|  | /* | 
|  | * fs/f2fs/segment.h | 
|  | * | 
|  | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
|  | *             http://www.samsung.com/ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/backing-dev.h> | 
|  |  | 
|  | /* constant macro */ | 
|  | #define NULL_SEGNO			((unsigned int)(~0)) | 
|  | #define NULL_SECNO			((unsigned int)(~0)) | 
|  |  | 
|  | #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */ | 
|  | #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */ | 
|  |  | 
|  | #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ | 
|  |  | 
|  | /* L: Logical segment # in volume, R: Relative segment # in main area */ | 
|  | #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno) | 
|  | #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno) | 
|  |  | 
|  | #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA) | 
|  | #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE) | 
|  |  | 
|  | #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) | 
|  | #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) | 
|  | #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) | 
|  |  | 
|  | #define IS_CURSEG(sbi, seg)						\ | 
|  | (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\ | 
|  | ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\ | 
|  | ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\ | 
|  | ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\ | 
|  | ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\ | 
|  | ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | 
|  |  | 
|  | #define IS_CURSEC(sbi, secno)						\ | 
|  | (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\ | 
|  | (sbi)->segs_per_sec) ||	\ | 
|  | ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\ | 
|  | (sbi)->segs_per_sec) ||	\ | 
|  | ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\ | 
|  | (sbi)->segs_per_sec) ||	\ | 
|  | ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\ | 
|  | (sbi)->segs_per_sec) ||	\ | 
|  | ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\ | 
|  | (sbi)->segs_per_sec) ||	\ | 
|  | ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\ | 
|  | (sbi)->segs_per_sec))	\ | 
|  |  | 
|  | #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr) | 
|  | #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr) | 
|  |  | 
|  | #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments) | 
|  | #define MAIN_SECS(sbi)	((sbi)->total_sections) | 
|  |  | 
|  | #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count) | 
|  | #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) | 
|  |  | 
|  | #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) | 
|  | #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\ | 
|  | (sbi)->log_blocks_per_seg)) | 
|  |  | 
|  | #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\ | 
|  | (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) | 
|  |  | 
|  | #define NEXT_FREE_BLKADDR(sbi, curseg)					\ | 
|  | (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) | 
|  |  | 
|  | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi)) | 
|  | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\ | 
|  | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) | 
|  | #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\ | 
|  | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) | 
|  |  | 
|  | #define GET_SEGNO(sbi, blk_addr)					\ | 
|  | ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ?	\ | 
|  | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\ | 
|  | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | 
|  | #define BLKS_PER_SEC(sbi)					\ | 
|  | ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) | 
|  | #define GET_SEC_FROM_SEG(sbi, segno)				\ | 
|  | ((segno) / (sbi)->segs_per_sec) | 
|  | #define GET_SEG_FROM_SEC(sbi, secno)				\ | 
|  | ((secno) * (sbi)->segs_per_sec) | 
|  | #define GET_ZONE_FROM_SEC(sbi, secno)				\ | 
|  | ((secno) / (sbi)->secs_per_zone) | 
|  | #define GET_ZONE_FROM_SEG(sbi, segno)				\ | 
|  | GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) | 
|  |  | 
|  | #define GET_SUM_BLOCK(sbi, segno)				\ | 
|  | ((sbi)->sm_info->ssa_blkaddr + (segno)) | 
|  |  | 
|  | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | 
|  | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) | 
|  |  | 
|  | #define SIT_ENTRY_OFFSET(sit_i, segno)					\ | 
|  | ((segno) % (sit_i)->sents_per_block) | 
|  | #define SIT_BLOCK_OFFSET(segno)					\ | 
|  | ((segno) / SIT_ENTRY_PER_BLOCK) | 
|  | #define	START_SEGNO(segno)		\ | 
|  | (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) | 
|  | #define SIT_BLK_CNT(sbi)			\ | 
|  | ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) | 
|  | #define f2fs_bitmap_size(nr)			\ | 
|  | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | 
|  |  | 
|  | #define SECTOR_FROM_BLOCK(blk_addr)					\ | 
|  | (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) | 
|  | #define SECTOR_TO_BLOCK(sectors)					\ | 
|  | ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) | 
|  |  | 
|  | /* | 
|  | * indicate a block allocation direction: RIGHT and LEFT. | 
|  | * RIGHT means allocating new sections towards the end of volume. | 
|  | * LEFT means the opposite direction. | 
|  | */ | 
|  | enum { | 
|  | ALLOC_RIGHT = 0, | 
|  | ALLOC_LEFT | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | 
|  | * LFS writes data sequentially with cleaning operations. | 
|  | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | 
|  | */ | 
|  | enum { | 
|  | LFS = 0, | 
|  | SSR | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | 
|  | * GC_CB is based on cost-benefit algorithm. | 
|  | * GC_GREEDY is based on greedy algorithm. | 
|  | */ | 
|  | enum { | 
|  | GC_CB = 0, | 
|  | GC_GREEDY, | 
|  | ALLOC_NEXT, | 
|  | FLUSH_DEVICE, | 
|  | MAX_GC_POLICY, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * BG_GC means the background cleaning job. | 
|  | * FG_GC means the on-demand cleaning job. | 
|  | * FORCE_FG_GC means on-demand cleaning job in background. | 
|  | */ | 
|  | enum { | 
|  | BG_GC = 0, | 
|  | FG_GC, | 
|  | FORCE_FG_GC, | 
|  | }; | 
|  |  | 
|  | /* for a function parameter to select a victim segment */ | 
|  | struct victim_sel_policy { | 
|  | int alloc_mode;			/* LFS or SSR */ | 
|  | int gc_mode;			/* GC_CB or GC_GREEDY */ | 
|  | unsigned long *dirty_segmap;	/* dirty segment bitmap */ | 
|  | unsigned int max_search;	/* maximum # of segments to search */ | 
|  | unsigned int offset;		/* last scanned bitmap offset */ | 
|  | unsigned int ofs_unit;		/* bitmap search unit */ | 
|  | unsigned int min_cost;		/* minimum cost */ | 
|  | unsigned int min_segno;		/* segment # having min. cost */ | 
|  | }; | 
|  |  | 
|  | struct seg_entry { | 
|  | unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */ | 
|  | unsigned int valid_blocks:10;	/* # of valid blocks */ | 
|  | unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */ | 
|  | unsigned int padding:6;		/* padding */ | 
|  | unsigned char *cur_valid_map;	/* validity bitmap of blocks */ | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */ | 
|  | #endif | 
|  | /* | 
|  | * # of valid blocks and the validity bitmap stored in the the last | 
|  | * checkpoint pack. This information is used by the SSR mode. | 
|  | */ | 
|  | unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */ | 
|  | unsigned char *discard_map; | 
|  | unsigned long long mtime;	/* modification time of the segment */ | 
|  | }; | 
|  |  | 
|  | struct sec_entry { | 
|  | unsigned int valid_blocks;	/* # of valid blocks in a section */ | 
|  | }; | 
|  |  | 
|  | struct segment_allocation { | 
|  | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * this value is set in page as a private data which indicate that | 
|  | * the page is atomically written, and it is in inmem_pages list. | 
|  | */ | 
|  | #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1) | 
|  | #define DUMMY_WRITTEN_PAGE		((unsigned long)-2) | 
|  |  | 
|  | #define IS_ATOMIC_WRITTEN_PAGE(page)			\ | 
|  | (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) | 
|  | #define IS_DUMMY_WRITTEN_PAGE(page)			\ | 
|  | (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) | 
|  |  | 
|  | struct inmem_pages { | 
|  | struct list_head list; | 
|  | struct page *page; | 
|  | block_t old_addr;		/* for revoking when fail to commit */ | 
|  | }; | 
|  |  | 
|  | struct sit_info { | 
|  | const struct segment_allocation *s_ops; | 
|  |  | 
|  | block_t sit_base_addr;		/* start block address of SIT area */ | 
|  | block_t sit_blocks;		/* # of blocks used by SIT area */ | 
|  | block_t written_valid_blocks;	/* # of valid blocks in main area */ | 
|  | char *sit_bitmap;		/* SIT bitmap pointer */ | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | char *sit_bitmap_mir;		/* SIT bitmap mirror */ | 
|  | #endif | 
|  | unsigned int bitmap_size;	/* SIT bitmap size */ | 
|  |  | 
|  | unsigned long *tmp_map;			/* bitmap for temporal use */ | 
|  | unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */ | 
|  | unsigned int dirty_sentries;		/* # of dirty sentries */ | 
|  | unsigned int sents_per_block;		/* # of SIT entries per block */ | 
|  | struct rw_semaphore sentry_lock;	/* to protect SIT cache */ | 
|  | struct seg_entry *sentries;		/* SIT segment-level cache */ | 
|  | struct sec_entry *sec_entries;		/* SIT section-level cache */ | 
|  |  | 
|  | /* for cost-benefit algorithm in cleaning procedure */ | 
|  | unsigned long long elapsed_time;	/* elapsed time after mount */ | 
|  | unsigned long long mounted_time;	/* mount time */ | 
|  | unsigned long long min_mtime;		/* min. modification time */ | 
|  | unsigned long long max_mtime;		/* max. modification time */ | 
|  |  | 
|  | unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ | 
|  | }; | 
|  |  | 
|  | struct free_segmap_info { | 
|  | unsigned int start_segno;	/* start segment number logically */ | 
|  | unsigned int free_segments;	/* # of free segments */ | 
|  | unsigned int free_sections;	/* # of free sections */ | 
|  | spinlock_t segmap_lock;		/* free segmap lock */ | 
|  | unsigned long *free_segmap;	/* free segment bitmap */ | 
|  | unsigned long *free_secmap;	/* free section bitmap */ | 
|  | }; | 
|  |  | 
|  | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | 
|  | enum dirty_type { | 
|  | DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */ | 
|  | DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */ | 
|  | DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */ | 
|  | DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */ | 
|  | DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */ | 
|  | DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */ | 
|  | DIRTY,			/* to count # of dirty segments */ | 
|  | PRE,			/* to count # of entirely obsolete segments */ | 
|  | NR_DIRTY_TYPE | 
|  | }; | 
|  |  | 
|  | struct dirty_seglist_info { | 
|  | const struct victim_selection *v_ops;	/* victim selction operation */ | 
|  | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | 
|  | struct mutex seglist_lock;		/* lock for segment bitmaps */ | 
|  | int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */ | 
|  | unsigned long *victim_secmap;		/* background GC victims */ | 
|  | }; | 
|  |  | 
|  | /* victim selection function for cleaning and SSR */ | 
|  | struct victim_selection { | 
|  | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | 
|  | int, int, char); | 
|  | }; | 
|  |  | 
|  | /* for active log information */ | 
|  | struct curseg_info { | 
|  | struct mutex curseg_mutex;		/* lock for consistency */ | 
|  | struct f2fs_summary_block *sum_blk;	/* cached summary block */ | 
|  | struct rw_semaphore journal_rwsem;	/* protect journal area */ | 
|  | struct f2fs_journal *journal;		/* cached journal info */ | 
|  | unsigned char alloc_type;		/* current allocation type */ | 
|  | unsigned int segno;			/* current segment number */ | 
|  | unsigned short next_blkoff;		/* next block offset to write */ | 
|  | unsigned int zone;			/* current zone number */ | 
|  | unsigned int next_segno;		/* preallocated segment */ | 
|  | }; | 
|  |  | 
|  | struct sit_entry_set { | 
|  | struct list_head set_list;	/* link with all sit sets */ | 
|  | unsigned int start_segno;	/* start segno of sits in set */ | 
|  | unsigned int entry_cnt;		/* the # of sit entries in set */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * inline functions | 
|  | */ | 
|  | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | 
|  | } | 
|  |  | 
|  | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | return &sit_i->sentries[segno]; | 
|  | } | 
|  |  | 
|  | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno, bool use_section) | 
|  | { | 
|  | /* | 
|  | * In order to get # of valid blocks in a section instantly from many | 
|  | * segments, f2fs manages two counting structures separately. | 
|  | */ | 
|  | if (use_section && sbi->segs_per_sec > 1) | 
|  | return get_sec_entry(sbi, segno)->valid_blocks; | 
|  | else | 
|  | return get_seg_entry(sbi, segno)->valid_blocks; | 
|  | } | 
|  |  | 
|  | static inline void seg_info_from_raw_sit(struct seg_entry *se, | 
|  | struct f2fs_sit_entry *rs) | 
|  | { | 
|  | se->valid_blocks = GET_SIT_VBLOCKS(rs); | 
|  | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | 
|  | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | 
|  | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | 
|  | #endif | 
|  | se->type = GET_SIT_TYPE(rs); | 
|  | se->mtime = le64_to_cpu(rs->mtime); | 
|  | } | 
|  |  | 
|  | static inline void seg_info_to_raw_sit(struct seg_entry *se, | 
|  | struct f2fs_sit_entry *rs) | 
|  | { | 
|  | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | 
|  | se->valid_blocks; | 
|  | rs->vblocks = cpu_to_le16(raw_vblocks); | 
|  | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | 
|  | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | 
|  | se->ckpt_valid_blocks = se->valid_blocks; | 
|  | rs->mtime = cpu_to_le64(se->mtime); | 
|  | } | 
|  |  | 
|  | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | 
|  | unsigned int max, unsigned int segno) | 
|  | { | 
|  | unsigned int ret; | 
|  | spin_lock(&free_i->segmap_lock); | 
|  | ret = find_next_bit(free_i->free_segmap, max, segno); | 
|  | spin_unlock(&free_i->segmap_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | 
|  | { | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); | 
|  | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); | 
|  | unsigned int next; | 
|  |  | 
|  | spin_lock(&free_i->segmap_lock); | 
|  | clear_bit(segno, free_i->free_segmap); | 
|  | free_i->free_segments++; | 
|  |  | 
|  | next = find_next_bit(free_i->free_segmap, | 
|  | start_segno + sbi->segs_per_sec, start_segno); | 
|  | if (next >= start_segno + sbi->segs_per_sec) { | 
|  | clear_bit(secno, free_i->free_secmap); | 
|  | free_i->free_sections++; | 
|  | } | 
|  | spin_unlock(&free_i->segmap_lock); | 
|  | } | 
|  |  | 
|  | static inline void __set_inuse(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); | 
|  |  | 
|  | set_bit(segno, free_i->free_segmap); | 
|  | free_i->free_segments--; | 
|  | if (!test_and_set_bit(secno, free_i->free_secmap)) | 
|  | free_i->free_sections--; | 
|  | } | 
|  |  | 
|  | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); | 
|  | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); | 
|  | unsigned int next; | 
|  |  | 
|  | spin_lock(&free_i->segmap_lock); | 
|  | if (test_and_clear_bit(segno, free_i->free_segmap)) { | 
|  | free_i->free_segments++; | 
|  |  | 
|  | next = find_next_bit(free_i->free_segmap, | 
|  | start_segno + sbi->segs_per_sec, start_segno); | 
|  | if (next >= start_segno + sbi->segs_per_sec) { | 
|  | if (test_and_clear_bit(secno, free_i->free_secmap)) | 
|  | free_i->free_sections++; | 
|  | } | 
|  | } | 
|  | spin_unlock(&free_i->segmap_lock); | 
|  | } | 
|  |  | 
|  | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno) | 
|  | { | 
|  | struct free_segmap_info *free_i = FREE_I(sbi); | 
|  | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); | 
|  |  | 
|  | spin_lock(&free_i->segmap_lock); | 
|  | if (!test_and_set_bit(segno, free_i->free_segmap)) { | 
|  | free_i->free_segments--; | 
|  | if (!test_and_set_bit(secno, free_i->free_secmap)) | 
|  | free_i->free_sections--; | 
|  | } | 
|  | spin_unlock(&free_i->segmap_lock); | 
|  | } | 
|  |  | 
|  | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | 
|  | void *dst_addr) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  |  | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, | 
|  | sit_i->bitmap_size)) | 
|  | f2fs_bug_on(sbi, 1); | 
|  | #endif | 
|  | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | 
|  | } | 
|  |  | 
|  | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return SIT_I(sbi)->written_valid_blocks; | 
|  | } | 
|  |  | 
|  | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return FREE_I(sbi)->free_segments; | 
|  | } | 
|  |  | 
|  | static inline int reserved_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return SM_I(sbi)->reserved_segments; | 
|  | } | 
|  |  | 
|  | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return FREE_I(sbi)->free_sections; | 
|  | } | 
|  |  | 
|  | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return DIRTY_I(sbi)->nr_dirty[PRE]; | 
|  | } | 
|  |  | 
|  | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | 
|  | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | 
|  | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | 
|  | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | 
|  | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | 
|  | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | 
|  | } | 
|  |  | 
|  | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return SM_I(sbi)->ovp_segments; | 
|  | } | 
|  |  | 
|  | static inline int reserved_sections(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); | 
|  | } | 
|  |  | 
|  | static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + | 
|  | get_pages(sbi, F2FS_DIRTY_DENTS); | 
|  | unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); | 
|  | unsigned int segno, left_blocks; | 
|  | int i; | 
|  |  | 
|  | /* check current node segment */ | 
|  | for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { | 
|  | segno = CURSEG_I(sbi, i)->segno; | 
|  | left_blocks = sbi->blocks_per_seg - | 
|  | get_seg_entry(sbi, segno)->ckpt_valid_blocks; | 
|  |  | 
|  | if (node_blocks > left_blocks) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* check current data segment */ | 
|  | segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; | 
|  | left_blocks = sbi->blocks_per_seg - | 
|  | get_seg_entry(sbi, segno)->ckpt_valid_blocks; | 
|  | if (dent_blocks > left_blocks) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, | 
|  | int freed, int needed) | 
|  | { | 
|  | int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); | 
|  | int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); | 
|  | int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); | 
|  |  | 
|  | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
|  | return false; | 
|  |  | 
|  | if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && | 
|  | has_curseg_enough_space(sbi)) | 
|  | return false; | 
|  | return (free_sections(sbi) + freed) <= | 
|  | (node_secs + 2 * dent_secs + imeta_secs + | 
|  | reserved_sections(sbi) + needed); | 
|  | } | 
|  |  | 
|  | static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; | 
|  | } | 
|  |  | 
|  | static inline int utilization(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return div_u64((u64)valid_user_blocks(sbi) * 100, | 
|  | sbi->user_block_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sometimes f2fs may be better to drop out-of-place update policy. | 
|  | * And, users can control the policy through sysfs entries. | 
|  | * There are five policies with triggering conditions as follows. | 
|  | * F2FS_IPU_FORCE - all the time, | 
|  | * F2FS_IPU_SSR - if SSR mode is activated, | 
|  | * F2FS_IPU_UTIL - if FS utilization is over threashold, | 
|  | * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over | 
|  | *                     threashold, | 
|  | * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash | 
|  | *                     storages. IPU will be triggered only if the # of dirty | 
|  | *                     pages over min_fsync_blocks. | 
|  | * F2FS_IPUT_DISABLE - disable IPU. (=default option) | 
|  | */ | 
|  | #define DEF_MIN_IPU_UTIL	70 | 
|  | #define DEF_MIN_FSYNC_BLOCKS	8 | 
|  | #define DEF_MIN_HOT_BLOCKS	16 | 
|  |  | 
|  | enum { | 
|  | F2FS_IPU_FORCE, | 
|  | F2FS_IPU_SSR, | 
|  | F2FS_IPU_UTIL, | 
|  | F2FS_IPU_SSR_UTIL, | 
|  | F2FS_IPU_FSYNC, | 
|  | F2FS_IPU_ASYNC, | 
|  | }; | 
|  |  | 
|  | static inline bool need_inplace_update_policy(struct inode *inode, | 
|  | struct f2fs_io_info *fio) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
|  | unsigned int policy = SM_I(sbi)->ipu_policy; | 
|  |  | 
|  | if (test_opt(sbi, LFS)) | 
|  | return false; | 
|  |  | 
|  | /* if this is cold file, we should overwrite to avoid fragmentation */ | 
|  | if (file_is_cold(inode)) | 
|  | return true; | 
|  |  | 
|  | if (policy & (0x1 << F2FS_IPU_FORCE)) | 
|  | return true; | 
|  | if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) | 
|  | return true; | 
|  | if (policy & (0x1 << F2FS_IPU_UTIL) && | 
|  | utilization(sbi) > SM_I(sbi)->min_ipu_util) | 
|  | return true; | 
|  | if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && | 
|  | utilization(sbi) > SM_I(sbi)->min_ipu_util) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * IPU for rewrite async pages | 
|  | */ | 
|  | if (policy & (0x1 << F2FS_IPU_ASYNC) && | 
|  | fio && fio->op == REQ_OP_WRITE && | 
|  | !(fio->op_flags & REQ_SYNC) && | 
|  | !f2fs_encrypted_inode(inode)) | 
|  | return true; | 
|  |  | 
|  | /* this is only set during fdatasync */ | 
|  | if (policy & (0x1 << F2FS_IPU_FSYNC) && | 
|  | is_inode_flag_set(inode, FI_NEED_IPU)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | 
|  | int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | return curseg->segno; | 
|  | } | 
|  |  | 
|  | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | 
|  | int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | return curseg->alloc_type; | 
|  | } | 
|  |  | 
|  | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, type); | 
|  | return curseg->next_blkoff; | 
|  | } | 
|  |  | 
|  | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) | 
|  | { | 
|  | f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); | 
|  | } | 
|  |  | 
|  | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | 
|  | { | 
|  | BUG_ON(blk_addr < SEG0_BLKADDR(sbi) | 
|  | || blk_addr >= MAX_BLKADDR(sbi)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Summary block is always treated as an invalid block | 
|  | */ | 
|  | static inline void check_block_count(struct f2fs_sb_info *sbi, | 
|  | int segno, struct f2fs_sit_entry *raw_sit) | 
|  | { | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false; | 
|  | int valid_blocks = 0; | 
|  | int cur_pos = 0, next_pos; | 
|  |  | 
|  | /* check bitmap with valid block count */ | 
|  | do { | 
|  | if (is_valid) { | 
|  | next_pos = find_next_zero_bit_le(&raw_sit->valid_map, | 
|  | sbi->blocks_per_seg, | 
|  | cur_pos); | 
|  | valid_blocks += next_pos - cur_pos; | 
|  | } else | 
|  | next_pos = find_next_bit_le(&raw_sit->valid_map, | 
|  | sbi->blocks_per_seg, | 
|  | cur_pos); | 
|  | cur_pos = next_pos; | 
|  | is_valid = !is_valid; | 
|  | } while (cur_pos < sbi->blocks_per_seg); | 
|  | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); | 
|  | #endif | 
|  | /* check segment usage, and check boundary of a given segment number */ | 
|  | f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg | 
|  | || segno > TOTAL_SEGS(sbi) - 1); | 
|  | } | 
|  |  | 
|  | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | 
|  | unsigned int start) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | unsigned int offset = SIT_BLOCK_OFFSET(start); | 
|  | block_t blk_addr = sit_i->sit_base_addr + offset; | 
|  |  | 
|  | check_seg_range(sbi, start); | 
|  |  | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | if (f2fs_test_bit(offset, sit_i->sit_bitmap) != | 
|  | f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) | 
|  | f2fs_bug_on(sbi, 1); | 
|  | #endif | 
|  |  | 
|  | /* calculate sit block address */ | 
|  | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | 
|  | blk_addr += sit_i->sit_blocks; | 
|  |  | 
|  | return blk_addr; | 
|  | } | 
|  |  | 
|  | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | 
|  | pgoff_t block_addr) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | block_addr -= sit_i->sit_base_addr; | 
|  | if (block_addr < sit_i->sit_blocks) | 
|  | block_addr += sit_i->sit_blocks; | 
|  | else | 
|  | block_addr -= sit_i->sit_blocks; | 
|  |  | 
|  | return block_addr + sit_i->sit_base_addr; | 
|  | } | 
|  |  | 
|  | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | 
|  | { | 
|  | unsigned int block_off = SIT_BLOCK_OFFSET(start); | 
|  |  | 
|  | f2fs_change_bit(block_off, sit_i->sit_bitmap); | 
|  | #ifdef CONFIG_F2FS_CHECK_FS | 
|  | f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct sit_info *sit_i = SIT_I(sbi); | 
|  | time64_t now = ktime_get_real_seconds(); | 
|  |  | 
|  | return sit_i->elapsed_time + now - sit_i->mounted_time; | 
|  | } | 
|  |  | 
|  | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | 
|  | unsigned int ofs_in_node, unsigned char version) | 
|  | { | 
|  | sum->nid = cpu_to_le32(nid); | 
|  | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | 
|  | sum->version = version; | 
|  | } | 
|  |  | 
|  | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | return __start_cp_addr(sbi) + | 
|  | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | 
|  | } | 
|  |  | 
|  | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | 
|  | { | 
|  | return __start_cp_addr(sbi) + | 
|  | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | 
|  | - (base + 1) + type; | 
|  | } | 
|  |  | 
|  | static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi, | 
|  | unsigned int secno) | 
|  | { | 
|  | if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) > | 
|  | sbi->fggc_threshold) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) | 
|  | { | 
|  | if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is very important to gather dirty pages and write at once, so that we can | 
|  | * submit a big bio without interfering other data writes. | 
|  | * By default, 512 pages for directory data, | 
|  | * 512 pages (2MB) * 8 for nodes, and | 
|  | * 256 pages * 8 for meta are set. | 
|  | */ | 
|  | static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) | 
|  | { | 
|  | if (sbi->sb->s_bdi->wb.dirty_exceeded) | 
|  | return 0; | 
|  |  | 
|  | if (type == DATA) | 
|  | return sbi->blocks_per_seg; | 
|  | else if (type == NODE) | 
|  | return 8 * sbi->blocks_per_seg; | 
|  | else if (type == META) | 
|  | return 8 * BIO_MAX_PAGES; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When writing pages, it'd better align nr_to_write for segment size. | 
|  | */ | 
|  | static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | long nr_to_write, desired; | 
|  |  | 
|  | if (wbc->sync_mode != WB_SYNC_NONE) | 
|  | return 0; | 
|  |  | 
|  | nr_to_write = wbc->nr_to_write; | 
|  | desired = BIO_MAX_PAGES; | 
|  | if (type == NODE) | 
|  | desired <<= 1; | 
|  |  | 
|  | wbc->nr_to_write = desired; | 
|  | return desired - nr_to_write; | 
|  | } | 
|  |  | 
|  | static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) | 
|  | { | 
|  | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
|  | bool wakeup = false; | 
|  | int i; | 
|  |  | 
|  | if (force) | 
|  | goto wake_up; | 
|  |  | 
|  | mutex_lock(&dcc->cmd_lock); | 
|  | for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { | 
|  | if (i + 1 < dcc->discard_granularity) | 
|  | break; | 
|  | if (!list_empty(&dcc->pend_list[i])) { | 
|  | wakeup = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&dcc->cmd_lock); | 
|  | if (!wakeup) | 
|  | return; | 
|  | wake_up: | 
|  | dcc->discard_wake = 1; | 
|  | wake_up_interruptible_all(&dcc->discard_wait_queue); | 
|  | } |