer_info = &tx_ring->buffer_info[i];
BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
buffer_info->length = len;
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = true;
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
}
tx_ring->buffer_info[i].skb = skb;
return ++count;
dma_error:
dev_err(&pdev->dev, "TX DMA map failed\n");
/* clear timestamp and dma mappings for failed buffer_info mapping */
buffer_info->dma = 0;
buffer_info->time_stamp = 0;
buffer_info->length = 0;
buffer_info->mapped_as_page = false;
if (count)
count--;
/* clear timestamp and dma mappings for remaining portion of packet */
while (count--) {
if (i == 0)
i += tx_ring->count;
i--;
buffer_info = &tx_ring->buffer_info[i];
igbvf_put_txbuf(adapter, buffer_info);
}
return 0;
}
static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
struct igbvf_ring *tx_ring,
int tx_flags, int count,
unsigned int first, u32 paylen,
u8 hdr_len)
{
union e1000_adv_tx_desc *tx_desc = NULL;
struct igbvf_buffer *buffer_info;
u32 olinfo_status = 0, cmd_type_len;
unsigned int i;
cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
E1000_ADVTXD_DCMD_DEXT);
if (tx_flags & IGBVF_TX_FLAGS_VLAN)
cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
if (tx_flags & IGBVF_TX_FLAGS_TSO) {
cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
/* insert tcp checksum */
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
/* insert ip checksum */
if (tx_flags & IGBVF_TX_FLAGS_IPV4)
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
}
olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
i = tx_ring->next_to_use;
while (count--) {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type_len | buffer_info->length);
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
i++;
if (i == tx_ring->count)
i = 0;
}
tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
tx_ring->buffer_info[first].next_to_watch = tx_desc;
tx_ring->next_to_use = i;
writel(i, adapter->hw.hw_addr + tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
struct net_device *netdev,
struct igbvf_ring *tx_ring)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
unsigned int first, tx_flags = 0;
u8 hdr_len = 0;
int count = 0;
int tso = 0;
__be16 protocol = vlan_get_protocol(skb);
if (test_bit(__IGBVF_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* need: count + 4 desc gap to keep tail from touching
* + 2 desc gap to keep tail from touching head,
* + 1 desc for skb->data,
* + 1 desc for context descriptor,
* head, otherwise try next time
*/
if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
/* this is a hard error */
return NETDEV_TX_BUSY;
}
if (skb_vlan_tag_present(skb)) {
tx_flags |= IGBVF_TX_FLAGS_VLAN;
tx_flags |= (skb_vlan_tag_get(skb) <<
IGBVF_TX_FLAGS_VLAN_SHIFT);
}
if (protocol == htons(ETH_P_IP))
tx_flags |= IGBVF_TX_FLAGS_IPV4;
first = tx_ring->next_to_use;
tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
if (unlikely(tso < 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (tso)
tx_flags |= IGBVF_TX_FLAGS_TSO;
else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
(skb->ip_summed == CHECKSUM_PARTIAL))
tx_flags |= IGBVF_TX_FLAGS_CSUM;
/* count reflects descriptors mapped, if 0 then mapping error
* has occurred and we need to rewind the descriptor queue
*/
count = igbvf_tx_map_adv(adapter, tx_ring, skb);
if (count) {
igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
first, skb->len, hdr_len);
/* Make sure there is space in the ring for the next send. */
igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
} else {
dev_kfree_skb_any(skb);
tx_ring->buffer_info[first].time_stamp = 0;
tx_ring->next_to_use = first;
}
return NETDEV_TX_OK;
}
static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct igbvf_ring *tx_ring;
if (test_bit(__IGBVF_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
tx_ring = &adapter->tx_ring[0];
return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
}
/**
* igbvf_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void igbvf_tx_timeout(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void igbvf_reset_task(struct work_struct *work)
{
struct igbvf_adapter *adapter;
adapter = container_of(work, struct igbvf_adapter, reset_task);
igbvf_reinit_locked(adapter);
}
/**
* igbvf_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* igbvf_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
if (netif_running(netdev))
igbvf_down(adapter);
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab
* However with the new *_jumbo_rx* routines, jumbo receives will use
* fragmented skbs
*/
if (max_frame <= 1024)
adapter->rx_buffer_len = 1024;
else if (max_frame <= 2048)
adapter->rx_buffer_len = 2048;
else
#if (PAGE_SIZE / 2) > 16384
adapter->rx_buffer_len = 16384;
#else
adapter->rx_buffer_len = PAGE_SIZE / 2;
#endif
/* adjust allocation if LPE protects us, and we aren't using SBP */
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
ETH_FCS_LEN;
dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
igbvf_up(adapter);
else
igbvf_reset(adapter);
clear_bit(__IGBVF_RESETTING, &adapter->state);
return 0;
}
static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
default:
return -EOPNOTSUPP;
}
}
static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
igbvf_down(adapter);
igbvf_free_irq(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
pci_disable_device(pdev);
return 0;
}
#ifdef CONFIG_PM
static int igbvf_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_restore_state(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
if (netif_running(netdev)) {
err = igbvf_request_irq(adapter);
if (err)
return err;
}
igbvf_reset(adapter);
if (netif_running(netdev))
igbvf_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void igbvf_shutdown(struct pci_dev *pdev)
{
igbvf_suspend(pdev, PMSG_SUSPEND);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void igbvf_netpoll(struct net_device *netdev)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
disable_irq(adapter->pdev->irq);
igbvf_clean_tx_irq(adapter->tx_ring);
enable_irq(adapter->pdev->irq);
}
#endif
/**
* igbvf_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
igbvf_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* igbvf_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the igbvf_resume routine.
*/
static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
igbvf_reset(adapter);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* igbvf_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the igbvf_resume routine.
*/
static void igbvf_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev)) {
if (igbvf_up(adapter)) {
dev_err(&pdev->dev,
"can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
}
static void igbvf_print_device_info(struct igbvf_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
if (hw->mac.type == e1000_vfadapt_i350)
dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
else
dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
}
static int igbvf_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct igbvf_adapter *adapter = netdev_priv(netdev);
if (features & NETIF_F_RXCSUM)
adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
else
adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
return 0;
}
#define IGBVF_MAX_MAC_HDR_LEN 127
#define IGBVF_MAX_NETWORK_HDR_LEN 511
static netdev_features_t
igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_header(skb) - skb->data;
if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_TSO |
NETIF_F_TSO6);
/* We can only support IPV4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
return features;
}
static const struct net_device_ops igbvf_netdev_ops = {
.ndo_open = igbvf_open,
.ndo_stop = igbvf_close,
.ndo_start_xmit = igbvf_xmit_frame,
.ndo_set_rx_mode = igbvf_set_rx_mode,
.ndo_set_mac_address = igbvf_set_mac,
.ndo_change_mtu = igbvf_change_mtu,
.ndo_do_ioctl = igbvf_ioctl,
.ndo_tx_timeout = igbvf_tx_timeout,
.ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = igbvf_netpoll,
#endif
.ndo_set_features = igbvf_set_features,
.ndo_features_check = igbvf_features_check,
};
/**
* igbvf_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in igbvf_pci_tbl
*
* Returns 0 on success, negative on failure
*
* igbvf_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct igbvf_adapter *adapter;
struct e1000_hw *hw;
const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
static int cards_found;
int err, pci_using_dac;
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_dma;
}
}
err = pci_request_regions(pdev, igbvf_driver_name);
if (err)
goto err_pci_reg;
pci_set_master(pdev);
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
hw = &adapter->hw;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->ei = ei;
adapter->pba = ei->pba;
adapter->flags = ei->flags;
adapter->hw.back = adapter;
adapter->hw.mac.type = ei->mac;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->revision_id = pdev->revision;
err = -EIO;
adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!adapter->hw.hw_addr)
goto err_ioremap;
if (ei->get_variants) {
err = ei->get_variants(adapter);
if (err)
goto err_get_variants;
}
/* setup adapter struct */
err = igbvf_sw_init(adapter);
if (err)
goto err_sw_init;
/* construct the net_device struct */
netdev->netdev_ops = &igbvf_netdev_ops;
igbvf_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
adapter->bd_number = cards_found++;
netdev->hw_features = NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC;
#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
NETIF_F_GSO_GRE_CSUM | \
NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | \
NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
netdev->hw_features |= NETIF_F_GSO_PARTIAL |
IGBVF_GSO_PARTIAL_FEATURES;
netdev->features = netdev->hw_features;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
netdev->mpls_features |= NETIF_F_HW_CSUM;
netdev->hw_enc_features |= netdev->vlan_features;
/* set this bit last since it cannot be part of vlan_features */
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
/* MTU range: 68 - 9216 */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
spin_lock_bh(&hw->mbx_lock);
/*reset the controller to put the device in a known good state */
err = hw->mac.ops.reset_hw(hw);
if (err) {
dev_info(&pdev->dev,
"PF still in reset state. Is the PF interface up?\n");
} else {
err = hw->mac.ops.read_mac_addr(hw);
if (err)
dev_info(&pdev->dev, "Error reading MAC address.\n");
else if (is_zero_ether_addr(adapter->hw.mac.addr))
dev_info(&pdev->dev,
"MAC address not assigned by administrator.\n");
memcpy(netdev->dev_addr, adapter->hw.mac.addr,
netdev->addr_len);
}
spin_unlock_bh(&hw->mbx_lock);
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_info(&pdev->dev, "Assigning random MAC address.\n");
eth_hw_addr_random(netdev);
memcpy(adapter->hw.mac.addr, netdev->dev_addr,
netdev->addr_len);
}
timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
INIT_WORK(&adapter->reset_task, igbvf_reset_task);
INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
/* ring size defaults */
adapter->rx_ring->count = 1024;
adapter->tx_ring->count = 1024;
/* reset the hardware with the new settings */
igbvf_reset(adapter);
/* set hardware-specific flags */
if (adapter->hw.mac.type == e1000_vfadapt_i350)
adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
goto err_hw_init;
/* tell the stack to leave us alone until igbvf_open() is called */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
igbvf_print_device_info(adapter);
igbvf_initialize_last_counter_stats(adapter);
return 0;
err_hw_init:
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_sw_init:
igbvf_reset_interrupt_capability(adapter);
err_get_variants:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* igbvf_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* igbvf_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void igbvf_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct igbvf_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/* The watchdog timer may be rescheduled, so explicitly
* disable it from being rescheduled.
*/
set_bit(__IGBVF_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
unregister_netdev(netdev);
igbvf_reset_interrupt_capability(adapter);
/* it is important to delete the NAPI struct prior to freeing the
* Rx ring so that you do not end up with null pointer refs
*/
netif_napi_del(&adapter->rx_ring->napi);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
iounmap(hw->hw_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
/* PCI Error Recovery (ERS) */
static const struct pci_error_handlers igbvf_err_handler = {
.error_detected = igbvf_io_error_detected,
.slot_reset = igbvf_io_slot_reset,
.resume = igbvf_io_resume,
};
static const struct pci_device_id igbvf_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
/* PCI Device API Driver */
static struct pci_driver igbvf_driver = {
.name = igbvf_driver_name,
.id_table = igbvf_pci_tbl,
.probe = igbvf_probe,
.remove = igbvf_remove,
#ifdef CONFIG_PM
/* Power Management Hooks */
.suspend = igbvf_suspend,
.resume = igbvf_resume,
#endif
.shutdown = igbvf_shutdown,
.err_handler = &igbvf_err_handler
};
/**
* igbvf_init_module - Driver Registration Routine
*
* igbvf_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init igbvf_init_module(void)
{
int ret;
pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
pr_info("%s\n", igbvf_copyright);
ret = pci_register_driver(&igbvf_driver);
return ret;
}
module_init(igbvf_init_module);
/**
* igbvf_exit_module - Driver Exit Cleanup Routine
*
* igbvf_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit igbvf_exit_module(void)
{
pci_unregister_driver(&igbvf_driver);
}
module_exit(igbvf_exit_module);
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/* netdev.c */