| /* | 
 |  * linux/mm/compaction.c | 
 |  * | 
 |  * Memory compaction for the reduction of external fragmentation. Note that | 
 |  * this heavily depends upon page migration to do all the real heavy | 
 |  * lifting | 
 |  * | 
 |  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> | 
 |  */ | 
 | #include <linux/cpu.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/compaction.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/balloon_compaction.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include "internal.h" | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static inline void count_compact_event(enum vm_event_item item) | 
 | { | 
 | 	count_vm_event(item); | 
 | } | 
 |  | 
 | static inline void count_compact_events(enum vm_event_item item, long delta) | 
 | { | 
 | 	count_vm_events(item, delta); | 
 | } | 
 | #else | 
 | #define count_compact_event(item) do { } while (0) | 
 | #define count_compact_events(item, delta) do { } while (0) | 
 | #endif | 
 |  | 
 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/compaction.h> | 
 |  | 
 | #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order)) | 
 | #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order)) | 
 | #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order) | 
 | #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order) | 
 |  | 
 | static unsigned long release_freepages(struct list_head *freelist) | 
 | { | 
 | 	struct page *page, *next; | 
 | 	unsigned long high_pfn = 0; | 
 |  | 
 | 	list_for_each_entry_safe(page, next, freelist, lru) { | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		list_del(&page->lru); | 
 | 		__free_page(page); | 
 | 		if (pfn > high_pfn) | 
 | 			high_pfn = pfn; | 
 | 	} | 
 |  | 
 | 	return high_pfn; | 
 | } | 
 |  | 
 | static void map_pages(struct list_head *list) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	list_for_each_entry(page, list, lru) { | 
 | 		arch_alloc_page(page, 0); | 
 | 		kernel_map_pages(page, 1, 1); | 
 | 		kasan_alloc_pages(page, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool migrate_async_suitable(int migratetype) | 
 | { | 
 | 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 |  | 
 | /* Do not skip compaction more than 64 times */ | 
 | #define COMPACT_MAX_DEFER_SHIFT 6 | 
 |  | 
 | /* | 
 |  * Compaction is deferred when compaction fails to result in a page | 
 |  * allocation success. 1 << compact_defer_limit compactions are skipped up | 
 |  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT | 
 |  */ | 
 | void defer_compaction(struct zone *zone, int order) | 
 | { | 
 | 	zone->compact_considered = 0; | 
 | 	zone->compact_defer_shift++; | 
 |  | 
 | 	if (order < zone->compact_order_failed) | 
 | 		zone->compact_order_failed = order; | 
 |  | 
 | 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) | 
 | 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; | 
 |  | 
 | 	trace_mm_compaction_defer_compaction(zone, order); | 
 | } | 
 |  | 
 | /* Returns true if compaction should be skipped this time */ | 
 | bool compaction_deferred(struct zone *zone, int order) | 
 | { | 
 | 	unsigned long defer_limit = 1UL << zone->compact_defer_shift; | 
 |  | 
 | 	if (order < zone->compact_order_failed) | 
 | 		return false; | 
 |  | 
 | 	/* Avoid possible overflow */ | 
 | 	if (++zone->compact_considered > defer_limit) | 
 | 		zone->compact_considered = defer_limit; | 
 |  | 
 | 	if (zone->compact_considered >= defer_limit) | 
 | 		return false; | 
 |  | 
 | 	trace_mm_compaction_deferred(zone, order); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Update defer tracking counters after successful compaction of given order, | 
 |  * which means an allocation either succeeded (alloc_success == true) or is | 
 |  * expected to succeed. | 
 |  */ | 
 | void compaction_defer_reset(struct zone *zone, int order, | 
 | 		bool alloc_success) | 
 | { | 
 | 	if (alloc_success) { | 
 | 		zone->compact_considered = 0; | 
 | 		zone->compact_defer_shift = 0; | 
 | 	} | 
 | 	if (order >= zone->compact_order_failed) | 
 | 		zone->compact_order_failed = order + 1; | 
 |  | 
 | 	trace_mm_compaction_defer_reset(zone, order); | 
 | } | 
 |  | 
 | /* Returns true if restarting compaction after many failures */ | 
 | bool compaction_restarting(struct zone *zone, int order) | 
 | { | 
 | 	if (order < zone->compact_order_failed) | 
 | 		return false; | 
 |  | 
 | 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && | 
 | 		zone->compact_considered >= 1UL << zone->compact_defer_shift; | 
 | } | 
 |  | 
 | /* Returns true if the pageblock should be scanned for pages to isolate. */ | 
 | static inline bool isolation_suitable(struct compact_control *cc, | 
 | 					struct page *page) | 
 | { | 
 | 	if (cc->ignore_skip_hint) | 
 | 		return true; | 
 |  | 
 | 	return !get_pageblock_skip(page); | 
 | } | 
 |  | 
 | static void reset_cached_positions(struct zone *zone) | 
 | { | 
 | 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; | 
 | 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; | 
 | 	zone->compact_cached_free_pfn = | 
 | 				pageblock_start_pfn(zone_end_pfn(zone) - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called to clear all cached information on pageblocks that | 
 |  * should be skipped for page isolation when the migrate and free page scanner | 
 |  * meet. | 
 |  */ | 
 | static void __reset_isolation_suitable(struct zone *zone) | 
 | { | 
 | 	unsigned long start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long end_pfn = zone_end_pfn(zone); | 
 | 	unsigned long pfn; | 
 |  | 
 | 	zone->compact_blockskip_flush = false; | 
 |  | 
 | 	/* Walk the zone and mark every pageblock as suitable for isolation */ | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
 | 		struct page *page; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (!pfn_valid(pfn)) | 
 | 			continue; | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 | 		if (zone != page_zone(page)) | 
 | 			continue; | 
 |  | 
 | 		clear_pageblock_skip(page); | 
 | 	} | 
 |  | 
 | 	reset_cached_positions(zone); | 
 | } | 
 |  | 
 | void reset_isolation_suitable(pg_data_t *pgdat) | 
 | { | 
 | 	int zoneid; | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		/* Only flush if a full compaction finished recently */ | 
 | 		if (zone->compact_blockskip_flush) | 
 | 			__reset_isolation_suitable(zone); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If no pages were isolated then mark this pageblock to be skipped in the | 
 |  * future. The information is later cleared by __reset_isolation_suitable(). | 
 |  */ | 
 | static void update_pageblock_skip(struct compact_control *cc, | 
 | 			struct page *page, unsigned long nr_isolated, | 
 | 			bool migrate_scanner) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	if (cc->ignore_skip_hint) | 
 | 		return; | 
 |  | 
 | 	if (!page) | 
 | 		return; | 
 |  | 
 | 	if (nr_isolated) | 
 | 		return; | 
 |  | 
 | 	set_pageblock_skip(page); | 
 |  | 
 | 	pfn = page_to_pfn(page); | 
 |  | 
 | 	/* Update where async and sync compaction should restart */ | 
 | 	if (migrate_scanner) { | 
 | 		if (pfn > zone->compact_cached_migrate_pfn[0]) | 
 | 			zone->compact_cached_migrate_pfn[0] = pfn; | 
 | 		if (cc->mode != MIGRATE_ASYNC && | 
 | 		    pfn > zone->compact_cached_migrate_pfn[1]) | 
 | 			zone->compact_cached_migrate_pfn[1] = pfn; | 
 | 	} else { | 
 | 		if (pfn < zone->compact_cached_free_pfn) | 
 | 			zone->compact_cached_free_pfn = pfn; | 
 | 	} | 
 | } | 
 | #else | 
 | static inline bool isolation_suitable(struct compact_control *cc, | 
 | 					struct page *page) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static void update_pageblock_skip(struct compact_control *cc, | 
 | 			struct page *page, unsigned long nr_isolated, | 
 | 			bool migrate_scanner) | 
 | { | 
 | } | 
 | #endif /* CONFIG_COMPACTION */ | 
 |  | 
 | /* | 
 |  * Compaction requires the taking of some coarse locks that are potentially | 
 |  * very heavily contended. For async compaction, back out if the lock cannot | 
 |  * be taken immediately. For sync compaction, spin on the lock if needed. | 
 |  * | 
 |  * Returns true if the lock is held | 
 |  * Returns false if the lock is not held and compaction should abort | 
 |  */ | 
 | static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, | 
 | 						struct compact_control *cc) | 
 | { | 
 | 	if (cc->mode == MIGRATE_ASYNC) { | 
 | 		if (!spin_trylock_irqsave(lock, *flags)) { | 
 | 			cc->contended = COMPACT_CONTENDED_LOCK; | 
 | 			return false; | 
 | 		} | 
 | 	} else { | 
 | 		spin_lock_irqsave(lock, *flags); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Compaction requires the taking of some coarse locks that are potentially | 
 |  * very heavily contended. The lock should be periodically unlocked to avoid | 
 |  * having disabled IRQs for a long time, even when there is nobody waiting on | 
 |  * the lock. It might also be that allowing the IRQs will result in | 
 |  * need_resched() becoming true. If scheduling is needed, async compaction | 
 |  * aborts. Sync compaction schedules. | 
 |  * Either compaction type will also abort if a fatal signal is pending. | 
 |  * In either case if the lock was locked, it is dropped and not regained. | 
 |  * | 
 |  * Returns true if compaction should abort due to fatal signal pending, or | 
 |  *		async compaction due to need_resched() | 
 |  * Returns false when compaction can continue (sync compaction might have | 
 |  *		scheduled) | 
 |  */ | 
 | static bool compact_unlock_should_abort(spinlock_t *lock, | 
 | 		unsigned long flags, bool *locked, struct compact_control *cc) | 
 | { | 
 | 	if (*locked) { | 
 | 		spin_unlock_irqrestore(lock, flags); | 
 | 		*locked = false; | 
 | 	} | 
 |  | 
 | 	if (fatal_signal_pending(current)) { | 
 | 		cc->contended = COMPACT_CONTENDED_SCHED; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (need_resched()) { | 
 | 		if (cc->mode == MIGRATE_ASYNC) { | 
 | 			cc->contended = COMPACT_CONTENDED_SCHED; | 
 | 			return true; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Aside from avoiding lock contention, compaction also periodically checks | 
 |  * need_resched() and either schedules in sync compaction or aborts async | 
 |  * compaction. This is similar to what compact_unlock_should_abort() does, but | 
 |  * is used where no lock is concerned. | 
 |  * | 
 |  * Returns false when no scheduling was needed, or sync compaction scheduled. | 
 |  * Returns true when async compaction should abort. | 
 |  */ | 
 | static inline bool compact_should_abort(struct compact_control *cc) | 
 | { | 
 | 	/* async compaction aborts if contended */ | 
 | 	if (need_resched()) { | 
 | 		if (cc->mode == MIGRATE_ASYNC) { | 
 | 			cc->contended = COMPACT_CONTENDED_SCHED; | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Isolate free pages onto a private freelist. If @strict is true, will abort | 
 |  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock | 
 |  * (even though it may still end up isolating some pages). | 
 |  */ | 
 | static unsigned long isolate_freepages_block(struct compact_control *cc, | 
 | 				unsigned long *start_pfn, | 
 | 				unsigned long end_pfn, | 
 | 				struct list_head *freelist, | 
 | 				bool strict) | 
 | { | 
 | 	int nr_scanned = 0, total_isolated = 0; | 
 | 	struct page *cursor, *valid_page = NULL; | 
 | 	unsigned long flags = 0; | 
 | 	bool locked = false; | 
 | 	unsigned long blockpfn = *start_pfn; | 
 |  | 
 | 	cursor = pfn_to_page(blockpfn); | 
 |  | 
 | 	/* Isolate free pages. */ | 
 | 	for (; blockpfn < end_pfn; blockpfn++, cursor++) { | 
 | 		int isolated, i; | 
 | 		struct page *page = cursor; | 
 |  | 
 | 		/* | 
 | 		 * Periodically drop the lock (if held) regardless of its | 
 | 		 * contention, to give chance to IRQs. Abort if fatal signal | 
 | 		 * pending or async compaction detects need_resched() | 
 | 		 */ | 
 | 		if (!(blockpfn % SWAP_CLUSTER_MAX) | 
 | 		    && compact_unlock_should_abort(&cc->zone->lock, flags, | 
 | 								&locked, cc)) | 
 | 			break; | 
 |  | 
 | 		nr_scanned++; | 
 | 		if (!pfn_valid_within(blockpfn)) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		if (!valid_page) | 
 | 			valid_page = page; | 
 |  | 
 | 		/* | 
 | 		 * For compound pages such as THP and hugetlbfs, we can save | 
 | 		 * potentially a lot of iterations if we skip them at once. | 
 | 		 * The check is racy, but we can consider only valid values | 
 | 		 * and the only danger is skipping too much. | 
 | 		 */ | 
 | 		if (PageCompound(page)) { | 
 | 			unsigned int comp_order = compound_order(page); | 
 |  | 
 | 			if (likely(comp_order < MAX_ORDER)) { | 
 | 				blockpfn += (1UL << comp_order) - 1; | 
 | 				cursor += (1UL << comp_order) - 1; | 
 | 			} | 
 |  | 
 | 			goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		if (!PageBuddy(page)) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* | 
 | 		 * If we already hold the lock, we can skip some rechecking. | 
 | 		 * Note that if we hold the lock now, checked_pageblock was | 
 | 		 * already set in some previous iteration (or strict is true), | 
 | 		 * so it is correct to skip the suitable migration target | 
 | 		 * recheck as well. | 
 | 		 */ | 
 | 		if (!locked) { | 
 | 			/* | 
 | 			 * The zone lock must be held to isolate freepages. | 
 | 			 * Unfortunately this is a very coarse lock and can be | 
 | 			 * heavily contended if there are parallel allocations | 
 | 			 * or parallel compactions. For async compaction do not | 
 | 			 * spin on the lock and we acquire the lock as late as | 
 | 			 * possible. | 
 | 			 */ | 
 | 			locked = compact_trylock_irqsave(&cc->zone->lock, | 
 | 								&flags, cc); | 
 | 			if (!locked) | 
 | 				break; | 
 |  | 
 | 			/* Recheck this is a buddy page under lock */ | 
 | 			if (!PageBuddy(page)) | 
 | 				goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		/* Found a free page, break it into order-0 pages */ | 
 | 		isolated = split_free_page(page); | 
 | 		total_isolated += isolated; | 
 | 		for (i = 0; i < isolated; i++) { | 
 | 			list_add(&page->lru, freelist); | 
 | 			page++; | 
 | 		} | 
 |  | 
 | 		/* If a page was split, advance to the end of it */ | 
 | 		if (isolated) { | 
 | 			cc->nr_freepages += isolated; | 
 | 			if (!strict && | 
 | 				cc->nr_migratepages <= cc->nr_freepages) { | 
 | 				blockpfn += isolated; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			blockpfn += isolated - 1; | 
 | 			cursor += isolated - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | isolate_fail: | 
 | 		if (strict) | 
 | 			break; | 
 | 		else | 
 | 			continue; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There is a tiny chance that we have read bogus compound_order(), | 
 | 	 * so be careful to not go outside of the pageblock. | 
 | 	 */ | 
 | 	if (unlikely(blockpfn > end_pfn)) | 
 | 		blockpfn = end_pfn; | 
 |  | 
 | 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, | 
 | 					nr_scanned, total_isolated); | 
 |  | 
 | 	/* Record how far we have got within the block */ | 
 | 	*start_pfn = blockpfn; | 
 |  | 
 | 	/* | 
 | 	 * If strict isolation is requested by CMA then check that all the | 
 | 	 * pages requested were isolated. If there were any failures, 0 is | 
 | 	 * returned and CMA will fail. | 
 | 	 */ | 
 | 	if (strict && blockpfn < end_pfn) | 
 | 		total_isolated = 0; | 
 |  | 
 | 	if (locked) | 
 | 		spin_unlock_irqrestore(&cc->zone->lock, flags); | 
 |  | 
 | 	/* Update the pageblock-skip if the whole pageblock was scanned */ | 
 | 	if (blockpfn == end_pfn) | 
 | 		update_pageblock_skip(cc, valid_page, total_isolated, false); | 
 |  | 
 | 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned); | 
 | 	if (total_isolated) | 
 | 		count_compact_events(COMPACTISOLATED, total_isolated); | 
 | 	return total_isolated; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_freepages_range() - isolate free pages. | 
 |  * @start_pfn: The first PFN to start isolating. | 
 |  * @end_pfn:   The one-past-last PFN. | 
 |  * | 
 |  * Non-free pages, invalid PFNs, or zone boundaries within the | 
 |  * [start_pfn, end_pfn) range are considered errors, cause function to | 
 |  * undo its actions and return zero. | 
 |  * | 
 |  * Otherwise, function returns one-past-the-last PFN of isolated page | 
 |  * (which may be greater then end_pfn if end fell in a middle of | 
 |  * a free page). | 
 |  */ | 
 | unsigned long | 
 | isolate_freepages_range(struct compact_control *cc, | 
 | 			unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn; | 
 | 	LIST_HEAD(freelist); | 
 |  | 
 | 	pfn = start_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(pfn); | 
 | 	if (block_start_pfn < cc->zone->zone_start_pfn) | 
 | 		block_start_pfn = cc->zone->zone_start_pfn; | 
 | 	block_end_pfn = pageblock_end_pfn(pfn); | 
 |  | 
 | 	for (; pfn < end_pfn; pfn += isolated, | 
 | 				block_start_pfn = block_end_pfn, | 
 | 				block_end_pfn += pageblock_nr_pages) { | 
 | 		/* Protect pfn from changing by isolate_freepages_block */ | 
 | 		unsigned long isolate_start_pfn = pfn; | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, end_pfn); | 
 |  | 
 | 		/* | 
 | 		 * pfn could pass the block_end_pfn if isolated freepage | 
 | 		 * is more than pageblock order. In this case, we adjust | 
 | 		 * scanning range to right one. | 
 | 		 */ | 
 | 		if (pfn >= block_end_pfn) { | 
 | 			block_start_pfn = pageblock_start_pfn(pfn); | 
 | 			block_end_pfn = pageblock_end_pfn(pfn); | 
 | 			block_end_pfn = min(block_end_pfn, end_pfn); | 
 | 		} | 
 |  | 
 | 		if (!pageblock_pfn_to_page(block_start_pfn, | 
 | 					block_end_pfn, cc->zone)) | 
 | 			break; | 
 |  | 
 | 		isolated = isolate_freepages_block(cc, &isolate_start_pfn, | 
 | 						block_end_pfn, &freelist, true); | 
 |  | 
 | 		/* | 
 | 		 * In strict mode, isolate_freepages_block() returns 0 if | 
 | 		 * there are any holes in the block (ie. invalid PFNs or | 
 | 		 * non-free pages). | 
 | 		 */ | 
 | 		if (!isolated) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If we managed to isolate pages, it is always (1 << n) * | 
 | 		 * pageblock_nr_pages for some non-negative n.  (Max order | 
 | 		 * page may span two pageblocks). | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* split_free_page does not map the pages */ | 
 | 	map_pages(&freelist); | 
 |  | 
 | 	if (pfn < end_pfn) { | 
 | 		/* Loop terminated early, cleanup. */ | 
 | 		release_freepages(&freelist); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We don't use freelists for anything. */ | 
 | 	return pfn; | 
 | } | 
 |  | 
 | /* Update the number of anon and file isolated pages in the zone */ | 
 | static void acct_isolated(struct zone *zone, struct compact_control *cc) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int count[2] = { 0, }; | 
 |  | 
 | 	if (list_empty(&cc->migratepages)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(page, &cc->migratepages, lru) | 
 | 		count[!!page_is_file_cache(page)]++; | 
 |  | 
 | 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); | 
 | 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); | 
 | } | 
 |  | 
 | /* Similar to reclaim, but different enough that they don't share logic */ | 
 | static bool too_many_isolated(struct zone *zone) | 
 | { | 
 | 	unsigned long active, inactive, isolated; | 
 |  | 
 | 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) + | 
 | 					zone_page_state(zone, NR_INACTIVE_ANON); | 
 | 	active = zone_page_state(zone, NR_ACTIVE_FILE) + | 
 | 					zone_page_state(zone, NR_ACTIVE_ANON); | 
 | 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) + | 
 | 					zone_page_state(zone, NR_ISOLATED_ANON); | 
 |  | 
 | 	return isolated > (inactive + active) / 2; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_migratepages_block() - isolate all migrate-able pages within | 
 |  *				  a single pageblock | 
 |  * @cc:		Compaction control structure. | 
 |  * @low_pfn:	The first PFN to isolate | 
 |  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock | 
 |  * @isolate_mode: Isolation mode to be used. | 
 |  * | 
 |  * Isolate all pages that can be migrated from the range specified by | 
 |  * [low_pfn, end_pfn). The range is expected to be within same pageblock. | 
 |  * Returns zero if there is a fatal signal pending, otherwise PFN of the | 
 |  * first page that was not scanned (which may be both less, equal to or more | 
 |  * than end_pfn). | 
 |  * | 
 |  * The pages are isolated on cc->migratepages list (not required to be empty), | 
 |  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field | 
 |  * is neither read nor updated. | 
 |  */ | 
 | static unsigned long | 
 | isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, | 
 | 			unsigned long end_pfn, isolate_mode_t isolate_mode) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 | 	unsigned long nr_scanned = 0, nr_isolated = 0; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long flags = 0; | 
 | 	bool locked = false; | 
 | 	struct page *page = NULL, *valid_page = NULL; | 
 | 	unsigned long start_pfn = low_pfn; | 
 | 	bool skip_on_failure = false; | 
 | 	unsigned long next_skip_pfn = 0; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that there are not too many pages isolated from the LRU | 
 | 	 * list by either parallel reclaimers or compaction. If there are, | 
 | 	 * delay for some time until fewer pages are isolated | 
 | 	 */ | 
 | 	while (unlikely(too_many_isolated(zone))) { | 
 | 		/* async migration should just abort */ | 
 | 		if (cc->mode == MIGRATE_ASYNC) | 
 | 			return 0; | 
 |  | 
 | 		congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 |  | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (compact_should_abort(cc)) | 
 | 		return 0; | 
 |  | 
 | 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { | 
 | 		skip_on_failure = true; | 
 | 		next_skip_pfn = block_end_pfn(low_pfn, cc->order); | 
 | 	} | 
 |  | 
 | 	/* Time to isolate some pages for migration */ | 
 | 	for (; low_pfn < end_pfn; low_pfn++) { | 
 | 		bool is_lru; | 
 |  | 
 | 		if (skip_on_failure && low_pfn >= next_skip_pfn) { | 
 | 			/* | 
 | 			 * We have isolated all migration candidates in the | 
 | 			 * previous order-aligned block, and did not skip it due | 
 | 			 * to failure. We should migrate the pages now and | 
 | 			 * hopefully succeed compaction. | 
 | 			 */ | 
 | 			if (nr_isolated) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * We failed to isolate in the previous order-aligned | 
 | 			 * block. Set the new boundary to the end of the | 
 | 			 * current block. Note we can't simply increase | 
 | 			 * next_skip_pfn by 1 << order, as low_pfn might have | 
 | 			 * been incremented by a higher number due to skipping | 
 | 			 * a compound or a high-order buddy page in the | 
 | 			 * previous loop iteration. | 
 | 			 */ | 
 | 			next_skip_pfn = block_end_pfn(low_pfn, cc->order); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Periodically drop the lock (if held) regardless of its | 
 | 		 * contention, to give chance to IRQs. Abort async compaction | 
 | 		 * if contended. | 
 | 		 */ | 
 | 		if (!(low_pfn % SWAP_CLUSTER_MAX) | 
 | 		    && compact_unlock_should_abort(&zone->lru_lock, flags, | 
 | 								&locked, cc)) | 
 | 			break; | 
 |  | 
 | 		if (!pfn_valid_within(low_pfn)) | 
 | 			goto isolate_fail; | 
 | 		nr_scanned++; | 
 |  | 
 | 		page = pfn_to_page(low_pfn); | 
 |  | 
 | 		if (!valid_page) | 
 | 			valid_page = page; | 
 |  | 
 | 		/* | 
 | 		 * Skip if free. We read page order here without zone lock | 
 | 		 * which is generally unsafe, but the race window is small and | 
 | 		 * the worst thing that can happen is that we skip some | 
 | 		 * potential isolation targets. | 
 | 		 */ | 
 | 		if (PageBuddy(page)) { | 
 | 			unsigned long freepage_order = page_order_unsafe(page); | 
 |  | 
 | 			/* | 
 | 			 * Without lock, we cannot be sure that what we got is | 
 | 			 * a valid page order. Consider only values in the | 
 | 			 * valid order range to prevent low_pfn overflow. | 
 | 			 */ | 
 | 			if (freepage_order > 0 && freepage_order < MAX_ORDER) | 
 | 				low_pfn += (1UL << freepage_order) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check may be lockless but that's ok as we recheck later. | 
 | 		 * It's possible to migrate LRU pages and balloon pages | 
 | 		 * Skip any other type of page | 
 | 		 */ | 
 | 		is_lru = PageLRU(page); | 
 | 		if (!is_lru) { | 
 | 			if (unlikely(balloon_page_movable(page))) { | 
 | 				if (balloon_page_isolate(page)) { | 
 | 					/* Successfully isolated */ | 
 | 					goto isolate_success; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Regardless of being on LRU, compound pages such as THP and | 
 | 		 * hugetlbfs are not to be compacted. We can potentially save | 
 | 		 * a lot of iterations if we skip them at once. The check is | 
 | 		 * racy, but we can consider only valid values and the only | 
 | 		 * danger is skipping too much. | 
 | 		 */ | 
 | 		if (PageCompound(page)) { | 
 | 			unsigned int comp_order = compound_order(page); | 
 |  | 
 | 			if (likely(comp_order < MAX_ORDER)) | 
 | 				low_pfn += (1UL << comp_order) - 1; | 
 |  | 
 | 			goto isolate_fail; | 
 | 		} | 
 |  | 
 | 		if (!is_lru) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* | 
 | 		 * Migration will fail if an anonymous page is pinned in memory, | 
 | 		 * so avoid taking lru_lock and isolating it unnecessarily in an | 
 | 		 * admittedly racy check. | 
 | 		 */ | 
 | 		if (!page_mapping(page) && | 
 | 		    page_count(page) > page_mapcount(page)) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		/* If we already hold the lock, we can skip some rechecking */ | 
 | 		if (!locked) { | 
 | 			locked = compact_trylock_irqsave(&zone->lru_lock, | 
 | 								&flags, cc); | 
 | 			if (!locked) | 
 | 				break; | 
 |  | 
 | 			/* Recheck PageLRU and PageCompound under lock */ | 
 | 			if (!PageLRU(page)) | 
 | 				goto isolate_fail; | 
 |  | 
 | 			/* | 
 | 			 * Page become compound since the non-locked check, | 
 | 			 * and it's on LRU. It can only be a THP so the order | 
 | 			 * is safe to read and it's 0 for tail pages. | 
 | 			 */ | 
 | 			if (unlikely(PageCompound(page))) { | 
 | 				low_pfn += (1UL << compound_order(page)) - 1; | 
 | 				goto isolate_fail; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
 |  | 
 | 		/* Try isolate the page */ | 
 | 		if (__isolate_lru_page(page, isolate_mode) != 0) | 
 | 			goto isolate_fail; | 
 |  | 
 | 		VM_BUG_ON_PAGE(PageCompound(page), page); | 
 |  | 
 | 		/* Successfully isolated */ | 
 | 		del_page_from_lru_list(page, lruvec, page_lru(page)); | 
 |  | 
 | isolate_success: | 
 | 		list_add(&page->lru, &cc->migratepages); | 
 | 		cc->nr_migratepages++; | 
 | 		nr_isolated++; | 
 |  | 
 | 		/* | 
 | 		 * Record where we could have freed pages by migration and not | 
 | 		 * yet flushed them to buddy allocator. | 
 | 		 * - this is the lowest page that was isolated and likely be | 
 | 		 * then freed by migration. | 
 | 		 */ | 
 | 		if (!cc->last_migrated_pfn) | 
 | 			cc->last_migrated_pfn = low_pfn; | 
 |  | 
 | 		/* Avoid isolating too much */ | 
 | 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { | 
 | 			++low_pfn; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		continue; | 
 | isolate_fail: | 
 | 		if (!skip_on_failure) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We have isolated some pages, but then failed. Release them | 
 | 		 * instead of migrating, as we cannot form the cc->order buddy | 
 | 		 * page anyway. | 
 | 		 */ | 
 | 		if (nr_isolated) { | 
 | 			if (locked) { | 
 | 				spin_unlock_irqrestore(&zone->lru_lock,	flags); | 
 | 				locked = false; | 
 | 			} | 
 | 			acct_isolated(zone, cc); | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			cc->nr_migratepages = 0; | 
 | 			cc->last_migrated_pfn = 0; | 
 | 			nr_isolated = 0; | 
 | 		} | 
 |  | 
 | 		if (low_pfn < next_skip_pfn) { | 
 | 			low_pfn = next_skip_pfn - 1; | 
 | 			/* | 
 | 			 * The check near the loop beginning would have updated | 
 | 			 * next_skip_pfn too, but this is a bit simpler. | 
 | 			 */ | 
 | 			next_skip_pfn += 1UL << cc->order; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The PageBuddy() check could have potentially brought us outside | 
 | 	 * the range to be scanned. | 
 | 	 */ | 
 | 	if (unlikely(low_pfn > end_pfn)) | 
 | 		low_pfn = end_pfn; | 
 |  | 
 | 	if (locked) | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Update the pageblock-skip information and cached scanner pfn, | 
 | 	 * if the whole pageblock was scanned without isolating any page. | 
 | 	 */ | 
 | 	if (low_pfn == end_pfn) | 
 | 		update_pageblock_skip(cc, valid_page, nr_isolated, true); | 
 |  | 
 | 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, | 
 | 						nr_scanned, nr_isolated); | 
 |  | 
 | 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); | 
 | 	if (nr_isolated) | 
 | 		count_compact_events(COMPACTISOLATED, nr_isolated); | 
 |  | 
 | 	return low_pfn; | 
 | } | 
 |  | 
 | /** | 
 |  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range | 
 |  * @cc:        Compaction control structure. | 
 |  * @start_pfn: The first PFN to start isolating. | 
 |  * @end_pfn:   The one-past-last PFN. | 
 |  * | 
 |  * Returns zero if isolation fails fatally due to e.g. pending signal. | 
 |  * Otherwise, function returns one-past-the-last PFN of isolated page | 
 |  * (which may be greater than end_pfn if end fell in a middle of a THP page). | 
 |  */ | 
 | unsigned long | 
 | isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, | 
 | 							unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn, block_start_pfn, block_end_pfn; | 
 |  | 
 | 	/* Scan block by block. First and last block may be incomplete */ | 
 | 	pfn = start_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(pfn); | 
 | 	if (block_start_pfn < cc->zone->zone_start_pfn) | 
 | 		block_start_pfn = cc->zone->zone_start_pfn; | 
 | 	block_end_pfn = pageblock_end_pfn(pfn); | 
 |  | 
 | 	for (; pfn < end_pfn; pfn = block_end_pfn, | 
 | 				block_start_pfn = block_end_pfn, | 
 | 				block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, end_pfn); | 
 |  | 
 | 		if (!pageblock_pfn_to_page(block_start_pfn, | 
 | 					block_end_pfn, cc->zone)) | 
 | 			continue; | 
 |  | 
 | 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, | 
 | 							ISOLATE_UNEVICTABLE); | 
 |  | 
 | 		if (!pfn) | 
 | 			break; | 
 |  | 
 | 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) | 
 | 			break; | 
 | 	} | 
 | 	acct_isolated(cc->zone, cc); | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | #endif /* CONFIG_COMPACTION || CONFIG_CMA */ | 
 | #ifdef CONFIG_COMPACTION | 
 |  | 
 | /* Returns true if the page is within a block suitable for migration to */ | 
 | static bool suitable_migration_target(struct page *page) | 
 | { | 
 | 	/* If the page is a large free page, then disallow migration */ | 
 | 	if (PageBuddy(page)) { | 
 | 		/* | 
 | 		 * We are checking page_order without zone->lock taken. But | 
 | 		 * the only small danger is that we skip a potentially suitable | 
 | 		 * pageblock, so it's not worth to check order for valid range. | 
 | 		 */ | 
 | 		if (page_order_unsafe(page) >= pageblock_order) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ | 
 | 	if (migrate_async_suitable(get_pageblock_migratetype(page))) | 
 | 		return true; | 
 |  | 
 | 	/* Otherwise skip the block */ | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether the free scanner has reached the same or lower pageblock than | 
 |  * the migration scanner, and compaction should thus terminate. | 
 |  */ | 
 | static inline bool compact_scanners_met(struct compact_control *cc) | 
 | { | 
 | 	return (cc->free_pfn >> pageblock_order) | 
 | 		<= (cc->migrate_pfn >> pageblock_order); | 
 | } | 
 |  | 
 | /* | 
 |  * Based on information in the current compact_control, find blocks | 
 |  * suitable for isolating free pages from and then isolate them. | 
 |  */ | 
 | static void isolate_freepages(struct compact_control *cc) | 
 | { | 
 | 	struct zone *zone = cc->zone; | 
 | 	struct page *page; | 
 | 	unsigned long block_start_pfn;	/* start of current pageblock */ | 
 | 	unsigned long isolate_start_pfn; /* exact pfn we start at */ | 
 | 	unsigned long block_end_pfn;	/* end of current pageblock */ | 
 | 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */ | 
 | 	struct list_head *freelist = &cc->freepages; | 
 |  | 
 | 	/* | 
 | 	 * Initialise the free scanner. The starting point is where we last | 
 | 	 * successfully isolated from, zone-cached value, or the end of the | 
 | 	 * zone when isolating for the first time. For looping we also need | 
 | 	 * this pfn aligned down to the pageblock boundary, because we do | 
 | 	 * block_start_pfn -= pageblock_nr_pages in the for loop. | 
 | 	 * For ending point, take care when isolating in last pageblock of a | 
 | 	 * a zone which ends in the middle of a pageblock. | 
 | 	 * The low boundary is the end of the pageblock the migration scanner | 
 | 	 * is using. | 
 | 	 */ | 
 | 	isolate_start_pfn = cc->free_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(cc->free_pfn); | 
 | 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages, | 
 | 						zone_end_pfn(zone)); | 
 | 	low_pfn = pageblock_end_pfn(cc->migrate_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Isolate free pages until enough are available to migrate the | 
 | 	 * pages on cc->migratepages. We stop searching if the migrate | 
 | 	 * and free page scanners meet or enough free pages are isolated. | 
 | 	 */ | 
 | 	for (; block_start_pfn >= low_pfn; | 
 | 				block_end_pfn = block_start_pfn, | 
 | 				block_start_pfn -= pageblock_nr_pages, | 
 | 				isolate_start_pfn = block_start_pfn) { | 
 |  | 
 | 		/* | 
 | 		 * This can iterate a massively long zone without finding any | 
 | 		 * suitable migration targets, so periodically check if we need | 
 | 		 * to schedule, or even abort async compaction. | 
 | 		 */ | 
 | 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) | 
 | 						&& compact_should_abort(cc)) | 
 | 			break; | 
 |  | 
 | 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, | 
 | 									zone); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		/* Check the block is suitable for migration */ | 
 | 		if (!suitable_migration_target(page)) | 
 | 			continue; | 
 |  | 
 | 		/* If isolation recently failed, do not retry */ | 
 | 		if (!isolation_suitable(cc, page)) | 
 | 			continue; | 
 |  | 
 | 		/* Found a block suitable for isolating free pages from. */ | 
 | 		isolate_freepages_block(cc, &isolate_start_pfn, | 
 | 					block_end_pfn, freelist, false); | 
 |  | 
 | 		/* | 
 | 		 * If we isolated enough freepages, or aborted due to async | 
 | 		 * compaction being contended, terminate the loop. | 
 | 		 * Remember where the free scanner should restart next time, | 
 | 		 * which is where isolate_freepages_block() left off. | 
 | 		 * But if it scanned the whole pageblock, isolate_start_pfn | 
 | 		 * now points at block_end_pfn, which is the start of the next | 
 | 		 * pageblock. | 
 | 		 * In that case we will however want to restart at the start | 
 | 		 * of the previous pageblock. | 
 | 		 */ | 
 | 		if ((cc->nr_freepages >= cc->nr_migratepages) | 
 | 							|| cc->contended) { | 
 | 			if (isolate_start_pfn >= block_end_pfn) | 
 | 				isolate_start_pfn = | 
 | 					block_start_pfn - pageblock_nr_pages; | 
 | 			break; | 
 | 		} else { | 
 | 			/* | 
 | 			 * isolate_freepages_block() should not terminate | 
 | 			 * prematurely unless contended, or isolated enough | 
 | 			 */ | 
 | 			VM_BUG_ON(isolate_start_pfn < block_end_pfn); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* split_free_page does not map the pages */ | 
 | 	map_pages(freelist); | 
 |  | 
 | 	/* | 
 | 	 * Record where the free scanner will restart next time. Either we | 
 | 	 * broke from the loop and set isolate_start_pfn based on the last | 
 | 	 * call to isolate_freepages_block(), or we met the migration scanner | 
 | 	 * and the loop terminated due to isolate_start_pfn < low_pfn | 
 | 	 */ | 
 | 	cc->free_pfn = isolate_start_pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a migrate-callback that "allocates" freepages by taking pages | 
 |  * from the isolated freelists in the block we are migrating to. | 
 |  */ | 
 | static struct page *compaction_alloc(struct page *migratepage, | 
 | 					unsigned long data, | 
 | 					int **result) | 
 | { | 
 | 	struct compact_control *cc = (struct compact_control *)data; | 
 | 	struct page *freepage; | 
 |  | 
 | 	/* | 
 | 	 * Isolate free pages if necessary, and if we are not aborting due to | 
 | 	 * contention. | 
 | 	 */ | 
 | 	if (list_empty(&cc->freepages)) { | 
 | 		if (!cc->contended) | 
 | 			isolate_freepages(cc); | 
 |  | 
 | 		if (list_empty(&cc->freepages)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	freepage = list_entry(cc->freepages.next, struct page, lru); | 
 | 	list_del(&freepage->lru); | 
 | 	cc->nr_freepages--; | 
 |  | 
 | 	return freepage; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a migrate-callback that "frees" freepages back to the isolated | 
 |  * freelist.  All pages on the freelist are from the same zone, so there is no | 
 |  * special handling needed for NUMA. | 
 |  */ | 
 | static void compaction_free(struct page *page, unsigned long data) | 
 | { | 
 | 	struct compact_control *cc = (struct compact_control *)data; | 
 |  | 
 | 	list_add(&page->lru, &cc->freepages); | 
 | 	cc->nr_freepages++; | 
 | } | 
 |  | 
 | /* possible outcome of isolate_migratepages */ | 
 | typedef enum { | 
 | 	ISOLATE_ABORT,		/* Abort compaction now */ | 
 | 	ISOLATE_NONE,		/* No pages isolated, continue scanning */ | 
 | 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */ | 
 | } isolate_migrate_t; | 
 |  | 
 | /* | 
 |  * Allow userspace to control policy on scanning the unevictable LRU for | 
 |  * compactable pages. | 
 |  */ | 
 | int sysctl_compact_unevictable_allowed __read_mostly = 1; | 
 |  | 
 | /* | 
 |  * Isolate all pages that can be migrated from the first suitable block, | 
 |  * starting at the block pointed to by the migrate scanner pfn within | 
 |  * compact_control. | 
 |  */ | 
 | static isolate_migrate_t isolate_migratepages(struct zone *zone, | 
 | 					struct compact_control *cc) | 
 | { | 
 | 	unsigned long block_start_pfn; | 
 | 	unsigned long block_end_pfn; | 
 | 	unsigned long low_pfn; | 
 | 	struct page *page; | 
 | 	const isolate_mode_t isolate_mode = | 
 | 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | | 
 | 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); | 
 |  | 
 | 	/* | 
 | 	 * Start at where we last stopped, or beginning of the zone as | 
 | 	 * initialized by compact_zone() | 
 | 	 */ | 
 | 	low_pfn = cc->migrate_pfn; | 
 | 	block_start_pfn = pageblock_start_pfn(low_pfn); | 
 | 	if (block_start_pfn < zone->zone_start_pfn) | 
 | 		block_start_pfn = zone->zone_start_pfn; | 
 |  | 
 | 	/* Only scan within a pageblock boundary */ | 
 | 	block_end_pfn = pageblock_end_pfn(low_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Iterate over whole pageblocks until we find the first suitable. | 
 | 	 * Do not cross the free scanner. | 
 | 	 */ | 
 | 	for (; block_end_pfn <= cc->free_pfn; | 
 | 			low_pfn = block_end_pfn, | 
 | 			block_start_pfn = block_end_pfn, | 
 | 			block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		/* | 
 | 		 * This can potentially iterate a massively long zone with | 
 | 		 * many pageblocks unsuitable, so periodically check if we | 
 | 		 * need to schedule, or even abort async compaction. | 
 | 		 */ | 
 | 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) | 
 | 						&& compact_should_abort(cc)) | 
 | 			break; | 
 |  | 
 | 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, | 
 | 									zone); | 
 | 		if (!page) | 
 | 			continue; | 
 |  | 
 | 		/* If isolation recently failed, do not retry */ | 
 | 		if (!isolation_suitable(cc, page)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For async compaction, also only scan in MOVABLE blocks. | 
 | 		 * Async compaction is optimistic to see if the minimum amount | 
 | 		 * of work satisfies the allocation. | 
 | 		 */ | 
 | 		if (cc->mode == MIGRATE_ASYNC && | 
 | 		    !migrate_async_suitable(get_pageblock_migratetype(page))) | 
 | 			continue; | 
 |  | 
 | 		/* Perform the isolation */ | 
 | 		low_pfn = isolate_migratepages_block(cc, low_pfn, | 
 | 						block_end_pfn, isolate_mode); | 
 |  | 
 | 		if (!low_pfn || cc->contended) { | 
 | 			acct_isolated(zone, cc); | 
 | 			return ISOLATE_ABORT; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Either we isolated something and proceed with migration. Or | 
 | 		 * we failed and compact_zone should decide if we should | 
 | 		 * continue or not. | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	acct_isolated(zone, cc); | 
 | 	/* Record where migration scanner will be restarted. */ | 
 | 	cc->migrate_pfn = low_pfn; | 
 |  | 
 | 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; | 
 | } | 
 |  | 
 | /* | 
 |  * order == -1 is expected when compacting via | 
 |  * /proc/sys/vm/compact_memory | 
 |  */ | 
 | static inline bool is_via_compact_memory(int order) | 
 | { | 
 | 	return order == -1; | 
 | } | 
 |  | 
 | static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, | 
 | 			    const int migratetype) | 
 | { | 
 | 	unsigned int order; | 
 | 	unsigned long watermark; | 
 |  | 
 | 	if (cc->contended || fatal_signal_pending(current)) | 
 | 		return COMPACT_CONTENDED; | 
 |  | 
 | 	/* Compaction run completes if the migrate and free scanner meet */ | 
 | 	if (compact_scanners_met(cc)) { | 
 | 		/* Let the next compaction start anew. */ | 
 | 		reset_cached_positions(zone); | 
 |  | 
 | 		/* | 
 | 		 * Mark that the PG_migrate_skip information should be cleared | 
 | 		 * by kswapd when it goes to sleep. kcompactd does not set the | 
 | 		 * flag itself as the decision to be clear should be directly | 
 | 		 * based on an allocation request. | 
 | 		 */ | 
 | 		if (cc->direct_compaction) | 
 | 			zone->compact_blockskip_flush = true; | 
 |  | 
 | 		if (cc->whole_zone) | 
 | 			return COMPACT_COMPLETE; | 
 | 		else | 
 | 			return COMPACT_PARTIAL_SKIPPED; | 
 | 	} | 
 |  | 
 | 	if (is_via_compact_memory(cc->order)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	/* Compaction run is not finished if the watermark is not met */ | 
 | 	watermark = low_wmark_pages(zone); | 
 |  | 
 | 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, | 
 | 							cc->alloc_flags)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	/* Direct compactor: Is a suitable page free? */ | 
 | 	for (order = cc->order; order < MAX_ORDER; order++) { | 
 | 		struct free_area *area = &zone->free_area[order]; | 
 | 		bool can_steal; | 
 |  | 
 | 		/* Job done if page is free of the right migratetype */ | 
 | 		if (!list_empty(&area->free_list[migratetype])) | 
 | 			return COMPACT_PARTIAL; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ | 
 | 		if (migratetype == MIGRATE_MOVABLE && | 
 | 			!list_empty(&area->free_list[MIGRATE_CMA])) | 
 | 			return COMPACT_PARTIAL; | 
 | #endif | 
 | 		/* | 
 | 		 * Job done if allocation would steal freepages from | 
 | 		 * other migratetype buddy lists. | 
 | 		 */ | 
 | 		if (find_suitable_fallback(area, order, migratetype, | 
 | 						true, &can_steal) != -1) | 
 | 			return COMPACT_PARTIAL; | 
 | 	} | 
 |  | 
 | 	return COMPACT_NO_SUITABLE_PAGE; | 
 | } | 
 |  | 
 | static enum compact_result compact_finished(struct zone *zone, | 
 | 			struct compact_control *cc, | 
 | 			const int migratetype) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = __compact_finished(zone, cc, migratetype); | 
 | 	trace_mm_compaction_finished(zone, cc->order, ret); | 
 | 	if (ret == COMPACT_NO_SUITABLE_PAGE) | 
 | 		ret = COMPACT_CONTINUE; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * compaction_suitable: Is this suitable to run compaction on this zone now? | 
 |  * Returns | 
 |  *   COMPACT_SKIPPED  - If there are too few free pages for compaction | 
 |  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction | 
 |  *   COMPACT_CONTINUE - If compaction should run now | 
 |  */ | 
 | static enum compact_result __compaction_suitable(struct zone *zone, int order, | 
 | 					unsigned int alloc_flags, | 
 | 					int classzone_idx, | 
 | 					unsigned long wmark_target) | 
 | { | 
 | 	int fragindex; | 
 | 	unsigned long watermark; | 
 |  | 
 | 	if (is_via_compact_memory(order)) | 
 | 		return COMPACT_CONTINUE; | 
 |  | 
 | 	watermark = low_wmark_pages(zone); | 
 | 	/* | 
 | 	 * If watermarks for high-order allocation are already met, there | 
 | 	 * should be no need for compaction at all. | 
 | 	 */ | 
 | 	if (zone_watermark_ok(zone, order, watermark, classzone_idx, | 
 | 								alloc_flags)) | 
 | 		return COMPACT_PARTIAL; | 
 |  | 
 | 	/* | 
 | 	 * Watermarks for order-0 must be met for compaction. Note the 2UL. | 
 | 	 * This is because during migration, copies of pages need to be | 
 | 	 * allocated and for a short time, the footprint is higher | 
 | 	 */ | 
 | 	watermark += (2UL << order); | 
 | 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, | 
 | 				 alloc_flags, wmark_target)) | 
 | 		return COMPACT_SKIPPED; | 
 |  | 
 | 	/* | 
 | 	 * fragmentation index determines if allocation failures are due to | 
 | 	 * low memory or external fragmentation | 
 | 	 * | 
 | 	 * index of -1000 would imply allocations might succeed depending on | 
 | 	 * watermarks, but we already failed the high-order watermark check | 
 | 	 * index towards 0 implies failure is due to lack of memory | 
 | 	 * index towards 1000 implies failure is due to fragmentation | 
 | 	 * | 
 | 	 * Only compact if a failure would be due to fragmentation. | 
 | 	 */ | 
 | 	fragindex = fragmentation_index(zone, order); | 
 | 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) | 
 | 		return COMPACT_NOT_SUITABLE_ZONE; | 
 |  | 
 | 	return COMPACT_CONTINUE; | 
 | } | 
 |  | 
 | enum compact_result compaction_suitable(struct zone *zone, int order, | 
 | 					unsigned int alloc_flags, | 
 | 					int classzone_idx) | 
 | { | 
 | 	enum compact_result ret; | 
 |  | 
 | 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, | 
 | 				    zone_page_state(zone, NR_FREE_PAGES)); | 
 | 	trace_mm_compaction_suitable(zone, order, ret); | 
 | 	if (ret == COMPACT_NOT_SUITABLE_ZONE) | 
 | 		ret = COMPACT_SKIPPED; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool compaction_zonelist_suitable(struct alloc_context *ac, int order, | 
 | 		int alloc_flags) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	/* | 
 | 	 * Make sure at least one zone would pass __compaction_suitable if we continue | 
 | 	 * retrying the reclaim. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | 
 | 					ac->nodemask) { | 
 | 		unsigned long available; | 
 | 		enum compact_result compact_result; | 
 |  | 
 | 		/* | 
 | 		 * Do not consider all the reclaimable memory because we do not | 
 | 		 * want to trash just for a single high order allocation which | 
 | 		 * is even not guaranteed to appear even if __compaction_suitable | 
 | 		 * is happy about the watermark check. | 
 | 		 */ | 
 | 		available = zone_reclaimable_pages(zone) / order; | 
 | 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | 
 | 		compact_result = __compaction_suitable(zone, order, alloc_flags, | 
 | 				ac_classzone_idx(ac), available); | 
 | 		if (compact_result != COMPACT_SKIPPED && | 
 | 				compact_result != COMPACT_NOT_SUITABLE_ZONE) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) | 
 | { | 
 | 	enum compact_result ret; | 
 | 	unsigned long start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long end_pfn = zone_end_pfn(zone); | 
 | 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); | 
 | 	const bool sync = cc->mode != MIGRATE_ASYNC; | 
 |  | 
 | 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags, | 
 | 							cc->classzone_idx); | 
 | 	/* Compaction is likely to fail */ | 
 | 	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED) | 
 | 		return ret; | 
 |  | 
 | 	/* huh, compaction_suitable is returning something unexpected */ | 
 | 	VM_BUG_ON(ret != COMPACT_CONTINUE); | 
 |  | 
 | 	/* | 
 | 	 * Clear pageblock skip if there were failures recently and compaction | 
 | 	 * is about to be retried after being deferred. | 
 | 	 */ | 
 | 	if (compaction_restarting(zone, cc->order)) | 
 | 		__reset_isolation_suitable(zone); | 
 |  | 
 | 	/* | 
 | 	 * Setup to move all movable pages to the end of the zone. Used cached | 
 | 	 * information on where the scanners should start but check that it | 
 | 	 * is initialised by ensuring the values are within zone boundaries. | 
 | 	 */ | 
 | 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; | 
 | 	cc->free_pfn = zone->compact_cached_free_pfn; | 
 | 	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { | 
 | 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1); | 
 | 		zone->compact_cached_free_pfn = cc->free_pfn; | 
 | 	} | 
 | 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { | 
 | 		cc->migrate_pfn = start_pfn; | 
 | 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; | 
 | 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; | 
 | 	} | 
 |  | 
 | 	if (cc->migrate_pfn == start_pfn) | 
 | 		cc->whole_zone = true; | 
 |  | 
 | 	cc->last_migrated_pfn = 0; | 
 |  | 
 | 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, | 
 | 				cc->free_pfn, end_pfn, sync); | 
 |  | 
 | 	migrate_prep_local(); | 
 |  | 
 | 	while ((ret = compact_finished(zone, cc, migratetype)) == | 
 | 						COMPACT_CONTINUE) { | 
 | 		int err; | 
 |  | 
 | 		switch (isolate_migratepages(zone, cc)) { | 
 | 		case ISOLATE_ABORT: | 
 | 			ret = COMPACT_CONTENDED; | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			cc->nr_migratepages = 0; | 
 | 			goto out; | 
 | 		case ISOLATE_NONE: | 
 | 			/* | 
 | 			 * We haven't isolated and migrated anything, but | 
 | 			 * there might still be unflushed migrations from | 
 | 			 * previous cc->order aligned block. | 
 | 			 */ | 
 | 			goto check_drain; | 
 | 		case ISOLATE_SUCCESS: | 
 | 			; | 
 | 		} | 
 |  | 
 | 		err = migrate_pages(&cc->migratepages, compaction_alloc, | 
 | 				compaction_free, (unsigned long)cc, cc->mode, | 
 | 				MR_COMPACTION); | 
 |  | 
 | 		trace_mm_compaction_migratepages(cc->nr_migratepages, err, | 
 | 							&cc->migratepages); | 
 |  | 
 | 		/* All pages were either migrated or will be released */ | 
 | 		cc->nr_migratepages = 0; | 
 | 		if (err) { | 
 | 			putback_movable_pages(&cc->migratepages); | 
 | 			/* | 
 | 			 * migrate_pages() may return -ENOMEM when scanners meet | 
 | 			 * and we want compact_finished() to detect it | 
 | 			 */ | 
 | 			if (err == -ENOMEM && !compact_scanners_met(cc)) { | 
 | 				ret = COMPACT_CONTENDED; | 
 | 				goto out; | 
 | 			} | 
 | 			/* | 
 | 			 * We failed to migrate at least one page in the current | 
 | 			 * order-aligned block, so skip the rest of it. | 
 | 			 */ | 
 | 			if (cc->direct_compaction && | 
 | 						(cc->mode == MIGRATE_ASYNC)) { | 
 | 				cc->migrate_pfn = block_end_pfn( | 
 | 						cc->migrate_pfn - 1, cc->order); | 
 | 				/* Draining pcplists is useless in this case */ | 
 | 				cc->last_migrated_pfn = 0; | 
 |  | 
 | 			} | 
 | 		} | 
 |  | 
 | check_drain: | 
 | 		/* | 
 | 		 * Has the migration scanner moved away from the previous | 
 | 		 * cc->order aligned block where we migrated from? If yes, | 
 | 		 * flush the pages that were freed, so that they can merge and | 
 | 		 * compact_finished() can detect immediately if allocation | 
 | 		 * would succeed. | 
 | 		 */ | 
 | 		if (cc->order > 0 && cc->last_migrated_pfn) { | 
 | 			int cpu; | 
 | 			unsigned long current_block_start = | 
 | 				block_start_pfn(cc->migrate_pfn, cc->order); | 
 |  | 
 | 			if (cc->last_migrated_pfn < current_block_start) { | 
 | 				cpu = get_cpu(); | 
 | 				lru_add_drain_cpu(cpu); | 
 | 				drain_local_pages(zone); | 
 | 				put_cpu(); | 
 | 				/* No more flushing until we migrate again */ | 
 | 				cc->last_migrated_pfn = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * Release free pages and update where the free scanner should restart, | 
 | 	 * so we don't leave any returned pages behind in the next attempt. | 
 | 	 */ | 
 | 	if (cc->nr_freepages > 0) { | 
 | 		unsigned long free_pfn = release_freepages(&cc->freepages); | 
 |  | 
 | 		cc->nr_freepages = 0; | 
 | 		VM_BUG_ON(free_pfn == 0); | 
 | 		/* The cached pfn is always the first in a pageblock */ | 
 | 		free_pfn = pageblock_start_pfn(free_pfn); | 
 | 		/* | 
 | 		 * Only go back, not forward. The cached pfn might have been | 
 | 		 * already reset to zone end in compact_finished() | 
 | 		 */ | 
 | 		if (free_pfn > zone->compact_cached_free_pfn) | 
 | 			zone->compact_cached_free_pfn = free_pfn; | 
 | 	} | 
 |  | 
 | 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn, | 
 | 				cc->free_pfn, end_pfn, sync, ret); | 
 |  | 
 | 	if (ret == COMPACT_CONTENDED) | 
 | 		ret = COMPACT_PARTIAL; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static enum compact_result compact_zone_order(struct zone *zone, int order, | 
 | 		gfp_t gfp_mask, enum migrate_mode mode, int *contended, | 
 | 		unsigned int alloc_flags, int classzone_idx) | 
 | { | 
 | 	enum compact_result ret; | 
 | 	struct compact_control cc = { | 
 | 		.nr_freepages = 0, | 
 | 		.nr_migratepages = 0, | 
 | 		.order = order, | 
 | 		.gfp_mask = gfp_mask, | 
 | 		.zone = zone, | 
 | 		.mode = mode, | 
 | 		.alloc_flags = alloc_flags, | 
 | 		.classzone_idx = classzone_idx, | 
 | 		.direct_compaction = true, | 
 | 	}; | 
 | 	INIT_LIST_HEAD(&cc.freepages); | 
 | 	INIT_LIST_HEAD(&cc.migratepages); | 
 |  | 
 | 	ret = compact_zone(zone, &cc); | 
 |  | 
 | 	VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 	VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 |  | 
 | 	*contended = cc.contended; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sysctl_extfrag_threshold = 500; | 
 |  | 
 | /** | 
 |  * try_to_compact_pages - Direct compact to satisfy a high-order allocation | 
 |  * @gfp_mask: The GFP mask of the current allocation | 
 |  * @order: The order of the current allocation | 
 |  * @alloc_flags: The allocation flags of the current allocation | 
 |  * @ac: The context of current allocation | 
 |  * @mode: The migration mode for async, sync light, or sync migration | 
 |  * @contended: Return value that determines if compaction was aborted due to | 
 |  *	       need_resched() or lock contention | 
 |  * | 
 |  * This is the main entry point for direct page compaction. | 
 |  */ | 
 | enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, | 
 | 		unsigned int alloc_flags, const struct alloc_context *ac, | 
 | 		enum migrate_mode mode, int *contended) | 
 | { | 
 | 	int may_enter_fs = gfp_mask & __GFP_FS; | 
 | 	int may_perform_io = gfp_mask & __GFP_IO; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum compact_result rc = COMPACT_SKIPPED; | 
 | 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ | 
 |  | 
 | 	*contended = COMPACT_CONTENDED_NONE; | 
 |  | 
 | 	/* Check if the GFP flags allow compaction */ | 
 | 	if (!order || !may_enter_fs || !may_perform_io) | 
 | 		return COMPACT_SKIPPED; | 
 |  | 
 | 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); | 
 |  | 
 | 	/* Compact each zone in the list */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | 
 | 								ac->nodemask) { | 
 | 		enum compact_result status; | 
 | 		int zone_contended; | 
 |  | 
 | 		if (compaction_deferred(zone, order)) { | 
 | 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		status = compact_zone_order(zone, order, gfp_mask, mode, | 
 | 				&zone_contended, alloc_flags, | 
 | 				ac_classzone_idx(ac)); | 
 | 		rc = max(status, rc); | 
 | 		/* | 
 | 		 * It takes at least one zone that wasn't lock contended | 
 | 		 * to clear all_zones_contended. | 
 | 		 */ | 
 | 		all_zones_contended &= zone_contended; | 
 |  | 
 | 		/* If a normal allocation would succeed, stop compacting */ | 
 | 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), | 
 | 					ac_classzone_idx(ac), alloc_flags)) { | 
 | 			/* | 
 | 			 * We think the allocation will succeed in this zone, | 
 | 			 * but it is not certain, hence the false. The caller | 
 | 			 * will repeat this with true if allocation indeed | 
 | 			 * succeeds in this zone. | 
 | 			 */ | 
 | 			compaction_defer_reset(zone, order, false); | 
 | 			/* | 
 | 			 * It is possible that async compaction aborted due to | 
 | 			 * need_resched() and the watermarks were ok thanks to | 
 | 			 * somebody else freeing memory. The allocation can | 
 | 			 * however still fail so we better signal the | 
 | 			 * need_resched() contention anyway (this will not | 
 | 			 * prevent the allocation attempt). | 
 | 			 */ | 
 | 			if (zone_contended == COMPACT_CONTENDED_SCHED) | 
 | 				*contended = COMPACT_CONTENDED_SCHED; | 
 |  | 
 | 			goto break_loop; | 
 | 		} | 
 |  | 
 | 		if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE || | 
 | 					status == COMPACT_PARTIAL_SKIPPED)) { | 
 | 			/* | 
 | 			 * We think that allocation won't succeed in this zone | 
 | 			 * so we defer compaction there. If it ends up | 
 | 			 * succeeding after all, it will be reset. | 
 | 			 */ | 
 | 			defer_compaction(zone, order); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We might have stopped compacting due to need_resched() in | 
 | 		 * async compaction, or due to a fatal signal detected. In that | 
 | 		 * case do not try further zones and signal need_resched() | 
 | 		 * contention. | 
 | 		 */ | 
 | 		if ((zone_contended == COMPACT_CONTENDED_SCHED) | 
 | 					|| fatal_signal_pending(current)) { | 
 | 			*contended = COMPACT_CONTENDED_SCHED; | 
 | 			goto break_loop; | 
 | 		} | 
 |  | 
 | 		continue; | 
 | break_loop: | 
 | 		/* | 
 | 		 * We might not have tried all the zones, so  be conservative | 
 | 		 * and assume they are not all lock contended. | 
 | 		 */ | 
 | 		all_zones_contended = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If at least one zone wasn't deferred or skipped, we report if all | 
 | 	 * zones that were tried were lock contended. | 
 | 	 */ | 
 | 	if (rc > COMPACT_INACTIVE && all_zones_contended) | 
 | 		*contended = COMPACT_CONTENDED_LOCK; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | /* Compact all zones within a node */ | 
 | static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) | 
 | { | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
 |  | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		cc->nr_freepages = 0; | 
 | 		cc->nr_migratepages = 0; | 
 | 		cc->zone = zone; | 
 | 		INIT_LIST_HEAD(&cc->freepages); | 
 | 		INIT_LIST_HEAD(&cc->migratepages); | 
 |  | 
 | 		/* | 
 | 		 * When called via /proc/sys/vm/compact_memory | 
 | 		 * this makes sure we compact the whole zone regardless of | 
 | 		 * cached scanner positions. | 
 | 		 */ | 
 | 		if (is_via_compact_memory(cc->order)) | 
 | 			__reset_isolation_suitable(zone); | 
 |  | 
 | 		if (is_via_compact_memory(cc->order) || | 
 | 				!compaction_deferred(zone, cc->order)) | 
 | 			compact_zone(zone, cc); | 
 |  | 
 | 		VM_BUG_ON(!list_empty(&cc->freepages)); | 
 | 		VM_BUG_ON(!list_empty(&cc->migratepages)); | 
 |  | 
 | 		if (is_via_compact_memory(cc->order)) | 
 | 			continue; | 
 |  | 
 | 		if (zone_watermark_ok(zone, cc->order, | 
 | 				low_wmark_pages(zone), 0, 0)) | 
 | 			compaction_defer_reset(zone, cc->order, false); | 
 | 	} | 
 | } | 
 |  | 
 | void compact_pgdat(pg_data_t *pgdat, int order) | 
 | { | 
 | 	struct compact_control cc = { | 
 | 		.order = order, | 
 | 		.mode = MIGRATE_ASYNC, | 
 | 	}; | 
 |  | 
 | 	if (!order) | 
 | 		return; | 
 |  | 
 | 	__compact_pgdat(pgdat, &cc); | 
 | } | 
 |  | 
 | static void compact_node(int nid) | 
 | { | 
 | 	struct compact_control cc = { | 
 | 		.order = -1, | 
 | 		.mode = MIGRATE_SYNC, | 
 | 		.ignore_skip_hint = true, | 
 | 	}; | 
 |  | 
 | 	__compact_pgdat(NODE_DATA(nid), &cc); | 
 | } | 
 |  | 
 | /* Compact all nodes in the system */ | 
 | static void compact_nodes(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	/* Flush pending updates to the LRU lists */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	for_each_online_node(nid) | 
 | 		compact_node(nid); | 
 | } | 
 |  | 
 | /* The written value is actually unused, all memory is compacted */ | 
 | int sysctl_compact_memory; | 
 |  | 
 | /* | 
 |  * This is the entry point for compacting all nodes via | 
 |  * /proc/sys/vm/compact_memory | 
 |  */ | 
 | int sysctl_compaction_handler(struct ctl_table *table, int write, | 
 | 			void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	if (write) | 
 | 		compact_nodes(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sysctl_extfrag_handler(struct ctl_table *table, int write, | 
 | 			void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) | 
 | static ssize_t sysfs_compact_node(struct device *dev, | 
 | 			struct device_attribute *attr, | 
 | 			const char *buf, size_t count) | 
 | { | 
 | 	int nid = dev->id; | 
 |  | 
 | 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { | 
 | 		/* Flush pending updates to the LRU lists */ | 
 | 		lru_add_drain_all(); | 
 |  | 
 | 		compact_node(nid); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); | 
 |  | 
 | int compaction_register_node(struct node *node) | 
 | { | 
 | 	return device_create_file(&node->dev, &dev_attr_compact); | 
 | } | 
 |  | 
 | void compaction_unregister_node(struct node *node) | 
 | { | 
 | 	return device_remove_file(&node->dev, &dev_attr_compact); | 
 | } | 
 | #endif /* CONFIG_SYSFS && CONFIG_NUMA */ | 
 |  | 
 | static inline bool kcompactd_work_requested(pg_data_t *pgdat) | 
 | { | 
 | 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); | 
 | } | 
 |  | 
 | static bool kcompactd_node_suitable(pg_data_t *pgdat) | 
 | { | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; | 
 |  | 
 | 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 |  | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, | 
 | 					classzone_idx) == COMPACT_CONTINUE) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void kcompactd_do_work(pg_data_t *pgdat) | 
 | { | 
 | 	/* | 
 | 	 * With no special task, compact all zones so that a page of requested | 
 | 	 * order is allocatable. | 
 | 	 */ | 
 | 	int zoneid; | 
 | 	struct zone *zone; | 
 | 	struct compact_control cc = { | 
 | 		.order = pgdat->kcompactd_max_order, | 
 | 		.classzone_idx = pgdat->kcompactd_classzone_idx, | 
 | 		.mode = MIGRATE_SYNC_LIGHT, | 
 | 		.ignore_skip_hint = true, | 
 |  | 
 | 	}; | 
 | 	bool success = false; | 
 |  | 
 | 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, | 
 | 							cc.classzone_idx); | 
 | 	count_vm_event(KCOMPACTD_WAKE); | 
 |  | 
 | 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { | 
 | 		int status; | 
 |  | 
 | 		zone = &pgdat->node_zones[zoneid]; | 
 | 		if (!populated_zone(zone)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_deferred(zone, cc.order)) | 
 | 			continue; | 
 |  | 
 | 		if (compaction_suitable(zone, cc.order, 0, zoneid) != | 
 | 							COMPACT_CONTINUE) | 
 | 			continue; | 
 |  | 
 | 		cc.nr_freepages = 0; | 
 | 		cc.nr_migratepages = 0; | 
 | 		cc.zone = zone; | 
 | 		INIT_LIST_HEAD(&cc.freepages); | 
 | 		INIT_LIST_HEAD(&cc.migratepages); | 
 |  | 
 | 		if (kthread_should_stop()) | 
 | 			return; | 
 | 		status = compact_zone(zone, &cc); | 
 |  | 
 | 		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone), | 
 | 						cc.classzone_idx, 0)) { | 
 | 			success = true; | 
 | 			compaction_defer_reset(zone, cc.order, false); | 
 | 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { | 
 | 			/* | 
 | 			 * We use sync migration mode here, so we defer like | 
 | 			 * sync direct compaction does. | 
 | 			 */ | 
 | 			defer_compaction(zone, cc.order); | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON(!list_empty(&cc.freepages)); | 
 | 		VM_BUG_ON(!list_empty(&cc.migratepages)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Regardless of success, we are done until woken up next. But remember | 
 | 	 * the requested order/classzone_idx in case it was higher/tighter than | 
 | 	 * our current ones | 
 | 	 */ | 
 | 	if (pgdat->kcompactd_max_order <= cc.order) | 
 | 		pgdat->kcompactd_max_order = 0; | 
 | 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) | 
 | 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; | 
 | } | 
 |  | 
 | void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) | 
 | { | 
 | 	if (!order) | 
 | 		return; | 
 |  | 
 | 	if (pgdat->kcompactd_max_order < order) | 
 | 		pgdat->kcompactd_max_order = order; | 
 |  | 
 | 	if (pgdat->kcompactd_classzone_idx > classzone_idx) | 
 | 		pgdat->kcompactd_classzone_idx = classzone_idx; | 
 |  | 
 | 	if (!waitqueue_active(&pgdat->kcompactd_wait)) | 
 | 		return; | 
 |  | 
 | 	if (!kcompactd_node_suitable(pgdat)) | 
 | 		return; | 
 |  | 
 | 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, | 
 | 							classzone_idx); | 
 | 	wake_up_interruptible(&pgdat->kcompactd_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * The background compaction daemon, started as a kernel thread | 
 |  * from the init process. | 
 |  */ | 
 | static int kcompactd(void *p) | 
 | { | 
 | 	pg_data_t *pgdat = (pg_data_t*)p; | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
 |  | 
 | 	if (!cpumask_empty(cpumask)) | 
 | 		set_cpus_allowed_ptr(tsk, cpumask); | 
 |  | 
 | 	set_freezable(); | 
 |  | 
 | 	pgdat->kcompactd_max_order = 0; | 
 | 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id); | 
 | 		wait_event_freezable(pgdat->kcompactd_wait, | 
 | 				kcompactd_work_requested(pgdat)); | 
 |  | 
 | 		kcompactd_do_work(pgdat); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This kcompactd start function will be called by init and node-hot-add. | 
 |  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. | 
 |  */ | 
 | int kcompactd_run(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (pgdat->kcompactd) | 
 | 		return 0; | 
 |  | 
 | 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); | 
 | 	if (IS_ERR(pgdat->kcompactd)) { | 
 | 		pr_err("Failed to start kcompactd on node %d\n", nid); | 
 | 		ret = PTR_ERR(pgdat->kcompactd); | 
 | 		pgdat->kcompactd = NULL; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called by memory hotplug when all memory in a node is offlined. Caller must | 
 |  * hold mem_hotplug_begin/end(). | 
 |  */ | 
 | void kcompactd_stop(int nid) | 
 | { | 
 | 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; | 
 |  | 
 | 	if (kcompactd) { | 
 | 		kthread_stop(kcompactd); | 
 | 		NODE_DATA(nid)->kcompactd = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * It's optimal to keep kcompactd on the same CPUs as their memory, but | 
 |  * not required for correctness. So if the last cpu in a node goes | 
 |  * away, we get changed to run anywhere: as the first one comes back, | 
 |  * restore their cpu bindings. | 
 |  */ | 
 | static int cpu_callback(struct notifier_block *nfb, unsigned long action, | 
 | 			void *hcpu) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { | 
 | 		for_each_node_state(nid, N_MEMORY) { | 
 | 			pg_data_t *pgdat = NODE_DATA(nid); | 
 | 			const struct cpumask *mask; | 
 |  | 
 | 			mask = cpumask_of_node(pgdat->node_id); | 
 |  | 
 | 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | 
 | 				/* One of our CPUs online: restore mask */ | 
 | 				set_cpus_allowed_ptr(pgdat->kcompactd, mask); | 
 | 		} | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int __init kcompactd_init(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		kcompactd_run(nid); | 
 | 	hotcpu_notifier(cpu_callback, 0); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(kcompactd_init) | 
 |  | 
 | #endif /* CONFIG_COMPACTION */ |