| Written by: Neil Brown |
| Please see MAINTAINERS file for where to send questions. |
| |
| Overlay Filesystem |
| ================== |
| |
| This document describes a prototype for a new approach to providing |
| overlay-filesystem functionality in Linux (sometimes referred to as |
| union-filesystems). An overlay-filesystem tries to present a |
| filesystem which is the result over overlaying one filesystem on top |
| of the other. |
| |
| The result will inevitably fail to look exactly like a normal |
| filesystem for various technical reasons. The expectation is that |
| many use cases will be able to ignore these differences. |
| |
| |
| Overlay objects |
| --------------- |
| |
| The overlay filesystem approach is 'hybrid', because the objects that |
| appear in the filesystem do not always appear to belong to that filesystem. |
| In many cases, an object accessed in the union will be indistinguishable |
| from accessing the corresponding object from the original filesystem. |
| This is most obvious from the 'st_dev' field returned by stat(2). |
| |
| While directories will report an st_dev from the overlay-filesystem, |
| non-directory objects may report an st_dev from the lower filesystem or |
| upper filesystem that is providing the object. Similarly st_ino will |
| only be unique when combined with st_dev, and both of these can change |
| over the lifetime of a non-directory object. Many applications and |
| tools ignore these values and will not be affected. |
| |
| In the special case of all overlay layers on the same underlying |
| filesystem, all objects will report an st_dev from the overlay |
| filesystem and st_ino from the underlying filesystem. This will |
| make the overlay mount more compliant with filesystem scanners and |
| overlay objects will be distinguishable from the corresponding |
| objects in the original filesystem. |
| |
| On 64bit systems, even if all overlay layers are not on the same |
| underlying filesystem, the same compliant behavior could be achieved |
| with the "xino" feature. The "xino" feature composes a unique object |
| identifier from the real object st_ino and an underlying fsid index. |
| If all underlying filesystems support NFS file handles and export file |
| handles with 32bit inode number encoding (e.g. ext4), overlay filesystem |
| will use the high inode number bits for fsid. Even when the underlying |
| filesystem uses 64bit inode numbers, users can still enable the "xino" |
| feature with the "-o xino=on" overlay mount option. That is useful for the |
| case of underlying filesystems like xfs and tmpfs, which use 64bit inode |
| numbers, but are very unlikely to use the high inode number bit. |
| |
| |
| Upper and Lower |
| --------------- |
| |
| An overlay filesystem combines two filesystems - an 'upper' filesystem |
| and a 'lower' filesystem. When a name exists in both filesystems, the |
| object in the 'upper' filesystem is visible while the object in the |
| 'lower' filesystem is either hidden or, in the case of directories, |
| merged with the 'upper' object. |
| |
| It would be more correct to refer to an upper and lower 'directory |
| tree' rather than 'filesystem' as it is quite possible for both |
| directory trees to be in the same filesystem and there is no |
| requirement that the root of a filesystem be given for either upper or |
| lower. |
| |
| The lower filesystem can be any filesystem supported by Linux and does |
| not need to be writable. The lower filesystem can even be another |
| overlayfs. The upper filesystem will normally be writable and if it |
| is it must support the creation of trusted.* extended attributes, and |
| must provide valid d_type in readdir responses, so NFS is not suitable. |
| |
| A read-only overlay of two read-only filesystems may use any |
| filesystem type. |
| |
| Directories |
| ----------- |
| |
| Overlaying mainly involves directories. If a given name appears in both |
| upper and lower filesystems and refers to a non-directory in either, |
| then the lower object is hidden - the name refers only to the upper |
| object. |
| |
| Where both upper and lower objects are directories, a merged directory |
| is formed. |
| |
| At mount time, the two directories given as mount options "lowerdir" and |
| "upperdir" are combined into a merged directory: |
| |
| mount -t overlay overlay -olowerdir=/lower,upperdir=/upper,\ |
| workdir=/work /merged |
| |
| The "workdir" needs to be an empty directory on the same filesystem |
| as upperdir. |
| |
| Then whenever a lookup is requested in such a merged directory, the |
| lookup is performed in each actual directory and the combined result |
| is cached in the dentry belonging to the overlay filesystem. If both |
| actual lookups find directories, both are stored and a merged |
| directory is created, otherwise only one is stored: the upper if it |
| exists, else the lower. |
| |
| Only the lists of names from directories are merged. Other content |
| such as metadata and extended attributes are reported for the upper |
| directory only. These attributes of the lower directory are hidden. |
| |
| whiteouts and opaque directories |
| -------------------------------- |
| |
| In order to support rm and rmdir without changing the lower |
| filesystem, an overlay filesystem needs to record in the upper filesystem |
| that files have been removed. This is done using whiteouts and opaque |
| directories (non-directories are always opaque). |
| |
| A whiteout is created as a character device with 0/0 device number. |
| When a whiteout is found in the upper level of a merged directory, any |
| matching name in the lower level is ignored, and the whiteout itself |
| is also hidden. |
| |
| A directory is made opaque by setting the xattr "trusted.overlay.opaque" |
| to "y". Where the upper filesystem contains an opaque directory, any |
| directory in the lower filesystem with the same name is ignored. |
| |
| readdir |
| ------- |
| |
| When a 'readdir' request is made on a merged directory, the upper and |
| lower directories are each read and the name lists merged in the |
| obvious way (upper is read first, then lower - entries that already |
| exist are not re-added). This merged name list is cached in the |
| 'struct file' and so remains as long as the file is kept open. If the |
| directory is opened and read by two processes at the same time, they |
| will each have separate caches. A seekdir to the start of the |
| directory (offset 0) followed by a readdir will cause the cache to be |
| discarded and rebuilt. |
| |
| This means that changes to the merged directory do not appear while a |
| directory is being read. This is unlikely to be noticed by many |
| programs. |
| |
| seek offsets are assigned sequentially when the directories are read. |
| Thus if |
| |
| - read part of a directory |
| - remember an offset, and close the directory |
| - re-open the directory some time later |
| - seek to the remembered offset |
| |
| there may be little correlation between the old and new locations in |
| the list of filenames, particularly if anything has changed in the |
| directory. |
| |
| Readdir on directories that are not merged is simply handled by the |
| underlying directory (upper or lower). |
| |
| renaming directories |
| -------------------- |
| |
| When renaming a directory that is on the lower layer or merged (i.e. the |
| directory was not created on the upper layer to start with) overlayfs can |
| handle it in two different ways: |
| |
| 1. return EXDEV error: this error is returned by rename(2) when trying to |
| move a file or directory across filesystem boundaries. Hence |
| applications are usually prepared to hande this error (mv(1) for example |
| recursively copies the directory tree). This is the default behavior. |
| |
| 2. If the "redirect_dir" feature is enabled, then the directory will be |
| copied up (but not the contents). Then the "trusted.overlay.redirect" |
| extended attribute is set to the path of the original location from the |
| root of the overlay. Finally the directory is moved to the new |
| location. |
| |
| There are several ways to tune the "redirect_dir" feature. |
| |
| Kernel config options: |
| |
| - OVERLAY_FS_REDIRECT_DIR: |
| If this is enabled, then redirect_dir is turned on by default. |
| - OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW: |
| If this is enabled, then redirects are always followed by default. Enabling |
| this results in a less secure configuration. Enable this option only when |
| worried about backward compatibility with kernels that have the redirect_dir |
| feature and follow redirects even if turned off. |
| |
| Module options (can also be changed through /sys/module/overlay/parameters/*): |
| |
| - "redirect_dir=BOOL": |
| See OVERLAY_FS_REDIRECT_DIR kernel config option above. |
| - "redirect_always_follow=BOOL": |
| See OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW kernel config option above. |
| - "redirect_max=NUM": |
| The maximum number of bytes in an absolute redirect (default is 256). |
| |
| Mount options: |
| |
| - "redirect_dir=on": |
| Redirects are enabled. |
| - "redirect_dir=follow": |
| Redirects are not created, but followed. |
| - "redirect_dir=off": |
| Redirects are not created and only followed if "redirect_always_follow" |
| feature is enabled in the kernel/module config. |
| - "redirect_dir=nofollow": |
| Redirects are not created and not followed (equivalent to "redirect_dir=off" |
| if "redirect_always_follow" feature is not enabled). |
| |
| When the NFS export feature is enabled, every copied up directory is |
| indexed by the file handle of the lower inode and a file handle of the |
| upper directory is stored in a "trusted.overlay.upper" extended attribute |
| on the index entry. On lookup of a merged directory, if the upper |
| directory does not match the file handle stores in the index, that is an |
| indication that multiple upper directories may be redirected to the same |
| lower directory. In that case, lookup returns an error and warns about |
| a possible inconsistency. |
| |
| Because lower layer redirects cannot be verified with the index, enabling |
| NFS export support on an overlay filesystem with no upper layer requires |
| turning off redirect follow (e.g. "redirect_dir=nofollow"). |
| |
| |
| Non-directories |
| --------------- |
| |
| Objects that are not directories (files, symlinks, device-special |
| files etc.) are presented either from the upper or lower filesystem as |
| appropriate. When a file in the lower filesystem is accessed in a way |
| the requires write-access, such as opening for write access, changing |
| some metadata etc., the file is first copied from the lower filesystem |
| to the upper filesystem (copy_up). Note that creating a hard-link |
| also requires copy_up, though of course creation of a symlink does |
| not. |
| |
| The copy_up may turn out to be unnecessary, for example if the file is |
| opened for read-write but the data is not modified. |
| |
| The copy_up process first makes sure that the containing directory |
| exists in the upper filesystem - creating it and any parents as |
| necessary. It then creates the object with the same metadata (owner, |
| mode, mtime, symlink-target etc.) and then if the object is a file, the |
| data is copied from the lower to the upper filesystem. Finally any |
| extended attributes are copied up. |
| |
| Once the copy_up is complete, the overlay filesystem simply |
| provides direct access to the newly created file in the upper |
| filesystem - future operations on the file are barely noticed by the |
| overlay filesystem (though an operation on the name of the file such as |
| rename or unlink will of course be noticed and handled). |
| |
| |
| Multiple lower layers |
| --------------------- |
| |
| Multiple lower layers can now be given using the the colon (":") as a |
| separator character between the directory names. For example: |
| |
| mount -t overlay overlay -olowerdir=/lower1:/lower2:/lower3 /merged |
| |
| As the example shows, "upperdir=" and "workdir=" may be omitted. In |
| that case the overlay will be read-only. |
| |
| The specified lower directories will be stacked beginning from the |
| rightmost one and going left. In the above example lower1 will be the |
| top, lower2 the middle and lower3 the bottom layer. |
| |
| |
| Sharing and copying layers |
| -------------------------- |
| |
| Lower layers may be shared among several overlay mounts and that is indeed |
| a very common practice. An overlay mount may use the same lower layer |
| path as another overlay mount and it may use a lower layer path that is |
| beneath or above the path of another overlay lower layer path. |
| |
| Using an upper layer path and/or a workdir path that are already used by |
| another overlay mount is not allowed and may fail with EBUSY. Using |
| partially overlapping paths is not allowed but will not fail with EBUSY. |
| If files are accessed from two overlayfs mounts which share or overlap the |
| upper layer and/or workdir path the behavior of the overlay is undefined, |
| though it will not result in a crash or deadlock. |
| |
| Mounting an overlay using an upper layer path, where the upper layer path |
| was previously used by another mounted overlay in combination with a |
| different lower layer path, is allowed, unless the "inodes index" feature |
| is enabled. |
| |
| With the "inodes index" feature, on the first time mount, an NFS file |
| handle of the lower layer root directory, along with the UUID of the lower |
| filesystem, are encoded and stored in the "trusted.overlay.origin" extended |
| attribute on the upper layer root directory. On subsequent mount attempts, |
| the lower root directory file handle and lower filesystem UUID are compared |
| to the stored origin in upper root directory. On failure to verify the |
| lower root origin, mount will fail with ESTALE. An overlayfs mount with |
| "inodes index" enabled will fail with EOPNOTSUPP if the lower filesystem |
| does not support NFS export, lower filesystem does not have a valid UUID or |
| if the upper filesystem does not support extended attributes. |
| |
| It is quite a common practice to copy overlay layers to a different |
| directory tree on the same or different underlying filesystem, and even |
| to a different machine. With the "inodes index" feature, trying to mount |
| the copied layers will fail the verification of the lower root file handle. |
| |
| |
| Non-standard behavior |
| --------------------- |
| |
| The copy_up operation essentially creates a new, identical file and |
| moves it over to the old name. Any open files referring to this inode |
| will access the old data. |
| |
| The new file may be on a different filesystem, so both st_dev and st_ino |
| of the real file may change. The values of st_dev and st_ino returned by |
| stat(2) on an overlay object are often not the same as the real file |
| stat(2) values to prevent the values from changing on copy_up. |
| |
| Unless "xino" feature is enabled, when overlay layers are not all on the |
| same underlying filesystem, the value of st_dev may be different for two |
| non-directory objects in the same overlay filesystem and the value of |
| st_ino for directory objects may be non persistent and could change even |
| while the overlay filesystem is still mounted. |
| |
| Unless "inode index" feature is enabled, if a file with multiple hard |
| links is copied up, then this will "break" the link. Changes will not be |
| propagated to other names referring to the same inode. |
| |
| Unless "redirect_dir" feature is enabled, rename(2) on a lower or merged |
| directory will fail with EXDEV. |
| |
| |
| Changes to underlying filesystems |
| --------------------------------- |
| |
| Offline changes, when the overlay is not mounted, are allowed to either |
| the upper or the lower trees. |
| |
| Changes to the underlying filesystems while part of a mounted overlay |
| filesystem are not allowed. If the underlying filesystem is changed, |
| the behavior of the overlay is undefined, though it will not result in |
| a crash or deadlock. |
| |
| When the overlay NFS export feature is enabled, overlay filesystems |
| behavior on offline changes of the underlying lower layer is different |
| than the behavior when NFS export is disabled. |
| |
| On every copy_up, an NFS file handle of the lower inode, along with the |
| UUID of the lower filesystem, are encoded and stored in an extended |
| attribute "trusted.overlay.origin" on the upper inode. |
| |
| When the NFS export feature is enabled, a lookup of a merged directory, |
| that found a lower directory at the lookup path or at the path pointed |
| to by the "trusted.overlay.redirect" extended attribute, will verify |
| that the found lower directory file handle and lower filesystem UUID |
| match the origin file handle that was stored at copy_up time. If a |
| found lower directory does not match the stored origin, that directory |
| will not be merged with the upper directory. |
| |
| |
| |
| NFS export |
| ---------- |
| |
| When the underlying filesystems supports NFS export and the "nfs_export" |
| feature is enabled, an overlay filesystem may be exported to NFS. |
| |
| With the "nfs_export" feature, on copy_up of any lower object, an index |
| entry is created under the index directory. The index entry name is the |
| hexadecimal representation of the copy up origin file handle. For a |
| non-directory object, the index entry is a hard link to the upper inode. |
| For a directory object, the index entry has an extended attribute |
| "trusted.overlay.upper" with an encoded file handle of the upper |
| directory inode. |
| |
| When encoding a file handle from an overlay filesystem object, the |
| following rules apply: |
| |
| 1. For a non-upper object, encode a lower file handle from lower inode |
| 2. For an indexed object, encode a lower file handle from copy_up origin |
| 3. For a pure-upper object and for an existing non-indexed upper object, |
| encode an upper file handle from upper inode |
| |
| The encoded overlay file handle includes: |
| - Header including path type information (e.g. lower/upper) |
| - UUID of the underlying filesystem |
| - Underlying filesystem encoding of underlying inode |
| |
| This encoding format is identical to the encoding format file handles that |
| are stored in extended attribute "trusted.overlay.origin". |
| |
| When decoding an overlay file handle, the following steps are followed: |
| |
| 1. Find underlying layer by UUID and path type information. |
| 2. Decode the underlying filesystem file handle to underlying dentry. |
| 3. For a lower file handle, lookup the handle in index directory by name. |
| 4. If a whiteout is found in index, return ESTALE. This represents an |
| overlay object that was deleted after its file handle was encoded. |
| 5. For a non-directory, instantiate a disconnected overlay dentry from the |
| decoded underlying dentry, the path type and index inode, if found. |
| 6. For a directory, use the connected underlying decoded dentry, path type |
| and index, to lookup a connected overlay dentry. |
| |
| Decoding a non-directory file handle may return a disconnected dentry. |
| copy_up of that disconnected dentry will create an upper index entry with |
| no upper alias. |
| |
| When overlay filesystem has multiple lower layers, a middle layer |
| directory may have a "redirect" to lower directory. Because middle layer |
| "redirects" are not indexed, a lower file handle that was encoded from the |
| "redirect" origin directory, cannot be used to find the middle or upper |
| layer directory. Similarly, a lower file handle that was encoded from a |
| descendant of the "redirect" origin directory, cannot be used to |
| reconstruct a connected overlay path. To mitigate the cases of |
| directories that cannot be decoded from a lower file handle, these |
| directories are copied up on encode and encoded as an upper file handle. |
| On an overlay filesystem with no upper layer this mitigation cannot be |
| used NFS export in this setup requires turning off redirect follow (e.g. |
| "redirect_dir=nofollow"). |
| |
| The overlay filesystem does not support non-directory connectable file |
| handles, so exporting with the 'subtree_check' exportfs configuration will |
| cause failures to lookup files over NFS. |
| |
| When the NFS export feature is enabled, all directory index entries are |
| verified on mount time to check that upper file handles are not stale. |
| This verification may cause significant overhead in some cases. |
| |
| |
| Testsuite |
| --------- |
| |
| There's a testsuite originally developed by David Howells and currently |
| maintained by Amir Goldstein at: |
| |
| https://github.com/amir73il/unionmount-testsuite.git |
| |
| Run as root: |
| |
| # cd unionmount-testsuite |
| # ./run --ov --verify |