blob: 272c79f5f5bff856dfa4a29a2574a70ee72366cf [file] [log] [blame]
/*
* Copyright (C) 2011 Samsung Electronics Co.Ltd
* Authors:
* Seung-Woo Kim <sw0312.kim@samsung.com>
* Inki Dae <inki.dae@samsung.com>
* Joonyoung Shim <jy0922.shim@samsung.com>
*
* Based on drivers/media/video/s5p-tv/mixer_reg.c
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <drm/drmP.h>
#include "regs-mixer.h"
#include "regs-vp.h"
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/component.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_drv.h"
#include "exynos_drm_crtc.h"
#include "exynos_drm_fb.h"
#include "exynos_drm_plane.h"
#include "exynos_drm_iommu.h"
#define MIXER_WIN_NR 3
#define VP_DEFAULT_WIN 2
/*
* Mixer color space conversion coefficient triplet.
* Used for CSC from RGB to YCbCr.
* Each coefficient is a 10-bit fixed point number with
* sign and no integer part, i.e.
* [0:8] = fractional part (representing a value y = x / 2^9)
* [9] = sign
* Negative values are encoded with two's complement.
*/
#define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff)
#define MXR_CSC_CT(a0, a1, a2) \
((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0))
/* YCbCr value, used for mixer background color configuration. */
#define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0))
/* The pixelformats that are natively supported by the mixer. */
#define MXR_FORMAT_RGB565 4
#define MXR_FORMAT_ARGB1555 5
#define MXR_FORMAT_ARGB4444 6
#define MXR_FORMAT_ARGB8888 7
enum mixer_version_id {
MXR_VER_0_0_0_16,
MXR_VER_16_0_33_0,
MXR_VER_128_0_0_184,
};
enum mixer_flag_bits {
MXR_BIT_POWERED,
MXR_BIT_VSYNC,
MXR_BIT_INTERLACE,
MXR_BIT_VP_ENABLED,
MXR_BIT_HAS_SCLK,
};
static const uint32_t mixer_formats[] = {
DRM_FORMAT_XRGB4444,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
};
static const uint32_t vp_formats[] = {
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
};
struct mixer_context {
struct platform_device *pdev;
struct device *dev;
struct drm_device *drm_dev;
struct exynos_drm_crtc *crtc;
struct exynos_drm_plane planes[MIXER_WIN_NR];
unsigned long flags;
int irq;
void __iomem *mixer_regs;
void __iomem *vp_regs;
spinlock_t reg_slock;
struct clk *mixer;
struct clk *vp;
struct clk *hdmi;
struct clk *sclk_mixer;
struct clk *sclk_hdmi;
struct clk *mout_mixer;
enum mixer_version_id mxr_ver;
int scan_value;
};
struct mixer_drv_data {
enum mixer_version_id version;
bool is_vp_enabled;
bool has_sclk;
};
static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = {
{
.zpos = 0,
.type = DRM_PLANE_TYPE_PRIMARY,
.pixel_formats = mixer_formats,
.num_pixel_formats = ARRAY_SIZE(mixer_formats),
.capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
EXYNOS_DRM_PLANE_CAP_ZPOS,
}, {
.zpos = 1,
.type = DRM_PLANE_TYPE_CURSOR,
.pixel_formats = mixer_formats,
.num_pixel_formats = ARRAY_SIZE(mixer_formats),
.capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
EXYNOS_DRM_PLANE_CAP_ZPOS,
}, {
.zpos = 2,
.type = DRM_PLANE_TYPE_OVERLAY,
.pixel_formats = vp_formats,
.num_pixel_formats = ARRAY_SIZE(vp_formats),
.capabilities = EXYNOS_DRM_PLANE_CAP_SCALE |
EXYNOS_DRM_PLANE_CAP_ZPOS |
EXYNOS_DRM_PLANE_CAP_TILE,
},
};
static const u8 filter_y_horiz_tap8[] = {
0, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, 0, 0, 0,
0, 2, 4, 5, 6, 6, 6, 6,
6, 5, 5, 4, 3, 2, 1, 1,
0, -6, -12, -16, -18, -20, -21, -20,
-20, -18, -16, -13, -10, -8, -5, -2,
127, 126, 125, 121, 114, 107, 99, 89,
79, 68, 57, 46, 35, 25, 16, 8,
};
static const u8 filter_y_vert_tap4[] = {
0, -3, -6, -8, -8, -8, -8, -7,
-6, -5, -4, -3, -2, -1, -1, 0,
127, 126, 124, 118, 111, 102, 92, 81,
70, 59, 48, 37, 27, 19, 11, 5,
0, 5, 11, 19, 27, 37, 48, 59,
70, 81, 92, 102, 111, 118, 124, 126,
0, 0, -1, -1, -2, -3, -4, -5,
-6, -7, -8, -8, -8, -8, -6, -3,
};
static const u8 filter_cr_horiz_tap4[] = {
0, -3, -6, -8, -8, -8, -8, -7,
-6, -5, -4, -3, -2, -1, -1, 0,
127, 126, 124, 118, 111, 102, 92, 81,
70, 59, 48, 37, 27, 19, 11, 5,
};
static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id)
{
return readl(ctx->vp_regs + reg_id);
}
static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id,
u32 val)
{
writel(val, ctx->vp_regs + reg_id);
}
static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id,
u32 val, u32 mask)
{
u32 old = vp_reg_read(ctx, reg_id);
val = (val & mask) | (old & ~mask);
writel(val, ctx->vp_regs + reg_id);
}
static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id)
{
return readl(ctx->mixer_regs + reg_id);
}
static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id,
u32 val)
{
writel(val, ctx->mixer_regs + reg_id);
}
static inline void mixer_reg_writemask(struct mixer_context *ctx,
u32 reg_id, u32 val, u32 mask)
{
u32 old = mixer_reg_read(ctx, reg_id);
val = (val & mask) | (old & ~mask);
writel(val, ctx->mixer_regs + reg_id);
}
static void mixer_regs_dump(struct mixer_context *ctx)
{
#define DUMPREG(reg_id) \
do { \
DRM_DEBUG_KMS(#reg_id " = %08x\n", \
(u32)readl(ctx->mixer_regs + reg_id)); \
} while (0)
DUMPREG(MXR_STATUS);
DUMPREG(MXR_CFG);
DUMPREG(MXR_INT_EN);
DUMPREG(MXR_INT_STATUS);
DUMPREG(MXR_LAYER_CFG);
DUMPREG(MXR_VIDEO_CFG);
DUMPREG(MXR_GRAPHIC0_CFG);
DUMPREG(MXR_GRAPHIC0_BASE);
DUMPREG(MXR_GRAPHIC0_SPAN);
DUMPREG(MXR_GRAPHIC0_WH);
DUMPREG(MXR_GRAPHIC0_SXY);
DUMPREG(MXR_GRAPHIC0_DXY);
DUMPREG(MXR_GRAPHIC1_CFG);
DUMPREG(MXR_GRAPHIC1_BASE);
DUMPREG(MXR_GRAPHIC1_SPAN);
DUMPREG(MXR_GRAPHIC1_WH);
DUMPREG(MXR_GRAPHIC1_SXY);
DUMPREG(MXR_GRAPHIC1_DXY);
#undef DUMPREG
}
static void vp_regs_dump(struct mixer_context *ctx)
{
#define DUMPREG(reg_id) \
do { \
DRM_DEBUG_KMS(#reg_id " = %08x\n", \
(u32) readl(ctx->vp_regs + reg_id)); \
} while (0)
DUMPREG(VP_ENABLE);
DUMPREG(VP_SRESET);
DUMPREG(VP_SHADOW_UPDATE);
DUMPREG(VP_FIELD_ID);
DUMPREG(VP_MODE);
DUMPREG(VP_IMG_SIZE_Y);
DUMPREG(VP_IMG_SIZE_C);
DUMPREG(VP_PER_RATE_CTRL);
DUMPREG(VP_TOP_Y_PTR);
DUMPREG(VP_BOT_Y_PTR);
DUMPREG(VP_TOP_C_PTR);
DUMPREG(VP_BOT_C_PTR);
DUMPREG(VP_ENDIAN_MODE);
DUMPREG(VP_SRC_H_POSITION);
DUMPREG(VP_SRC_V_POSITION);
DUMPREG(VP_SRC_WIDTH);
DUMPREG(VP_SRC_HEIGHT);
DUMPREG(VP_DST_H_POSITION);
DUMPREG(VP_DST_V_POSITION);
DUMPREG(VP_DST_WIDTH);
DUMPREG(VP_DST_HEIGHT);
DUMPREG(VP_H_RATIO);
DUMPREG(VP_V_RATIO);
#undef DUMPREG
}
static inline void vp_filter_set(struct mixer_context *ctx,
int reg_id, const u8 *data, unsigned int size)
{
/* assure 4-byte align */
BUG_ON(size & 3);
for (; size; size -= 4, reg_id += 4, data += 4) {
u32 val = (data[0] << 24) | (data[1] << 16) |
(data[2] << 8) | data[3];
vp_reg_write(ctx, reg_id, val);
}
}
static void vp_default_filter(struct mixer_context *ctx)
{
vp_filter_set(ctx, VP_POLY8_Y0_LL,
filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8));
vp_filter_set(ctx, VP_POLY4_Y0_LL,
filter_y_vert_tap4, sizeof(filter_y_vert_tap4));
vp_filter_set(ctx, VP_POLY4_C0_LL,
filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4));
}
static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win,
bool alpha)
{
u32 val;
val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */
if (alpha) {
/* blending based on pixel alpha */
val |= MXR_GRP_CFG_BLEND_PRE_MUL;
val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
}
mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
val, MXR_GRP_CFG_MISC_MASK);
}
static void mixer_cfg_vp_blend(struct mixer_context *ctx)
{
u32 val;
/*
* No blending at the moment since the NV12/NV21 pixelformats don't
* have an alpha channel. However the mixer supports a global alpha
* value for a layer. Once this functionality is exposed, we can
* support blending of the video layer through this.
*/
val = 0;
mixer_reg_write(ctx, MXR_VIDEO_CFG, val);
}
static void mixer_vsync_set_update(struct mixer_context *ctx, bool enable)
{
/* block update on vsync */
mixer_reg_writemask(ctx, MXR_STATUS, enable ?
MXR_STATUS_SYNC_ENABLE : 0, MXR_STATUS_SYNC_ENABLE);
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
vp_reg_write(ctx, VP_SHADOW_UPDATE, enable ?
VP_SHADOW_UPDATE_ENABLE : 0);
}
static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height)
{
u32 val;
/* choosing between interlace and progressive mode */
val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ?
MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE;
if (ctx->mxr_ver == MXR_VER_128_0_0_184)
mixer_reg_write(ctx, MXR_RESOLUTION,
MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width));
else
val |= ctx->scan_value;
mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK);
}
static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, unsigned int height)
{
u32 val;
switch (height) {
case 480:
case 576:
val = MXR_CFG_RGB601_0_255;
break;
case 720:
case 1080:
default:
val = MXR_CFG_RGB709_16_235;
/* Configure the BT.709 CSC matrix for full range RGB. */
mixer_reg_write(ctx, MXR_CM_COEFF_Y,
MXR_CSC_CT( 0.184, 0.614, 0.063) |
MXR_CM_COEFF_RGB_FULL);
mixer_reg_write(ctx, MXR_CM_COEFF_CB,
MXR_CSC_CT(-0.102, -0.338, 0.440));
mixer_reg_write(ctx, MXR_CM_COEFF_CR,
MXR_CSC_CT( 0.440, -0.399, -0.040));
break;
}
mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK);
}
static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win,
unsigned int priority, bool enable)
{
u32 val = enable ? ~0 : 0;
switch (win) {
case 0:
mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE);
mixer_reg_writemask(ctx, MXR_LAYER_CFG,
MXR_LAYER_CFG_GRP0_VAL(priority),
MXR_LAYER_CFG_GRP0_MASK);
break;
case 1:
mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE);
mixer_reg_writemask(ctx, MXR_LAYER_CFG,
MXR_LAYER_CFG_GRP1_VAL(priority),
MXR_LAYER_CFG_GRP1_MASK);
break;
case VP_DEFAULT_WIN:
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON);
mixer_reg_writemask(ctx, MXR_CFG, val,
MXR_CFG_VP_ENABLE);
mixer_reg_writemask(ctx, MXR_LAYER_CFG,
MXR_LAYER_CFG_VP_VAL(priority),
MXR_LAYER_CFG_VP_MASK);
}
break;
}
}
static void mixer_run(struct mixer_context *ctx)
{
mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN);
}
static void mixer_stop(struct mixer_context *ctx)
{
int timeout = 20;
mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN);
while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) &&
--timeout)
usleep_range(10000, 12000);
}
static void mixer_commit(struct mixer_context *ctx)
{
struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode;
mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay);
mixer_cfg_rgb_fmt(ctx, mode->vdisplay);
mixer_run(ctx);
}
static void vp_video_buffer(struct mixer_context *ctx,
struct exynos_drm_plane *plane)
{
struct exynos_drm_plane_state *state =
to_exynos_plane_state(plane->base.state);
struct drm_framebuffer *fb = state->base.fb;
unsigned int priority = state->base.normalized_zpos + 1;
unsigned long flags;
dma_addr_t luma_addr[2], chroma_addr[2];
bool is_tiled, is_nv21;
u32 val;
is_nv21 = (fb->format->format == DRM_FORMAT_NV21);
is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE);
luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0);
chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1);
if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
if (is_tiled) {
luma_addr[1] = luma_addr[0] + 0x40;
chroma_addr[1] = chroma_addr[0] + 0x40;
} else {
luma_addr[1] = luma_addr[0] + fb->pitches[0];
chroma_addr[1] = chroma_addr[0] + fb->pitches[1];
}
} else {
luma_addr[1] = 0;
chroma_addr[1] = 0;
}
spin_lock_irqsave(&ctx->reg_slock, flags);
vp_reg_write(ctx, VP_SHADOW_UPDATE, 1);
/* interlace or progressive scan mode */
val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0);
vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP);
/* setup format */
val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12);
val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR);
vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK);
/* setting size of input image */
vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) |
VP_IMG_VSIZE(fb->height));
/* chroma plane for NV12/NV21 is half the height of the luma plane */
vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) |
VP_IMG_VSIZE(fb->height / 2));
vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w);
vp_reg_write(ctx, VP_SRC_H_POSITION,
VP_SRC_H_POSITION_VAL(state->src.x));
vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w);
vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x);
if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2);
vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2);
vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2);
vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2);
} else {
vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h);
vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y);
vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h);
vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y);
}
vp_reg_write(ctx, VP_H_RATIO, state->h_ratio);
vp_reg_write(ctx, VP_V_RATIO, state->v_ratio);
vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE);
/* set buffer address to vp */
vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]);
vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]);
vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]);
vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]);
mixer_cfg_layer(ctx, plane->index, priority, true);
mixer_cfg_vp_blend(ctx);
spin_unlock_irqrestore(&ctx->reg_slock, flags);
mixer_regs_dump(ctx);
vp_regs_dump(ctx);
}
static void mixer_layer_update(struct mixer_context *ctx)
{
mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE);
}
static void mixer_graph_buffer(struct mixer_context *ctx,
struct exynos_drm_plane *plane)
{
struct exynos_drm_plane_state *state =
to_exynos_plane_state(plane->base.state);
struct drm_framebuffer *fb = state->base.fb;
unsigned int priority = state->base.normalized_zpos + 1;
unsigned long flags;
unsigned int win = plane->index;
unsigned int x_ratio = 0, y_ratio = 0;
unsigned int dst_x_offset, dst_y_offset;
dma_addr_t dma_addr;
unsigned int fmt;
u32 val;
switch (fb->format->format) {
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB4444:
fmt = MXR_FORMAT_ARGB4444;
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
fmt = MXR_FORMAT_ARGB1555;
break;
case DRM_FORMAT_RGB565:
fmt = MXR_FORMAT_RGB565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
default:
fmt = MXR_FORMAT_ARGB8888;
break;
}
/* ratio is already checked by common plane code */
x_ratio = state->h_ratio == (1 << 15);
y_ratio = state->v_ratio == (1 << 15);
dst_x_offset = state->crtc.x;
dst_y_offset = state->crtc.y;
/* translate dma address base s.t. the source image offset is zero */
dma_addr = exynos_drm_fb_dma_addr(fb, 0)
+ (state->src.x * fb->format->cpp[0])
+ (state->src.y * fb->pitches[0]);
spin_lock_irqsave(&ctx->reg_slock, flags);
/* setup format */
mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK);
/* setup geometry */
mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win),
fb->pitches[0] / fb->format->cpp[0]);
val = MXR_GRP_WH_WIDTH(state->src.w);
val |= MXR_GRP_WH_HEIGHT(state->src.h);
val |= MXR_GRP_WH_H_SCALE(x_ratio);
val |= MXR_GRP_WH_V_SCALE(y_ratio);
mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val);
/* setup offsets in display image */
val = MXR_GRP_DXY_DX(dst_x_offset);
val |= MXR_GRP_DXY_DY(dst_y_offset);
mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val);
/* set buffer address to mixer */
mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr);
mixer_cfg_layer(ctx, win, priority, true);
mixer_cfg_gfx_blend(ctx, win, fb->format->has_alpha);
/* layer update mandatory for mixer 16.0.33.0 */
if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
ctx->mxr_ver == MXR_VER_128_0_0_184)
mixer_layer_update(ctx);
spin_unlock_irqrestore(&ctx->reg_slock, flags);
mixer_regs_dump(ctx);
}
static void vp_win_reset(struct mixer_context *ctx)
{
unsigned int tries = 100;
vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING);
while (--tries) {
/* waiting until VP_SRESET_PROCESSING is 0 */
if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING)
break;
mdelay(10);
}
WARN(tries == 0, "failed to reset Video Processor\n");
}
static void mixer_win_reset(struct mixer_context *ctx)
{
unsigned long flags;
spin_lock_irqsave(&ctx->reg_slock, flags);
mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK);
/* set output in RGB888 mode */
mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK);
/* 16 beat burst in DMA */
mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST,
MXR_STATUS_BURST_MASK);
/* reset default layer priority */
mixer_reg_write(ctx, MXR_LAYER_CFG, 0);
/* set all background colors to RGB (0,0,0) */
mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128));
mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128));
mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128));
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
/* configuration of Video Processor Registers */
vp_win_reset(ctx);
vp_default_filter(ctx);
}
/* disable all layers */
mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE);
mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE);
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE);
/* set all source image offsets to zero */
mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0);
mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0);
spin_unlock_irqrestore(&ctx->reg_slock, flags);
}
static irqreturn_t mixer_irq_handler(int irq, void *arg)
{
struct mixer_context *ctx = arg;
u32 val, base, shadow;
spin_lock(&ctx->reg_slock);
/* read interrupt status for handling and clearing flags for VSYNC */
val = mixer_reg_read(ctx, MXR_INT_STATUS);
/* handling VSYNC */
if (val & MXR_INT_STATUS_VSYNC) {
/* vsync interrupt use different bit for read and clear */
val |= MXR_INT_CLEAR_VSYNC;
val &= ~MXR_INT_STATUS_VSYNC;
/* interlace scan need to check shadow register */
if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) &&
vp_reg_read(ctx, VP_SHADOW_UPDATE))
goto out;
base = mixer_reg_read(ctx, MXR_CFG);
shadow = mixer_reg_read(ctx, MXR_CFG_S);
if (base != shadow)
goto out;
base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0));
shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0));
if (base != shadow)
goto out;
base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1));
shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1));
if (base != shadow)
goto out;
}
drm_crtc_handle_vblank(&ctx->crtc->base);
}
out:
/* clear interrupts */
mixer_reg_write(ctx, MXR_INT_STATUS, val);
spin_unlock(&ctx->reg_slock);
return IRQ_HANDLED;
}
static int mixer_resources_init(struct mixer_context *mixer_ctx)
{
struct device *dev = &mixer_ctx->pdev->dev;
struct resource *res;
int ret;
spin_lock_init(&mixer_ctx->reg_slock);
mixer_ctx->mixer = devm_clk_get(dev, "mixer");
if (IS_ERR(mixer_ctx->mixer)) {
dev_err(dev, "failed to get clock 'mixer'\n");
return -ENODEV;
}
mixer_ctx->hdmi = devm_clk_get(dev, "hdmi");
if (IS_ERR(mixer_ctx->hdmi)) {
dev_err(dev, "failed to get clock 'hdmi'\n");
return PTR_ERR(mixer_ctx->hdmi);
}
mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
if (IS_ERR(mixer_ctx->sclk_hdmi)) {
dev_err(dev, "failed to get clock 'sclk_hdmi'\n");
return -ENODEV;
}
res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(dev, "get memory resource failed.\n");
return -ENXIO;
}
mixer_ctx->mixer_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (mixer_ctx->mixer_regs == NULL) {
dev_err(dev, "register mapping failed.\n");
return -ENXIO;
}
res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(dev, "get interrupt resource failed.\n");
return -ENXIO;
}
ret = devm_request_irq(dev, res->start, mixer_irq_handler,
0, "drm_mixer", mixer_ctx);
if (ret) {
dev_err(dev, "request interrupt failed.\n");
return ret;
}
mixer_ctx->irq = res->start;
return 0;
}
static int vp_resources_init(struct mixer_context *mixer_ctx)
{
struct device *dev = &mixer_ctx->pdev->dev;
struct resource *res;
mixer_ctx->vp = devm_clk_get(dev, "vp");
if (IS_ERR(mixer_ctx->vp)) {
dev_err(dev, "failed to get clock 'vp'\n");
return -ENODEV;
}
if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) {
mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer");
if (IS_ERR(mixer_ctx->sclk_mixer)) {
dev_err(dev, "failed to get clock 'sclk_mixer'\n");
return -ENODEV;
}
mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer");
if (IS_ERR(mixer_ctx->mout_mixer)) {
dev_err(dev, "failed to get clock 'mout_mixer'\n");
return -ENODEV;
}
if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer)
clk_set_parent(mixer_ctx->mout_mixer,
mixer_ctx->sclk_hdmi);
}
res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1);
if (res == NULL) {
dev_err(dev, "get memory resource failed.\n");
return -ENXIO;
}
mixer_ctx->vp_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (mixer_ctx->vp_regs == NULL) {
dev_err(dev, "register mapping failed.\n");
return -ENXIO;
}
return 0;
}
static int mixer_initialize(struct mixer_context *mixer_ctx,
struct drm_device *drm_dev)
{
int ret;
struct exynos_drm_private *priv;
priv = drm_dev->dev_private;
mixer_ctx->drm_dev = drm_dev;
/* acquire resources: regs, irqs, clocks */
ret = mixer_resources_init(mixer_ctx);
if (ret) {
DRM_ERROR("mixer_resources_init failed ret=%d\n", ret);
return ret;
}
if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) {
/* acquire vp resources: regs, irqs, clocks */
ret = vp_resources_init(mixer_ctx);
if (ret) {
DRM_ERROR("vp_resources_init failed ret=%d\n", ret);
return ret;
}
}
return drm_iommu_attach_device(drm_dev, mixer_ctx->dev);
}
static void mixer_ctx_remove(struct mixer_context *mixer_ctx)
{
drm_iommu_detach_device(mixer_ctx->drm_dev, mixer_ctx->dev);
}
static int mixer_enable_vblank(struct exynos_drm_crtc *crtc)
{
struct mixer_context *mixer_ctx = crtc->ctx;
__set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return 0;
/* enable vsync interrupt */
mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
return 0;
}
static void mixer_disable_vblank(struct exynos_drm_crtc *crtc)
{
struct mixer_context *mixer_ctx = crtc->ctx;
__clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return;
/* disable vsync interrupt */
mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC);
}
static void mixer_atomic_begin(struct exynos_drm_crtc *crtc)
{
struct mixer_context *mixer_ctx = crtc->ctx;
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return;
mixer_vsync_set_update(mixer_ctx, false);
}
static void mixer_update_plane(struct exynos_drm_crtc *crtc,
struct exynos_drm_plane *plane)
{
struct mixer_context *mixer_ctx = crtc->ctx;
DRM_DEBUG_KMS("win: %d\n", plane->index);
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return;
if (plane->index == VP_DEFAULT_WIN)
vp_video_buffer(mixer_ctx, plane);
else
mixer_graph_buffer(mixer_ctx, plane);
}
static void mixer_disable_plane(struct exynos_drm_crtc *crtc,
struct exynos_drm_plane *plane)
{
struct mixer_context *mixer_ctx = crtc->ctx;
unsigned long flags;
DRM_DEBUG_KMS("win: %d\n", plane->index);
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return;
spin_lock_irqsave(&mixer_ctx->reg_slock, flags);
mixer_cfg_layer(mixer_ctx, plane->index, 0, false);
spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags);
}
static void mixer_atomic_flush(struct exynos_drm_crtc *crtc)
{
struct mixer_context *mixer_ctx = crtc->ctx;
if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
return;
mixer_vsync_set_update(mixer_ctx, true);
exynos_crtc_handle_event(crtc);
}
static void mixer_enable(struct exynos_drm_crtc *crtc)
{
struct mixer_context *ctx = crtc->ctx;
if (test_bit(MXR_BIT_POWERED, &ctx->flags))
return;
pm_runtime_get_sync(ctx->dev);
exynos_drm_pipe_clk_enable(crtc, true);
mixer_vsync_set_update(ctx, false);
mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET);
if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) {
mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0,
MXR_INT_CLEAR_VSYNC);
mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
}
mixer_win_reset(ctx);
mixer_commit(ctx);
mixer_vsync_set_update(ctx, true);
set_bit(MXR_BIT_POWERED, &ctx->flags);
}
static void mixer_disable(struct exynos_drm_crtc *crtc)
{
struct mixer_context *ctx = crtc->ctx;
int i;
if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
return;
mixer_stop(ctx);
mixer_regs_dump(ctx);
for (i = 0; i < MIXER_WIN_NR; i++)
mixer_disable_plane(crtc, &ctx->planes[i]);
exynos_drm_pipe_clk_enable(crtc, false);
pm_runtime_put(ctx->dev);
clear_bit(MXR_BIT_POWERED, &ctx->flags);
}
static int mixer_mode_valid(struct exynos_drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct mixer_context *ctx = crtc->ctx;
u32 w = mode->hdisplay, h = mode->vdisplay;
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d\n", w, h,
mode->vrefresh, !!(mode->flags & DRM_MODE_FLAG_INTERLACE));
if (ctx->mxr_ver == MXR_VER_128_0_0_184)
return MODE_OK;
if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) ||
(w >= 1024 && w <= 1280 && h >= 576 && h <= 720) ||
(w >= 1664 && w <= 1920 && h >= 936 && h <= 1080))
return MODE_OK;
if ((w == 1024 && h == 768) ||
(w == 1366 && h == 768) ||
(w == 1280 && h == 1024))
return MODE_OK;
return MODE_BAD;
}
static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct mixer_context *ctx = crtc->ctx;
int width = mode->hdisplay, height = mode->vdisplay, i;
struct {
int hdisplay, vdisplay, htotal, vtotal, scan_val;
} static const modes[] = {
{ 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD },
{ 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD },
{ 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD },
{ 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 |
MXR_CFG_SCAN_HD }
};
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
__set_bit(MXR_BIT_INTERLACE, &ctx->flags);
else
__clear_bit(MXR_BIT_INTERLACE, &ctx->flags);
if (ctx->mxr_ver == MXR_VER_128_0_0_184)
return true;
for (i = 0; i < ARRAY_SIZE(modes); ++i)
if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) {
ctx->scan_value = modes[i].scan_val;
if (width < modes[i].hdisplay ||
height < modes[i].vdisplay) {
adjusted_mode->hdisplay = modes[i].hdisplay;
adjusted_mode->hsync_start = modes[i].hdisplay;
adjusted_mode->hsync_end = modes[i].htotal;
adjusted_mode->htotal = modes[i].htotal;
adjusted_mode->vdisplay = modes[i].vdisplay;
adjusted_mode->vsync_start = modes[i].vdisplay;
adjusted_mode->vsync_end = modes[i].vtotal;
adjusted_mode->vtotal = modes[i].vtotal;
}
return true;
}
return false;
}
static const struct exynos_drm_crtc_ops mixer_crtc_ops = {
.enable = mixer_enable,
.disable = mixer_disable,
.enable_vblank = mixer_enable_vblank,
.disable_vblank = mixer_disable_vblank,
.atomic_begin = mixer_atomic_begin,
.update_plane = mixer_update_plane,
.disable_plane = mixer_disable_plane,
.atomic_flush = mixer_atomic_flush,
.mode_valid = mixer_mode_valid,
.mode_fixup = mixer_mode_fixup,
};
static const struct mixer_drv_data exynos5420_mxr_drv_data = {
.version = MXR_VER_128_0_0_184,
.is_vp_enabled = 0,
};
static const struct mixer_drv_data exynos5250_mxr_drv_data = {
.version = MXR_VER_16_0_33_0,
.is_vp_enabled = 0,
};
static const struct mixer_drv_data exynos4212_mxr_drv_data = {
.version = MXR_VER_0_0_0_16,
.is_vp_enabled = 1,
};
static const struct mixer_drv_data exynos4210_mxr_drv_data = {
.version = MXR_VER_0_0_0_16,
.is_vp_enabled = 1,
.has_sclk = 1,
};
static const struct of_device_id mixer_match_types[] = {
{
.compatible = "samsung,exynos4210-mixer",
.data = &exynos4210_mxr_drv_data,
}, {
.compatible = "samsung,exynos4212-mixer",
.data = &exynos4212_mxr_drv_data,
}, {
.compatible = "samsung,exynos5-mixer",
.data = &exynos5250_mxr_drv_data,
}, {
.compatible = "samsung,exynos5250-mixer",
.data = &exynos5250_mxr_drv_data,
}, {
.compatible = "samsung,exynos5420-mixer",
.data = &exynos5420_mxr_drv_data,
}, {
/* end node */
}
};
MODULE_DEVICE_TABLE(of, mixer_match_types);
static int mixer_bind(struct device *dev, struct device *manager, void *data)
{
struct mixer_context *ctx = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct exynos_drm_plane *exynos_plane;
unsigned int i;
int ret;
ret = mixer_initialize(ctx, drm_dev);
if (ret)
return ret;
for (i = 0; i < MIXER_WIN_NR; i++) {
if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED,
&ctx->flags))
continue;
ret = exynos_plane_init(drm_dev, &ctx->planes[i], i,
&plane_configs[i]);
if (ret)
return ret;
}
exynos_plane = &ctx->planes[DEFAULT_WIN];
ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base,
EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx);
if (IS_ERR(ctx->crtc)) {
mixer_ctx_remove(ctx);
ret = PTR_ERR(ctx->crtc);
goto free_ctx;
}
return 0;
free_ctx:
devm_kfree(dev, ctx);
return ret;
}
static void mixer_unbind(struct device *dev, struct device *master, void *data)
{
struct mixer_context *ctx = dev_get_drvdata(dev);
mixer_ctx_remove(ctx);
}
static const struct component_ops mixer_component_ops = {
.bind = mixer_bind,
.unbind = mixer_unbind,
};
static int mixer_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct mixer_drv_data *drv;
struct mixer_context *ctx;
int ret;
ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
DRM_ERROR("failed to alloc mixer context.\n");
return -ENOMEM;
}
drv = of_device_get_match_data(dev);
ctx->pdev = pdev;
ctx->dev = dev;
ctx->mxr_ver = drv->version;
if (drv->is_vp_enabled)
__set_bit(MXR_BIT_VP_ENABLED, &ctx->flags);
if (drv->has_sclk)
__set_bit(MXR_BIT_HAS_SCLK, &ctx->flags);
platform_set_drvdata(pdev, ctx);
ret = component_add(&pdev->dev, &mixer_component_ops);
if (!ret)
pm_runtime_enable(dev);
return ret;
}
static int mixer_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
component_del(&pdev->dev, &mixer_component_ops);
return 0;
}
static int __maybe_unused exynos_mixer_suspend(struct device *dev)
{
struct mixer_context *ctx = dev_get_drvdata(dev);
clk_disable_unprepare(ctx->hdmi);
clk_disable_unprepare(ctx->mixer);
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
clk_disable_unprepare(ctx->vp);
if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags))
clk_disable_unprepare(ctx->sclk_mixer);
}
return 0;
}
static int __maybe_unused exynos_mixer_resume(struct device *dev)
{
struct mixer_context *ctx = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ctx->mixer);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the mixer clk [%d]\n", ret);
return ret;
}
ret = clk_prepare_enable(ctx->hdmi);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the hdmi clk [%d]\n", ret);
return ret;
}
if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
ret = clk_prepare_enable(ctx->vp);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the vp clk [%d]\n",
ret);
return ret;
}
if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) {
ret = clk_prepare_enable(ctx->sclk_mixer);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the " \
"sclk_mixer clk [%d]\n",
ret);
return ret;
}
}
}
return 0;
}
static const struct dev_pm_ops exynos_mixer_pm_ops = {
SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL)
};
struct platform_driver mixer_driver = {
.driver = {
.name = "exynos-mixer",
.owner = THIS_MODULE,
.pm = &exynos_mixer_pm_ops,
.of_match_table = mixer_match_types,
},
.probe = mixer_probe,
.remove = mixer_remove,
};