| /* | 
 |  * (C) Copyright Linus Torvalds 1999 | 
 |  * (C) Copyright Johannes Erdfelt 1999-2001 | 
 |  * (C) Copyright Andreas Gal 1999 | 
 |  * (C) Copyright Gregory P. Smith 1999 | 
 |  * (C) Copyright Deti Fliegl 1999 | 
 |  * (C) Copyright Randy Dunlap 2000 | 
 |  * (C) Copyright David Brownell 2000-2002 | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the | 
 |  * Free Software Foundation; either version 2 of the License, or (at your | 
 |  * option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/bcd.h> | 
 | #include <linux/module.h> | 
 | #include <linux/version.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/mm.h> | 
 | #include <asm/io.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mutex.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/unaligned.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/types.h> | 
 |  | 
 | #include <linux/usb.h> | 
 | #include <linux/usb/hcd.h> | 
 | #include <linux/usb/phy.h> | 
 |  | 
 | #include "usb.h" | 
 |  | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * USB Host Controller Driver framework | 
 |  * | 
 |  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing | 
 |  * HCD-specific behaviors/bugs. | 
 |  * | 
 |  * This does error checks, tracks devices and urbs, and delegates to a | 
 |  * "hc_driver" only for code (and data) that really needs to know about | 
 |  * hardware differences.  That includes root hub registers, i/o queues, | 
 |  * and so on ... but as little else as possible. | 
 |  * | 
 |  * Shared code includes most of the "root hub" code (these are emulated, | 
 |  * though each HC's hardware works differently) and PCI glue, plus request | 
 |  * tracking overhead.  The HCD code should only block on spinlocks or on | 
 |  * hardware handshaking; blocking on software events (such as other kernel | 
 |  * threads releasing resources, or completing actions) is all generic. | 
 |  * | 
 |  * Happens the USB 2.0 spec says this would be invisible inside the "USBD", | 
 |  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used | 
 |  * only by the hub driver ... and that neither should be seen or used by | 
 |  * usb client device drivers. | 
 |  * | 
 |  * Contributors of ideas or unattributed patches include: David Brownell, | 
 |  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... | 
 |  * | 
 |  * HISTORY: | 
 |  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some | 
 |  *		associated cleanup.  "usb_hcd" still != "usb_bus". | 
 |  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel. | 
 |  */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Keep track of which host controller drivers are loaded */ | 
 | unsigned long usb_hcds_loaded; | 
 | EXPORT_SYMBOL_GPL(usb_hcds_loaded); | 
 |  | 
 | /* host controllers we manage */ | 
 | LIST_HEAD (usb_bus_list); | 
 | EXPORT_SYMBOL_GPL (usb_bus_list); | 
 |  | 
 | /* used when allocating bus numbers */ | 
 | #define USB_MAXBUS		64 | 
 | static DECLARE_BITMAP(busmap, USB_MAXBUS); | 
 |  | 
 | /* used when updating list of hcds */ | 
 | DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */ | 
 | EXPORT_SYMBOL_GPL (usb_bus_list_lock); | 
 |  | 
 | /* used for controlling access to virtual root hubs */ | 
 | static DEFINE_SPINLOCK(hcd_root_hub_lock); | 
 |  | 
 | /* used when updating an endpoint's URB list */ | 
 | static DEFINE_SPINLOCK(hcd_urb_list_lock); | 
 |  | 
 | /* used to protect against unlinking URBs after the device is gone */ | 
 | static DEFINE_SPINLOCK(hcd_urb_unlink_lock); | 
 |  | 
 | /* wait queue for synchronous unlinks */ | 
 | DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); | 
 |  | 
 | static inline int is_root_hub(struct usb_device *udev) | 
 | { | 
 | 	return (udev->parent == NULL); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Sharable chunks of root hub code. | 
 |  */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 | #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) | 
 | #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) | 
 |  | 
 | /* usb 3.0 root hub device descriptor */ | 
 | static const u8 usb3_rh_dev_descriptor[18] = { | 
 | 	0x12,       /*  __u8  bLength; */ | 
 | 	0x01,       /*  __u8  bDescriptorType; Device */ | 
 | 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */ | 
 |  | 
 | 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
 | 	0x00,	    /*  __u8  bDeviceSubClass; */ | 
 | 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */ | 
 | 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */ | 
 |  | 
 | 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */ | 
 | 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */ | 
 | 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
 |  | 
 | 	0x03,       /*  __u8  iManufacturer; */ | 
 | 	0x02,       /*  __u8  iProduct; */ | 
 | 	0x01,       /*  __u8  iSerialNumber; */ | 
 | 	0x01        /*  __u8  bNumConfigurations; */ | 
 | }; | 
 |  | 
 | /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ | 
 | static const u8 usb25_rh_dev_descriptor[18] = { | 
 | 	0x12,       /*  __u8  bLength; */ | 
 | 	0x01,       /*  __u8  bDescriptorType; Device */ | 
 | 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */ | 
 |  | 
 | 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
 | 	0x00,	    /*  __u8  bDeviceSubClass; */ | 
 | 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */ | 
 | 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ | 
 |  | 
 | 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */ | 
 | 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */ | 
 | 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
 |  | 
 | 	0x03,       /*  __u8  iManufacturer; */ | 
 | 	0x02,       /*  __u8  iProduct; */ | 
 | 	0x01,       /*  __u8  iSerialNumber; */ | 
 | 	0x01        /*  __u8  bNumConfigurations; */ | 
 | }; | 
 |  | 
 | /* usb 2.0 root hub device descriptor */ | 
 | static const u8 usb2_rh_dev_descriptor[18] = { | 
 | 	0x12,       /*  __u8  bLength; */ | 
 | 	0x01,       /*  __u8  bDescriptorType; Device */ | 
 | 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */ | 
 |  | 
 | 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
 | 	0x00,	    /*  __u8  bDeviceSubClass; */ | 
 | 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */ | 
 | 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */ | 
 |  | 
 | 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */ | 
 | 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */ | 
 | 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
 |  | 
 | 	0x03,       /*  __u8  iManufacturer; */ | 
 | 	0x02,       /*  __u8  iProduct; */ | 
 | 	0x01,       /*  __u8  iSerialNumber; */ | 
 | 	0x01        /*  __u8  bNumConfigurations; */ | 
 | }; | 
 |  | 
 | /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ | 
 |  | 
 | /* usb 1.1 root hub device descriptor */ | 
 | static const u8 usb11_rh_dev_descriptor[18] = { | 
 | 	0x12,       /*  __u8  bLength; */ | 
 | 	0x01,       /*  __u8  bDescriptorType; Device */ | 
 | 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */ | 
 |  | 
 | 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */ | 
 | 	0x00,	    /*  __u8  bDeviceSubClass; */ | 
 | 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */ | 
 | 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */ | 
 |  | 
 | 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */ | 
 | 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */ | 
 | 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */ | 
 |  | 
 | 	0x03,       /*  __u8  iManufacturer; */ | 
 | 	0x02,       /*  __u8  iProduct; */ | 
 | 	0x01,       /*  __u8  iSerialNumber; */ | 
 | 	0x01        /*  __u8  bNumConfigurations; */ | 
 | }; | 
 |  | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Configuration descriptors for our root hubs */ | 
 |  | 
 | static const u8 fs_rh_config_descriptor[] = { | 
 |  | 
 | 	/* one configuration */ | 
 | 	0x09,       /*  __u8  bLength; */ | 
 | 	0x02,       /*  __u8  bDescriptorType; Configuration */ | 
 | 	0x19, 0x00, /*  __le16 wTotalLength; */ | 
 | 	0x01,       /*  __u8  bNumInterfaces; (1) */ | 
 | 	0x01,       /*  __u8  bConfigurationValue; */ | 
 | 	0x00,       /*  __u8  iConfiguration; */ | 
 | 	0xc0,       /*  __u8  bmAttributes; | 
 | 				 Bit 7: must be set, | 
 | 				     6: Self-powered, | 
 | 				     5: Remote wakeup, | 
 | 				     4..0: resvd */ | 
 | 	0x00,       /*  __u8  MaxPower; */ | 
 |  | 
 | 	/* USB 1.1: | 
 | 	 * USB 2.0, single TT organization (mandatory): | 
 | 	 *	one interface, protocol 0 | 
 | 	 * | 
 | 	 * USB 2.0, multiple TT organization (optional): | 
 | 	 *	two interfaces, protocols 1 (like single TT) | 
 | 	 *	and 2 (multiple TT mode) ... config is | 
 | 	 *	sometimes settable | 
 | 	 *	NOT IMPLEMENTED | 
 | 	 */ | 
 |  | 
 | 	/* one interface */ | 
 | 	0x09,       /*  __u8  if_bLength; */ | 
 | 	0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
 | 	0x00,       /*  __u8  if_bInterfaceNumber; */ | 
 | 	0x00,       /*  __u8  if_bAlternateSetting; */ | 
 | 	0x01,       /*  __u8  if_bNumEndpoints; */ | 
 | 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
 | 	0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
 | 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */ | 
 | 	0x00,       /*  __u8  if_iInterface; */ | 
 |  | 
 | 	/* one endpoint (status change endpoint) */ | 
 | 	0x07,       /*  __u8  ep_bLength; */ | 
 | 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
 | 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
 | 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
 | 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ | 
 | 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */ | 
 | }; | 
 |  | 
 | static const u8 hs_rh_config_descriptor[] = { | 
 |  | 
 | 	/* one configuration */ | 
 | 	0x09,       /*  __u8  bLength; */ | 
 | 	0x02,       /*  __u8  bDescriptorType; Configuration */ | 
 | 	0x19, 0x00, /*  __le16 wTotalLength; */ | 
 | 	0x01,       /*  __u8  bNumInterfaces; (1) */ | 
 | 	0x01,       /*  __u8  bConfigurationValue; */ | 
 | 	0x00,       /*  __u8  iConfiguration; */ | 
 | 	0xc0,       /*  __u8  bmAttributes; | 
 | 				 Bit 7: must be set, | 
 | 				     6: Self-powered, | 
 | 				     5: Remote wakeup, | 
 | 				     4..0: resvd */ | 
 | 	0x00,       /*  __u8  MaxPower; */ | 
 |  | 
 | 	/* USB 1.1: | 
 | 	 * USB 2.0, single TT organization (mandatory): | 
 | 	 *	one interface, protocol 0 | 
 | 	 * | 
 | 	 * USB 2.0, multiple TT organization (optional): | 
 | 	 *	two interfaces, protocols 1 (like single TT) | 
 | 	 *	and 2 (multiple TT mode) ... config is | 
 | 	 *	sometimes settable | 
 | 	 *	NOT IMPLEMENTED | 
 | 	 */ | 
 |  | 
 | 	/* one interface */ | 
 | 	0x09,       /*  __u8  if_bLength; */ | 
 | 	0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
 | 	0x00,       /*  __u8  if_bInterfaceNumber; */ | 
 | 	0x00,       /*  __u8  if_bAlternateSetting; */ | 
 | 	0x01,       /*  __u8  if_bNumEndpoints; */ | 
 | 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
 | 	0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
 | 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */ | 
 | 	0x00,       /*  __u8  if_iInterface; */ | 
 |  | 
 | 	/* one endpoint (status change endpoint) */ | 
 | 	0x07,       /*  __u8  ep_bLength; */ | 
 | 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
 | 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
 | 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
 | 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) | 
 | 		     * see hub.c:hub_configure() for details. */ | 
 | 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00, | 
 | 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */ | 
 | }; | 
 |  | 
 | static const u8 ss_rh_config_descriptor[] = { | 
 | 	/* one configuration */ | 
 | 	0x09,       /*  __u8  bLength; */ | 
 | 	0x02,       /*  __u8  bDescriptorType; Configuration */ | 
 | 	0x1f, 0x00, /*  __le16 wTotalLength; */ | 
 | 	0x01,       /*  __u8  bNumInterfaces; (1) */ | 
 | 	0x01,       /*  __u8  bConfigurationValue; */ | 
 | 	0x00,       /*  __u8  iConfiguration; */ | 
 | 	0xc0,       /*  __u8  bmAttributes; | 
 | 				 Bit 7: must be set, | 
 | 				     6: Self-powered, | 
 | 				     5: Remote wakeup, | 
 | 				     4..0: resvd */ | 
 | 	0x00,       /*  __u8  MaxPower; */ | 
 |  | 
 | 	/* one interface */ | 
 | 	0x09,       /*  __u8  if_bLength; */ | 
 | 	0x04,       /*  __u8  if_bDescriptorType; Interface */ | 
 | 	0x00,       /*  __u8  if_bInterfaceNumber; */ | 
 | 	0x00,       /*  __u8  if_bAlternateSetting; */ | 
 | 	0x01,       /*  __u8  if_bNumEndpoints; */ | 
 | 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */ | 
 | 	0x00,       /*  __u8  if_bInterfaceSubClass; */ | 
 | 	0x00,       /*  __u8  if_bInterfaceProtocol; */ | 
 | 	0x00,       /*  __u8  if_iInterface; */ | 
 |  | 
 | 	/* one endpoint (status change endpoint) */ | 
 | 	0x07,       /*  __u8  ep_bLength; */ | 
 | 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */ | 
 | 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */ | 
 | 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */ | 
 | 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) | 
 | 		     * see hub.c:hub_configure() for details. */ | 
 | 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00, | 
 | 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */ | 
 |  | 
 | 	/* one SuperSpeed endpoint companion descriptor */ | 
 | 	0x06,        /* __u8 ss_bLength */ | 
 | 	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ | 
 | 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ | 
 | 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */ | 
 | 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ | 
 | }; | 
 |  | 
 | /* authorized_default behaviour: | 
 |  * -1 is authorized for all devices except wireless (old behaviour) | 
 |  * 0 is unauthorized for all devices | 
 |  * 1 is authorized for all devices | 
 |  */ | 
 | static int authorized_default = -1; | 
 | module_param(authorized_default, int, S_IRUGO|S_IWUSR); | 
 | MODULE_PARM_DESC(authorized_default, | 
 | 		"Default USB device authorization: 0 is not authorized, 1 is " | 
 | 		"authorized, -1 is authorized except for wireless USB (default, " | 
 | 		"old behaviour"); | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors | 
 |  * @s: Null-terminated ASCII (actually ISO-8859-1) string | 
 |  * @buf: Buffer for USB string descriptor (header + UTF-16LE) | 
 |  * @len: Length (in bytes; may be odd) of descriptor buffer. | 
 |  * | 
 |  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, | 
 |  * whichever is less. | 
 |  * | 
 |  * Note: | 
 |  * USB String descriptors can contain at most 126 characters; input | 
 |  * strings longer than that are truncated. | 
 |  */ | 
 | static unsigned | 
 | ascii2desc(char const *s, u8 *buf, unsigned len) | 
 | { | 
 | 	unsigned n, t = 2 + 2*strlen(s); | 
 |  | 
 | 	if (t > 254) | 
 | 		t = 254;	/* Longest possible UTF string descriptor */ | 
 | 	if (len > t) | 
 | 		len = t; | 
 |  | 
 | 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */ | 
 |  | 
 | 	n = len; | 
 | 	while (n--) { | 
 | 		*buf++ = t; | 
 | 		if (!n--) | 
 | 			break; | 
 | 		*buf++ = t >> 8; | 
 | 		t = (unsigned char)*s++; | 
 | 	} | 
 | 	return len; | 
 | } | 
 |  | 
 | /** | 
 |  * rh_string() - provides string descriptors for root hub | 
 |  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) | 
 |  * @hcd: the host controller for this root hub | 
 |  * @data: buffer for output packet | 
 |  * @len: length of the provided buffer | 
 |  * | 
 |  * Produces either a manufacturer, product or serial number string for the | 
 |  * virtual root hub device. | 
 |  * | 
 |  * Return: The number of bytes filled in: the length of the descriptor or | 
 |  * of the provided buffer, whichever is less. | 
 |  */ | 
 | static unsigned | 
 | rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) | 
 | { | 
 | 	char buf[100]; | 
 | 	char const *s; | 
 | 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; | 
 |  | 
 | 	/* language ids */ | 
 | 	switch (id) { | 
 | 	case 0: | 
 | 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ | 
 | 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ | 
 | 		if (len > 4) | 
 | 			len = 4; | 
 | 		memcpy(data, langids, len); | 
 | 		return len; | 
 | 	case 1: | 
 | 		/* Serial number */ | 
 | 		s = hcd->self.bus_name; | 
 | 		break; | 
 | 	case 2: | 
 | 		/* Product name */ | 
 | 		s = hcd->product_desc; | 
 | 		break; | 
 | 	case 3: | 
 | 		/* Manufacturer */ | 
 | 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, | 
 | 			init_utsname()->release, hcd->driver->description); | 
 | 		s = buf; | 
 | 		break; | 
 | 	default: | 
 | 		/* Can't happen; caller guarantees it */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return ascii2desc(s, data, len); | 
 | } | 
 |  | 
 |  | 
 | /* Root hub control transfers execute synchronously */ | 
 | static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	struct usb_ctrlrequest *cmd; | 
 | 	u16		typeReq, wValue, wIndex, wLength; | 
 | 	u8		*ubuf = urb->transfer_buffer; | 
 | 	unsigned	len = 0; | 
 | 	int		status; | 
 | 	u8		patch_wakeup = 0; | 
 | 	u8		patch_protocol = 0; | 
 | 	u16		tbuf_size; | 
 | 	u8		*tbuf = NULL; | 
 | 	const u8	*bufp; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&hcd_root_hub_lock); | 
 | 	status = usb_hcd_link_urb_to_ep(hcd, urb); | 
 | 	spin_unlock_irq(&hcd_root_hub_lock); | 
 | 	if (status) | 
 | 		return status; | 
 | 	urb->hcpriv = hcd;	/* Indicate it's queued */ | 
 |  | 
 | 	cmd = (struct usb_ctrlrequest *) urb->setup_packet; | 
 | 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest; | 
 | 	wValue   = le16_to_cpu (cmd->wValue); | 
 | 	wIndex   = le16_to_cpu (cmd->wIndex); | 
 | 	wLength  = le16_to_cpu (cmd->wLength); | 
 |  | 
 | 	if (wLength > urb->transfer_buffer_length) | 
 | 		goto error; | 
 |  | 
 | 	/* | 
 | 	 * tbuf should be at least as big as the | 
 | 	 * USB hub descriptor. | 
 | 	 */ | 
 | 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength); | 
 | 	tbuf = kzalloc(tbuf_size, GFP_KERNEL); | 
 | 	if (!tbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bufp = tbuf; | 
 |  | 
 |  | 
 | 	urb->actual_length = 0; | 
 | 	switch (typeReq) { | 
 |  | 
 | 	/* DEVICE REQUESTS */ | 
 |  | 
 | 	/* The root hub's remote wakeup enable bit is implemented using | 
 | 	 * driver model wakeup flags.  If this system supports wakeup | 
 | 	 * through USB, userspace may change the default "allow wakeup" | 
 | 	 * policy through sysfs or these calls. | 
 | 	 * | 
 | 	 * Most root hubs support wakeup from downstream devices, for | 
 | 	 * runtime power management (disabling USB clocks and reducing | 
 | 	 * VBUS power usage).  However, not all of them do so; silicon, | 
 | 	 * board, and BIOS bugs here are not uncommon, so these can't | 
 | 	 * be treated quite like external hubs. | 
 | 	 * | 
 | 	 * Likewise, not all root hubs will pass wakeup events upstream, | 
 | 	 * to wake up the whole system.  So don't assume root hub and | 
 | 	 * controller capabilities are identical. | 
 | 	 */ | 
 |  | 
 | 	case DeviceRequest | USB_REQ_GET_STATUS: | 
 | 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) | 
 | 					<< USB_DEVICE_REMOTE_WAKEUP) | 
 | 				| (1 << USB_DEVICE_SELF_POWERED); | 
 | 		tbuf[1] = 0; | 
 | 		len = 2; | 
 | 		break; | 
 | 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: | 
 | 		if (wValue == USB_DEVICE_REMOTE_WAKEUP) | 
 | 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); | 
 | 		else | 
 | 			goto error; | 
 | 		break; | 
 | 	case DeviceOutRequest | USB_REQ_SET_FEATURE: | 
 | 		if (device_can_wakeup(&hcd->self.root_hub->dev) | 
 | 				&& wValue == USB_DEVICE_REMOTE_WAKEUP) | 
 | 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); | 
 | 		else | 
 | 			goto error; | 
 | 		break; | 
 | 	case DeviceRequest | USB_REQ_GET_CONFIGURATION: | 
 | 		tbuf[0] = 1; | 
 | 		len = 1; | 
 | 			/* FALLTHROUGH */ | 
 | 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: | 
 | 		break; | 
 | 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR: | 
 | 		switch (wValue & 0xff00) { | 
 | 		case USB_DT_DEVICE << 8: | 
 | 			switch (hcd->speed) { | 
 | 			case HCD_USB3: | 
 | 				bufp = usb3_rh_dev_descriptor; | 
 | 				break; | 
 | 			case HCD_USB25: | 
 | 				bufp = usb25_rh_dev_descriptor; | 
 | 				break; | 
 | 			case HCD_USB2: | 
 | 				bufp = usb2_rh_dev_descriptor; | 
 | 				break; | 
 | 			case HCD_USB11: | 
 | 				bufp = usb11_rh_dev_descriptor; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			len = 18; | 
 | 			if (hcd->has_tt) | 
 | 				patch_protocol = 1; | 
 | 			break; | 
 | 		case USB_DT_CONFIG << 8: | 
 | 			switch (hcd->speed) { | 
 | 			case HCD_USB3: | 
 | 				bufp = ss_rh_config_descriptor; | 
 | 				len = sizeof ss_rh_config_descriptor; | 
 | 				break; | 
 | 			case HCD_USB25: | 
 | 			case HCD_USB2: | 
 | 				bufp = hs_rh_config_descriptor; | 
 | 				len = sizeof hs_rh_config_descriptor; | 
 | 				break; | 
 | 			case HCD_USB11: | 
 | 				bufp = fs_rh_config_descriptor; | 
 | 				len = sizeof fs_rh_config_descriptor; | 
 | 				break; | 
 | 			default: | 
 | 				goto error; | 
 | 			} | 
 | 			if (device_can_wakeup(&hcd->self.root_hub->dev)) | 
 | 				patch_wakeup = 1; | 
 | 			break; | 
 | 		case USB_DT_STRING << 8: | 
 | 			if ((wValue & 0xff) < 4) | 
 | 				urb->actual_length = rh_string(wValue & 0xff, | 
 | 						hcd, ubuf, wLength); | 
 | 			else /* unsupported IDs --> "protocol stall" */ | 
 | 				goto error; | 
 | 			break; | 
 | 		case USB_DT_BOS << 8: | 
 | 			goto nongeneric; | 
 | 		default: | 
 | 			goto error; | 
 | 		} | 
 | 		break; | 
 | 	case DeviceRequest | USB_REQ_GET_INTERFACE: | 
 | 		tbuf[0] = 0; | 
 | 		len = 1; | 
 | 			/* FALLTHROUGH */ | 
 | 	case DeviceOutRequest | USB_REQ_SET_INTERFACE: | 
 | 		break; | 
 | 	case DeviceOutRequest | USB_REQ_SET_ADDRESS: | 
 | 		/* wValue == urb->dev->devaddr */ | 
 | 		dev_dbg (hcd->self.controller, "root hub device address %d\n", | 
 | 			wValue); | 
 | 		break; | 
 |  | 
 | 	/* INTERFACE REQUESTS (no defined feature/status flags) */ | 
 |  | 
 | 	/* ENDPOINT REQUESTS */ | 
 |  | 
 | 	case EndpointRequest | USB_REQ_GET_STATUS: | 
 | 		/* ENDPOINT_HALT flag */ | 
 | 		tbuf[0] = 0; | 
 | 		tbuf[1] = 0; | 
 | 		len = 2; | 
 | 			/* FALLTHROUGH */ | 
 | 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: | 
 | 	case EndpointOutRequest | USB_REQ_SET_FEATURE: | 
 | 		dev_dbg (hcd->self.controller, "no endpoint features yet\n"); | 
 | 		break; | 
 |  | 
 | 	/* CLASS REQUESTS (and errors) */ | 
 |  | 
 | 	default: | 
 | nongeneric: | 
 | 		/* non-generic request */ | 
 | 		switch (typeReq) { | 
 | 		case GetHubStatus: | 
 | 		case GetPortStatus: | 
 | 			len = 4; | 
 | 			break; | 
 | 		case GetHubDescriptor: | 
 | 			len = sizeof (struct usb_hub_descriptor); | 
 | 			break; | 
 | 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR: | 
 | 			/* len is returned by hub_control */ | 
 | 			break; | 
 | 		} | 
 | 		status = hcd->driver->hub_control (hcd, | 
 | 			typeReq, wValue, wIndex, | 
 | 			tbuf, wLength); | 
 |  | 
 | 		if (typeReq == GetHubDescriptor) | 
 | 			usb_hub_adjust_deviceremovable(hcd->self.root_hub, | 
 | 				(struct usb_hub_descriptor *)tbuf); | 
 | 		break; | 
 | error: | 
 | 		/* "protocol stall" on error */ | 
 | 		status = -EPIPE; | 
 | 	} | 
 |  | 
 | 	if (status < 0) { | 
 | 		len = 0; | 
 | 		if (status != -EPIPE) { | 
 | 			dev_dbg (hcd->self.controller, | 
 | 				"CTRL: TypeReq=0x%x val=0x%x " | 
 | 				"idx=0x%x len=%d ==> %d\n", | 
 | 				typeReq, wValue, wIndex, | 
 | 				wLength, status); | 
 | 		} | 
 | 	} else if (status > 0) { | 
 | 		/* hub_control may return the length of data copied. */ | 
 | 		len = status; | 
 | 		status = 0; | 
 | 	} | 
 | 	if (len) { | 
 | 		if (urb->transfer_buffer_length < len) | 
 | 			len = urb->transfer_buffer_length; | 
 | 		urb->actual_length = len; | 
 | 		/* always USB_DIR_IN, toward host */ | 
 | 		memcpy (ubuf, bufp, len); | 
 |  | 
 | 		/* report whether RH hardware supports remote wakeup */ | 
 | 		if (patch_wakeup && | 
 | 				len > offsetof (struct usb_config_descriptor, | 
 | 						bmAttributes)) | 
 | 			((struct usb_config_descriptor *)ubuf)->bmAttributes | 
 | 				|= USB_CONFIG_ATT_WAKEUP; | 
 |  | 
 | 		/* report whether RH hardware has an integrated TT */ | 
 | 		if (patch_protocol && | 
 | 				len > offsetof(struct usb_device_descriptor, | 
 | 						bDeviceProtocol)) | 
 | 			((struct usb_device_descriptor *) ubuf)-> | 
 | 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; | 
 | 	} | 
 |  | 
 | 	kfree(tbuf); | 
 |  | 
 | 	/* any errors get returned through the urb completion */ | 
 | 	spin_lock_irq(&hcd_root_hub_lock); | 
 | 	usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 	usb_hcd_giveback_urb(hcd, urb, status); | 
 | 	spin_unlock_irq(&hcd_root_hub_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Root Hub interrupt transfers are polled using a timer if the | 
 |  * driver requests it; otherwise the driver is responsible for | 
 |  * calling usb_hcd_poll_rh_status() when an event occurs. | 
 |  * | 
 |  * Completions are called in_interrupt(), but they may or may not | 
 |  * be in_irq(). | 
 |  */ | 
 | void usb_hcd_poll_rh_status(struct usb_hcd *hcd) | 
 | { | 
 | 	struct urb	*urb; | 
 | 	int		length; | 
 | 	unsigned long	flags; | 
 | 	char		buffer[6];	/* Any root hubs with > 31 ports? */ | 
 |  | 
 | 	if (unlikely(!hcd->rh_pollable)) | 
 | 		return; | 
 | 	if (!hcd->uses_new_polling && !hcd->status_urb) | 
 | 		return; | 
 |  | 
 | 	length = hcd->driver->hub_status_data(hcd, buffer); | 
 | 	if (length > 0) { | 
 |  | 
 | 		/* try to complete the status urb */ | 
 | 		spin_lock_irqsave(&hcd_root_hub_lock, flags); | 
 | 		urb = hcd->status_urb; | 
 | 		if (urb) { | 
 | 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); | 
 | 			hcd->status_urb = NULL; | 
 | 			urb->actual_length = length; | 
 | 			memcpy(urb->transfer_buffer, buffer, length); | 
 |  | 
 | 			usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 			usb_hcd_giveback_urb(hcd, urb, 0); | 
 | 		} else { | 
 | 			length = 0; | 
 | 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't | 
 | 	 * exceed that limit if HZ is 100. The math is more clunky than | 
 | 	 * maybe expected, this is to make sure that all timers for USB devices | 
 | 	 * fire at the same time to give the CPU a break in between */ | 
 | 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : | 
 | 			(length == 0 && hcd->status_urb != NULL)) | 
 | 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); | 
 |  | 
 | /* timer callback */ | 
 | static void rh_timer_func (unsigned long _hcd) | 
 | { | 
 | 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	int		retval; | 
 | 	unsigned long	flags; | 
 | 	unsigned	len = 1 + (urb->dev->maxchild / 8); | 
 |  | 
 | 	spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
 | 	if (hcd->status_urb || urb->transfer_buffer_length < len) { | 
 | 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); | 
 | 		retval = -EINVAL; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	retval = usb_hcd_link_urb_to_ep(hcd, urb); | 
 | 	if (retval) | 
 | 		goto done; | 
 |  | 
 | 	hcd->status_urb = urb; | 
 | 	urb->hcpriv = hcd;	/* indicate it's queued */ | 
 | 	if (!hcd->uses_new_polling) | 
 | 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); | 
 |  | 
 | 	/* If a status change has already occurred, report it ASAP */ | 
 | 	else if (HCD_POLL_PENDING(hcd)) | 
 | 		mod_timer(&hcd->rh_timer, jiffies); | 
 | 	retval = 0; | 
 |  done: | 
 | 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	if (usb_endpoint_xfer_int(&urb->ep->desc)) | 
 | 		return rh_queue_status (hcd, urb); | 
 | 	if (usb_endpoint_xfer_control(&urb->ep->desc)) | 
 | 		return rh_call_control (hcd, urb); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Unlinks of root-hub control URBs are legal, but they don't do anything | 
 |  * since these URBs always execute synchronously. | 
 |  */ | 
 | static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	unsigned long	flags; | 
 | 	int		rc; | 
 |  | 
 | 	spin_lock_irqsave(&hcd_root_hub_lock, flags); | 
 | 	rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
 | 	if (rc) | 
 | 		goto done; | 
 |  | 
 | 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */ | 
 | 		;	/* Do nothing */ | 
 |  | 
 | 	} else {				/* Status URB */ | 
 | 		if (!hcd->uses_new_polling) | 
 | 			del_timer (&hcd->rh_timer); | 
 | 		if (urb == hcd->status_urb) { | 
 | 			hcd->status_urb = NULL; | 
 | 			usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | 			usb_hcd_giveback_urb(hcd, urb, status); | 
 | 		} | 
 | 	} | 
 |  done: | 
 | 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * Show & store the current value of authorized_default | 
 |  */ | 
 | static ssize_t authorized_default_show(struct device *dev, | 
 | 				       struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct usb_device *rh_usb_dev = to_usb_device(dev); | 
 | 	struct usb_bus *usb_bus = rh_usb_dev->bus; | 
 | 	struct usb_hcd *usb_hcd; | 
 |  | 
 | 	usb_hcd = bus_to_hcd(usb_bus); | 
 | 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); | 
 | } | 
 |  | 
 | static ssize_t authorized_default_store(struct device *dev, | 
 | 					struct device_attribute *attr, | 
 | 					const char *buf, size_t size) | 
 | { | 
 | 	ssize_t result; | 
 | 	unsigned val; | 
 | 	struct usb_device *rh_usb_dev = to_usb_device(dev); | 
 | 	struct usb_bus *usb_bus = rh_usb_dev->bus; | 
 | 	struct usb_hcd *usb_hcd; | 
 |  | 
 | 	usb_hcd = bus_to_hcd(usb_bus); | 
 | 	result = sscanf(buf, "%u\n", &val); | 
 | 	if (result == 1) { | 
 | 		usb_hcd->authorized_default = val ? 1 : 0; | 
 | 		result = size; | 
 | 	} else { | 
 | 		result = -EINVAL; | 
 | 	} | 
 | 	return result; | 
 | } | 
 | static DEVICE_ATTR_RW(authorized_default); | 
 |  | 
 | /* Group all the USB bus attributes */ | 
 | static struct attribute *usb_bus_attrs[] = { | 
 | 		&dev_attr_authorized_default.attr, | 
 | 		NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group usb_bus_attr_group = { | 
 | 	.name = NULL,	/* we want them in the same directory */ | 
 | 	.attrs = usb_bus_attrs, | 
 | }; | 
 |  | 
 |  | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_bus_init - shared initialization code | 
 |  * @bus: the bus structure being initialized | 
 |  * | 
 |  * This code is used to initialize a usb_bus structure, memory for which is | 
 |  * separately managed. | 
 |  */ | 
 | static void usb_bus_init (struct usb_bus *bus) | 
 | { | 
 | 	memset (&bus->devmap, 0, sizeof(struct usb_devmap)); | 
 |  | 
 | 	bus->devnum_next = 1; | 
 |  | 
 | 	bus->root_hub = NULL; | 
 | 	bus->busnum = -1; | 
 | 	bus->bandwidth_allocated = 0; | 
 | 	bus->bandwidth_int_reqs  = 0; | 
 | 	bus->bandwidth_isoc_reqs = 0; | 
 | 	mutex_init(&bus->usb_address0_mutex); | 
 |  | 
 | 	INIT_LIST_HEAD (&bus->bus_list); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_register_bus - registers the USB host controller with the usb core | 
 |  * @bus: pointer to the bus to register | 
 |  * Context: !in_interrupt() | 
 |  * | 
 |  * Assigns a bus number, and links the controller into usbcore data | 
 |  * structures so that it can be seen by scanning the bus list. | 
 |  * | 
 |  * Return: 0 if successful. A negative error code otherwise. | 
 |  */ | 
 | static int usb_register_bus(struct usb_bus *bus) | 
 | { | 
 | 	int result = -E2BIG; | 
 | 	int busnum; | 
 |  | 
 | 	mutex_lock(&usb_bus_list_lock); | 
 | 	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); | 
 | 	if (busnum >= USB_MAXBUS) { | 
 | 		printk (KERN_ERR "%s: too many buses\n", usbcore_name); | 
 | 		goto error_find_busnum; | 
 | 	} | 
 | 	set_bit(busnum, busmap); | 
 | 	bus->busnum = busnum; | 
 |  | 
 | 	/* Add it to the local list of buses */ | 
 | 	list_add (&bus->bus_list, &usb_bus_list); | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 |  | 
 | 	usb_notify_add_bus(bus); | 
 |  | 
 | 	dev_info (bus->controller, "new USB bus registered, assigned bus " | 
 | 		  "number %d\n", bus->busnum); | 
 | 	return 0; | 
 |  | 
 | error_find_busnum: | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 | 	return result; | 
 | } | 
 |  | 
 | /** | 
 |  * usb_deregister_bus - deregisters the USB host controller | 
 |  * @bus: pointer to the bus to deregister | 
 |  * Context: !in_interrupt() | 
 |  * | 
 |  * Recycles the bus number, and unlinks the controller from usbcore data | 
 |  * structures so that it won't be seen by scanning the bus list. | 
 |  */ | 
 | static void usb_deregister_bus (struct usb_bus *bus) | 
 | { | 
 | 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: make sure that all the devices are removed by the | 
 | 	 * controller code, as well as having it call this when cleaning | 
 | 	 * itself up | 
 | 	 */ | 
 | 	mutex_lock(&usb_bus_list_lock); | 
 | 	list_del (&bus->bus_list); | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 |  | 
 | 	usb_notify_remove_bus(bus); | 
 |  | 
 | 	clear_bit(bus->busnum, busmap); | 
 | } | 
 |  | 
 | /** | 
 |  * register_root_hub - called by usb_add_hcd() to register a root hub | 
 |  * @hcd: host controller for this root hub | 
 |  * | 
 |  * This function registers the root hub with the USB subsystem.  It sets up | 
 |  * the device properly in the device tree and then calls usb_new_device() | 
 |  * to register the usb device.  It also assigns the root hub's USB address | 
 |  * (always 1). | 
 |  * | 
 |  * Return: 0 if successful. A negative error code otherwise. | 
 |  */ | 
 | static int register_root_hub(struct usb_hcd *hcd) | 
 | { | 
 | 	struct device *parent_dev = hcd->self.controller; | 
 | 	struct usb_device *usb_dev = hcd->self.root_hub; | 
 | 	const int devnum = 1; | 
 | 	int retval; | 
 |  | 
 | 	usb_dev->devnum = devnum; | 
 | 	usb_dev->bus->devnum_next = devnum + 1; | 
 | 	memset (&usb_dev->bus->devmap.devicemap, 0, | 
 | 			sizeof usb_dev->bus->devmap.devicemap); | 
 | 	set_bit (devnum, usb_dev->bus->devmap.devicemap); | 
 | 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS); | 
 |  | 
 | 	mutex_lock(&usb_bus_list_lock); | 
 |  | 
 | 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); | 
 | 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); | 
 | 	if (retval != sizeof usb_dev->descriptor) { | 
 | 		mutex_unlock(&usb_bus_list_lock); | 
 | 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n", | 
 | 				dev_name(&usb_dev->dev), retval); | 
 | 		return (retval < 0) ? retval : -EMSGSIZE; | 
 | 	} | 
 | 	if (usb_dev->speed == USB_SPEED_SUPER) { | 
 | 		retval = usb_get_bos_descriptor(usb_dev); | 
 | 		if (retval < 0) { | 
 | 			mutex_unlock(&usb_bus_list_lock); | 
 | 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", | 
 | 					dev_name(&usb_dev->dev), retval); | 
 | 			return retval; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	retval = usb_new_device (usb_dev); | 
 | 	if (retval) { | 
 | 		dev_err (parent_dev, "can't register root hub for %s, %d\n", | 
 | 				dev_name(&usb_dev->dev), retval); | 
 | 	} else { | 
 | 		spin_lock_irq (&hcd_root_hub_lock); | 
 | 		hcd->rh_registered = 1; | 
 | 		spin_unlock_irq (&hcd_root_hub_lock); | 
 |  | 
 | 		/* Did the HC die before the root hub was registered? */ | 
 | 		if (HCD_DEAD(hcd)) | 
 | 			usb_hc_died (hcd);	/* This time clean up */ | 
 | 	} | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal | 
 |  * @bus: the bus which the root hub belongs to | 
 |  * @portnum: the port which is being resumed | 
 |  * | 
 |  * HCDs should call this function when they know that a resume signal is | 
 |  * being sent to a root-hub port.  The root hub will be prevented from | 
 |  * going into autosuspend until usb_hcd_end_port_resume() is called. | 
 |  * | 
 |  * The bus's private lock must be held by the caller. | 
 |  */ | 
 | void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) | 
 | { | 
 | 	unsigned bit = 1 << portnum; | 
 |  | 
 | 	if (!(bus->resuming_ports & bit)) { | 
 | 		bus->resuming_ports |= bit; | 
 | 		pm_runtime_get_noresume(&bus->root_hub->dev); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); | 
 |  | 
 | /* | 
 |  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal | 
 |  * @bus: the bus which the root hub belongs to | 
 |  * @portnum: the port which is being resumed | 
 |  * | 
 |  * HCDs should call this function when they know that a resume signal has | 
 |  * stopped being sent to a root-hub port.  The root hub will be allowed to | 
 |  * autosuspend again. | 
 |  * | 
 |  * The bus's private lock must be held by the caller. | 
 |  */ | 
 | void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) | 
 | { | 
 | 	unsigned bit = 1 << portnum; | 
 |  | 
 | 	if (bus->resuming_ports & bit) { | 
 | 		bus->resuming_ports &= ~bit; | 
 | 		pm_runtime_put_noidle(&bus->root_hub->dev); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds | 
 |  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} | 
 |  * @is_input: true iff the transaction sends data to the host | 
 |  * @isoc: true for isochronous transactions, false for interrupt ones | 
 |  * @bytecount: how many bytes in the transaction. | 
 |  * | 
 |  * Return: Approximate bus time in nanoseconds for a periodic transaction. | 
 |  * | 
 |  * Note: | 
 |  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be | 
 |  * scheduled in software, this function is only used for such scheduling. | 
 |  */ | 
 | long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) | 
 | { | 
 | 	unsigned long	tmp; | 
 |  | 
 | 	switch (speed) { | 
 | 	case USB_SPEED_LOW: 	/* INTR only */ | 
 | 		if (is_input) { | 
 | 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
 | 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; | 
 | 		} else { | 
 | 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
 | 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; | 
 | 		} | 
 | 	case USB_SPEED_FULL:	/* ISOC or INTR */ | 
 | 		if (isoc) { | 
 | 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
 | 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; | 
 | 		} else { | 
 | 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; | 
 | 			return 9107L + BW_HOST_DELAY + tmp; | 
 | 		} | 
 | 	case USB_SPEED_HIGH:	/* ISOC or INTR */ | 
 | 		/* FIXME adjust for input vs output */ | 
 | 		if (isoc) | 
 | 			tmp = HS_NSECS_ISO (bytecount); | 
 | 		else | 
 | 			tmp = HS_NSECS (bytecount); | 
 | 		return tmp; | 
 | 	default: | 
 | 		pr_debug ("%s: bogus device speed!\n", usbcore_name); | 
 | 		return -1; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_calc_bus_time); | 
 |  | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Generic HC operations. | 
 |  */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue | 
 |  * @hcd: host controller to which @urb was submitted | 
 |  * @urb: URB being submitted | 
 |  * | 
 |  * Host controller drivers should call this routine in their enqueue() | 
 |  * method.  The HCD's private spinlock must be held and interrupts must | 
 |  * be disabled.  The actions carried out here are required for URB | 
 |  * submission, as well as for endpoint shutdown and for usb_kill_urb. | 
 |  * | 
 |  * Return: 0 for no error, otherwise a negative error code (in which case | 
 |  * the enqueue() method must fail).  If no error occurs but enqueue() fails | 
 |  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing | 
 |  * the private spinlock and returning. | 
 |  */ | 
 | int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	int		rc = 0; | 
 |  | 
 | 	spin_lock(&hcd_urb_list_lock); | 
 |  | 
 | 	/* Check that the URB isn't being killed */ | 
 | 	if (unlikely(atomic_read(&urb->reject))) { | 
 | 		rc = -EPERM; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!urb->ep->enabled)) { | 
 | 		rc = -ENOENT; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!urb->dev->can_submit)) { | 
 | 		rc = -EHOSTUNREACH; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check the host controller's state and add the URB to the | 
 | 	 * endpoint's queue. | 
 | 	 */ | 
 | 	if (HCD_RH_RUNNING(hcd)) { | 
 | 		urb->unlinked = 0; | 
 | 		list_add_tail(&urb->urb_list, &urb->ep->urb_list); | 
 | 	} else { | 
 | 		rc = -ESHUTDOWN; | 
 | 		goto done; | 
 | 	} | 
 |  done: | 
 | 	spin_unlock(&hcd_urb_list_lock); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); | 
 |  | 
 | /** | 
 |  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked | 
 |  * @hcd: host controller to which @urb was submitted | 
 |  * @urb: URB being checked for unlinkability | 
 |  * @status: error code to store in @urb if the unlink succeeds | 
 |  * | 
 |  * Host controller drivers should call this routine in their dequeue() | 
 |  * method.  The HCD's private spinlock must be held and interrupts must | 
 |  * be disabled.  The actions carried out here are required for making | 
 |  * sure than an unlink is valid. | 
 |  * | 
 |  * Return: 0 for no error, otherwise a negative error code (in which case | 
 |  * the dequeue() method must fail).  The possible error codes are: | 
 |  * | 
 |  *	-EIDRM: @urb was not submitted or has already completed. | 
 |  *		The completion function may not have been called yet. | 
 |  * | 
 |  *	-EBUSY: @urb has already been unlinked. | 
 |  */ | 
 | int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, | 
 | 		int status) | 
 | { | 
 | 	struct list_head	*tmp; | 
 |  | 
 | 	/* insist the urb is still queued */ | 
 | 	list_for_each(tmp, &urb->ep->urb_list) { | 
 | 		if (tmp == &urb->urb_list) | 
 | 			break; | 
 | 	} | 
 | 	if (tmp != &urb->urb_list) | 
 | 		return -EIDRM; | 
 |  | 
 | 	/* Any status except -EINPROGRESS means something already started to | 
 | 	 * unlink this URB from the hardware.  So there's no more work to do. | 
 | 	 */ | 
 | 	if (urb->unlinked) | 
 | 		return -EBUSY; | 
 | 	urb->unlinked = status; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); | 
 |  | 
 | /** | 
 |  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue | 
 |  * @hcd: host controller to which @urb was submitted | 
 |  * @urb: URB being unlinked | 
 |  * | 
 |  * Host controller drivers should call this routine before calling | 
 |  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and | 
 |  * interrupts must be disabled.  The actions carried out here are required | 
 |  * for URB completion. | 
 |  */ | 
 | void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	/* clear all state linking urb to this dev (and hcd) */ | 
 | 	spin_lock(&hcd_urb_list_lock); | 
 | 	list_del_init(&urb->urb_list); | 
 | 	spin_unlock(&hcd_urb_list_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); | 
 |  | 
 | /* | 
 |  * Some usb host controllers can only perform dma using a small SRAM area. | 
 |  * The usb core itself is however optimized for host controllers that can dma | 
 |  * using regular system memory - like pci devices doing bus mastering. | 
 |  * | 
 |  * To support host controllers with limited dma capabilities we provide dma | 
 |  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. | 
 |  * For this to work properly the host controller code must first use the | 
 |  * function dma_declare_coherent_memory() to point out which memory area | 
 |  * that should be used for dma allocations. | 
 |  * | 
 |  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for | 
 |  * dma using dma_alloc_coherent() which in turn allocates from the memory | 
 |  * area pointed out with dma_declare_coherent_memory(). | 
 |  * | 
 |  * So, to summarize... | 
 |  * | 
 |  * - We need "local" memory, canonical example being | 
 |  *   a small SRAM on a discrete controller being the | 
 |  *   only memory that the controller can read ... | 
 |  *   (a) "normal" kernel memory is no good, and | 
 |  *   (b) there's not enough to share | 
 |  * | 
 |  * - The only *portable* hook for such stuff in the | 
 |  *   DMA framework is dma_declare_coherent_memory() | 
 |  * | 
 |  * - So we use that, even though the primary requirement | 
 |  *   is that the memory be "local" (hence addressable | 
 |  *   by that device), not "coherent". | 
 |  * | 
 |  */ | 
 |  | 
 | static int hcd_alloc_coherent(struct usb_bus *bus, | 
 | 			      gfp_t mem_flags, dma_addr_t *dma_handle, | 
 | 			      void **vaddr_handle, size_t size, | 
 | 			      enum dma_data_direction dir) | 
 | { | 
 | 	unsigned char *vaddr; | 
 |  | 
 | 	if (*vaddr_handle == NULL) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), | 
 | 				 mem_flags, dma_handle); | 
 | 	if (!vaddr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Store the virtual address of the buffer at the end | 
 | 	 * of the allocated dma buffer. The size of the buffer | 
 | 	 * may be uneven so use unaligned functions instead | 
 | 	 * of just rounding up. It makes sense to optimize for | 
 | 	 * memory footprint over access speed since the amount | 
 | 	 * of memory available for dma may be limited. | 
 | 	 */ | 
 | 	put_unaligned((unsigned long)*vaddr_handle, | 
 | 		      (unsigned long *)(vaddr + size)); | 
 |  | 
 | 	if (dir == DMA_TO_DEVICE) | 
 | 		memcpy(vaddr, *vaddr_handle, size); | 
 |  | 
 | 	*vaddr_handle = vaddr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, | 
 | 			      void **vaddr_handle, size_t size, | 
 | 			      enum dma_data_direction dir) | 
 | { | 
 | 	unsigned char *vaddr = *vaddr_handle; | 
 |  | 
 | 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); | 
 |  | 
 | 	if (dir == DMA_FROM_DEVICE) | 
 | 		memcpy(vaddr, *vaddr_handle, size); | 
 |  | 
 | 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); | 
 |  | 
 | 	*vaddr_handle = vaddr; | 
 | 	*dma_handle = 0; | 
 | } | 
 |  | 
 | void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) | 
 | 		dma_unmap_single(hcd->self.controller, | 
 | 				urb->setup_dma, | 
 | 				sizeof(struct usb_ctrlrequest), | 
 | 				DMA_TO_DEVICE); | 
 | 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) | 
 | 		hcd_free_coherent(urb->dev->bus, | 
 | 				&urb->setup_dma, | 
 | 				(void **) &urb->setup_packet, | 
 | 				sizeof(struct usb_ctrlrequest), | 
 | 				DMA_TO_DEVICE); | 
 |  | 
 | 	/* Make it safe to call this routine more than once */ | 
 | 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); | 
 |  | 
 | static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	if (hcd->driver->unmap_urb_for_dma) | 
 | 		hcd->driver->unmap_urb_for_dma(hcd, urb); | 
 | 	else | 
 | 		usb_hcd_unmap_urb_for_dma(hcd, urb); | 
 | } | 
 |  | 
 | void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) | 
 | { | 
 | 	enum dma_data_direction dir; | 
 |  | 
 | 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb); | 
 |  | 
 | 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
 | 	if (urb->transfer_flags & URB_DMA_MAP_SG) | 
 | 		dma_unmap_sg(hcd->self.controller, | 
 | 				urb->sg, | 
 | 				urb->num_sgs, | 
 | 				dir); | 
 | 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE) | 
 | 		dma_unmap_page(hcd->self.controller, | 
 | 				urb->transfer_dma, | 
 | 				urb->transfer_buffer_length, | 
 | 				dir); | 
 | 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) | 
 | 		dma_unmap_single(hcd->self.controller, | 
 | 				urb->transfer_dma, | 
 | 				urb->transfer_buffer_length, | 
 | 				dir); | 
 | 	else if (urb->transfer_flags & URB_MAP_LOCAL) | 
 | 		hcd_free_coherent(urb->dev->bus, | 
 | 				&urb->transfer_dma, | 
 | 				&urb->transfer_buffer, | 
 | 				urb->transfer_buffer_length, | 
 | 				dir); | 
 |  | 
 | 	/* Make it safe to call this routine more than once */ | 
 | 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | | 
 | 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); | 
 |  | 
 | static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, | 
 | 			   gfp_t mem_flags) | 
 | { | 
 | 	if (hcd->driver->map_urb_for_dma) | 
 | 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); | 
 | 	else | 
 | 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); | 
 | } | 
 |  | 
 | int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, | 
 | 			    gfp_t mem_flags) | 
 | { | 
 | 	enum dma_data_direction dir; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Map the URB's buffers for DMA access. | 
 | 	 * Lower level HCD code should use *_dma exclusively, | 
 | 	 * unless it uses pio or talks to another transport, | 
 | 	 * or uses the provided scatter gather list for bulk. | 
 | 	 */ | 
 |  | 
 | 	if (usb_endpoint_xfer_control(&urb->ep->desc)) { | 
 | 		if (hcd->self.uses_pio_for_control) | 
 | 			return ret; | 
 | 		if (hcd->self.uses_dma) { | 
 | 			urb->setup_dma = dma_map_single( | 
 | 					hcd->self.controller, | 
 | 					urb->setup_packet, | 
 | 					sizeof(struct usb_ctrlrequest), | 
 | 					DMA_TO_DEVICE); | 
 | 			if (dma_mapping_error(hcd->self.controller, | 
 | 						urb->setup_dma)) | 
 | 				return -EAGAIN; | 
 | 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE; | 
 | 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) { | 
 | 			ret = hcd_alloc_coherent( | 
 | 					urb->dev->bus, mem_flags, | 
 | 					&urb->setup_dma, | 
 | 					(void **)&urb->setup_packet, | 
 | 					sizeof(struct usb_ctrlrequest), | 
 | 					DMA_TO_DEVICE); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; | 
 | 	if (urb->transfer_buffer_length != 0 | 
 | 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { | 
 | 		if (hcd->self.uses_dma) { | 
 | 			if (urb->num_sgs) { | 
 | 				int n; | 
 |  | 
 | 				/* We don't support sg for isoc transfers ! */ | 
 | 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { | 
 | 					WARN_ON(1); | 
 | 					return -EINVAL; | 
 | 				} | 
 |  | 
 | 				n = dma_map_sg( | 
 | 						hcd->self.controller, | 
 | 						urb->sg, | 
 | 						urb->num_sgs, | 
 | 						dir); | 
 | 				if (n <= 0) | 
 | 					ret = -EAGAIN; | 
 | 				else | 
 | 					urb->transfer_flags |= URB_DMA_MAP_SG; | 
 | 				urb->num_mapped_sgs = n; | 
 | 				if (n != urb->num_sgs) | 
 | 					urb->transfer_flags |= | 
 | 							URB_DMA_SG_COMBINED; | 
 | 			} else if (urb->sg) { | 
 | 				struct scatterlist *sg = urb->sg; | 
 | 				urb->transfer_dma = dma_map_page( | 
 | 						hcd->self.controller, | 
 | 						sg_page(sg), | 
 | 						sg->offset, | 
 | 						urb->transfer_buffer_length, | 
 | 						dir); | 
 | 				if (dma_mapping_error(hcd->self.controller, | 
 | 						urb->transfer_dma)) | 
 | 					ret = -EAGAIN; | 
 | 				else | 
 | 					urb->transfer_flags |= URB_DMA_MAP_PAGE; | 
 | 			} else if (is_vmalloc_addr(urb->transfer_buffer)) { | 
 | 				WARN_ONCE(1, "transfer buffer not dma capable\n"); | 
 | 				ret = -EAGAIN; | 
 | 			} else { | 
 | 				urb->transfer_dma = dma_map_single( | 
 | 						hcd->self.controller, | 
 | 						urb->transfer_buffer, | 
 | 						urb->transfer_buffer_length, | 
 | 						dir); | 
 | 				if (dma_mapping_error(hcd->self.controller, | 
 | 						urb->transfer_dma)) | 
 | 					ret = -EAGAIN; | 
 | 				else | 
 | 					urb->transfer_flags |= URB_DMA_MAP_SINGLE; | 
 | 			} | 
 | 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) { | 
 | 			ret = hcd_alloc_coherent( | 
 | 					urb->dev->bus, mem_flags, | 
 | 					&urb->transfer_dma, | 
 | 					&urb->transfer_buffer, | 
 | 					urb->transfer_buffer_length, | 
 | 					dir); | 
 | 			if (ret == 0) | 
 | 				urb->transfer_flags |= URB_MAP_LOCAL; | 
 | 		} | 
 | 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | | 
 | 				URB_SETUP_MAP_LOCAL))) | 
 | 			usb_hcd_unmap_urb_for_dma(hcd, urb); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* may be called in any context with a valid urb->dev usecount | 
 |  * caller surrenders "ownership" of urb | 
 |  * expects usb_submit_urb() to have sanity checked and conditioned all | 
 |  * inputs in the urb | 
 |  */ | 
 | int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	int			status; | 
 | 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus); | 
 |  | 
 | 	/* increment urb's reference count as part of giving it to the HCD | 
 | 	 * (which will control it).  HCD guarantees that it either returns | 
 | 	 * an error or calls giveback(), but not both. | 
 | 	 */ | 
 | 	usb_get_urb(urb); | 
 | 	atomic_inc(&urb->use_count); | 
 | 	atomic_inc(&urb->dev->urbnum); | 
 | 	usbmon_urb_submit(&hcd->self, urb); | 
 |  | 
 | 	/* NOTE requirements on root-hub callers (usbfs and the hub | 
 | 	 * driver, for now):  URBs' urb->transfer_buffer must be | 
 | 	 * valid and usb_buffer_{sync,unmap}() not be needed, since | 
 | 	 * they could clobber root hub response data.  Also, control | 
 | 	 * URBs must be submitted in process context with interrupts | 
 | 	 * enabled. | 
 | 	 */ | 
 |  | 
 | 	if (is_root_hub(urb->dev)) { | 
 | 		status = rh_urb_enqueue(hcd, urb); | 
 | 	} else { | 
 | 		status = map_urb_for_dma(hcd, urb, mem_flags); | 
 | 		if (likely(status == 0)) { | 
 | 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); | 
 | 			if (unlikely(status)) | 
 | 				unmap_urb_for_dma(hcd, urb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(status)) { | 
 | 		usbmon_urb_submit_error(&hcd->self, urb, status); | 
 | 		urb->hcpriv = NULL; | 
 | 		INIT_LIST_HEAD(&urb->urb_list); | 
 | 		atomic_dec(&urb->use_count); | 
 | 		atomic_dec(&urb->dev->urbnum); | 
 | 		if (atomic_read(&urb->reject)) | 
 | 			wake_up(&usb_kill_urb_queue); | 
 | 		usb_put_urb(urb); | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* this makes the hcd giveback() the urb more quickly, by kicking it | 
 |  * off hardware queues (which may take a while) and returning it as | 
 |  * soon as practical.  we've already set up the urb's return status, | 
 |  * but we can't know if the callback completed already. | 
 |  */ | 
 | static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	int		value; | 
 |  | 
 | 	if (is_root_hub(urb->dev)) | 
 | 		value = usb_rh_urb_dequeue(hcd, urb, status); | 
 | 	else { | 
 |  | 
 | 		/* The only reason an HCD might fail this call is if | 
 | 		 * it has not yet fully queued the urb to begin with. | 
 | 		 * Such failures should be harmless. */ | 
 | 		value = hcd->driver->urb_dequeue(hcd, urb, status); | 
 | 	} | 
 | 	return value; | 
 | } | 
 |  | 
 | /* | 
 |  * called in any context | 
 |  * | 
 |  * caller guarantees urb won't be recycled till both unlink() | 
 |  * and the urb's completion function return | 
 |  */ | 
 | int usb_hcd_unlink_urb (struct urb *urb, int status) | 
 | { | 
 | 	struct usb_hcd		*hcd; | 
 | 	int			retval = -EIDRM; | 
 | 	unsigned long		flags; | 
 |  | 
 | 	/* Prevent the device and bus from going away while | 
 | 	 * the unlink is carried out.  If they are already gone | 
 | 	 * then urb->use_count must be 0, since disconnected | 
 | 	 * devices can't have any active URBs. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags); | 
 | 	if (atomic_read(&urb->use_count) > 0) { | 
 | 		retval = 0; | 
 | 		usb_get_dev(urb->dev); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); | 
 | 	if (retval == 0) { | 
 | 		hcd = bus_to_hcd(urb->dev->bus); | 
 | 		retval = unlink1(hcd, urb, status); | 
 | 		usb_put_dev(urb->dev); | 
 | 	} | 
 |  | 
 | 	if (retval == 0) | 
 | 		retval = -EINPROGRESS; | 
 | 	else if (retval != -EIDRM && retval != -EBUSY) | 
 | 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", | 
 | 				urb, retval); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void __usb_hcd_giveback_urb(struct urb *urb) | 
 | { | 
 | 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); | 
 | 	struct usb_anchor *anchor = urb->anchor; | 
 | 	int status = urb->unlinked; | 
 | 	unsigned long flags; | 
 |  | 
 | 	urb->hcpriv = NULL; | 
 | 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && | 
 | 	    urb->actual_length < urb->transfer_buffer_length && | 
 | 	    !status)) | 
 | 		status = -EREMOTEIO; | 
 |  | 
 | 	unmap_urb_for_dma(hcd, urb); | 
 | 	usbmon_urb_complete(&hcd->self, urb, status); | 
 | 	usb_anchor_suspend_wakeups(anchor); | 
 | 	usb_unanchor_urb(urb); | 
 | 	if (likely(status == 0)) | 
 | 		usb_led_activity(USB_LED_EVENT_HOST); | 
 |  | 
 | 	/* pass ownership to the completion handler */ | 
 | 	urb->status = status; | 
 |  | 
 | 	/* | 
 | 	 * We disable local IRQs here avoid possible deadlock because | 
 | 	 * drivers may call spin_lock() to hold lock which might be | 
 | 	 * acquired in one hard interrupt handler. | 
 | 	 * | 
 | 	 * The local_irq_save()/local_irq_restore() around complete() | 
 | 	 * will be removed if current USB drivers have been cleaned up | 
 | 	 * and no one may trigger the above deadlock situation when | 
 | 	 * running complete() in tasklet. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	urb->complete(urb); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	usb_anchor_resume_wakeups(anchor); | 
 | 	atomic_dec(&urb->use_count); | 
 | 	if (unlikely(atomic_read(&urb->reject))) | 
 | 		wake_up(&usb_kill_urb_queue); | 
 | 	usb_put_urb(urb); | 
 | } | 
 |  | 
 | static void usb_giveback_urb_bh(unsigned long param) | 
 | { | 
 | 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; | 
 | 	struct list_head local_list; | 
 |  | 
 | 	spin_lock_irq(&bh->lock); | 
 | 	bh->running = true; | 
 |  restart: | 
 | 	list_replace_init(&bh->head, &local_list); | 
 | 	spin_unlock_irq(&bh->lock); | 
 |  | 
 | 	while (!list_empty(&local_list)) { | 
 | 		struct urb *urb; | 
 |  | 
 | 		urb = list_entry(local_list.next, struct urb, urb_list); | 
 | 		list_del_init(&urb->urb_list); | 
 | 		bh->completing_ep = urb->ep; | 
 | 		__usb_hcd_giveback_urb(urb); | 
 | 		bh->completing_ep = NULL; | 
 | 	} | 
 |  | 
 | 	/* check if there are new URBs to giveback */ | 
 | 	spin_lock_irq(&bh->lock); | 
 | 	if (!list_empty(&bh->head)) | 
 | 		goto restart; | 
 | 	bh->running = false; | 
 | 	spin_unlock_irq(&bh->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * usb_hcd_giveback_urb - return URB from HCD to device driver | 
 |  * @hcd: host controller returning the URB | 
 |  * @urb: urb being returned to the USB device driver. | 
 |  * @status: completion status code for the URB. | 
 |  * Context: in_interrupt() | 
 |  * | 
 |  * This hands the URB from HCD to its USB device driver, using its | 
 |  * completion function.  The HCD has freed all per-urb resources | 
 |  * (and is done using urb->hcpriv).  It also released all HCD locks; | 
 |  * the device driver won't cause problems if it frees, modifies, | 
 |  * or resubmits this URB. | 
 |  * | 
 |  * If @urb was unlinked, the value of @status will be overridden by | 
 |  * @urb->unlinked.  Erroneous short transfers are detected in case | 
 |  * the HCD hasn't checked for them. | 
 |  */ | 
 | void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	struct giveback_urb_bh *bh; | 
 | 	bool running, high_prio_bh; | 
 |  | 
 | 	/* pass status to tasklet via unlinked */ | 
 | 	if (likely(!urb->unlinked)) | 
 | 		urb->unlinked = status; | 
 |  | 
 | 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { | 
 | 		__usb_hcd_giveback_urb(urb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { | 
 | 		bh = &hcd->high_prio_bh; | 
 | 		high_prio_bh = true; | 
 | 	} else { | 
 | 		bh = &hcd->low_prio_bh; | 
 | 		high_prio_bh = false; | 
 | 	} | 
 |  | 
 | 	spin_lock(&bh->lock); | 
 | 	list_add_tail(&urb->urb_list, &bh->head); | 
 | 	running = bh->running; | 
 | 	spin_unlock(&bh->lock); | 
 |  | 
 | 	if (running) | 
 | 		; | 
 | 	else if (high_prio_bh) | 
 | 		tasklet_hi_schedule(&bh->bh); | 
 | 	else | 
 | 		tasklet_schedule(&bh->bh); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* Cancel all URBs pending on this endpoint and wait for the endpoint's | 
 |  * queue to drain completely.  The caller must first insure that no more | 
 |  * URBs can be submitted for this endpoint. | 
 |  */ | 
 | void usb_hcd_flush_endpoint(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct usb_hcd		*hcd; | 
 | 	struct urb		*urb; | 
 |  | 
 | 	if (!ep) | 
 | 		return; | 
 | 	might_sleep(); | 
 | 	hcd = bus_to_hcd(udev->bus); | 
 |  | 
 | 	/* No more submits can occur */ | 
 | 	spin_lock_irq(&hcd_urb_list_lock); | 
 | rescan: | 
 | 	list_for_each_entry (urb, &ep->urb_list, urb_list) { | 
 | 		int	is_in; | 
 |  | 
 | 		if (urb->unlinked) | 
 | 			continue; | 
 | 		usb_get_urb (urb); | 
 | 		is_in = usb_urb_dir_in(urb); | 
 | 		spin_unlock(&hcd_urb_list_lock); | 
 |  | 
 | 		/* kick hcd */ | 
 | 		unlink1(hcd, urb, -ESHUTDOWN); | 
 | 		dev_dbg (hcd->self.controller, | 
 | 			"shutdown urb %p ep%d%s%s\n", | 
 | 			urb, usb_endpoint_num(&ep->desc), | 
 | 			is_in ? "in" : "out", | 
 | 			({	char *s; | 
 |  | 
 | 				 switch (usb_endpoint_type(&ep->desc)) { | 
 | 				 case USB_ENDPOINT_XFER_CONTROL: | 
 | 					s = ""; break; | 
 | 				 case USB_ENDPOINT_XFER_BULK: | 
 | 					s = "-bulk"; break; | 
 | 				 case USB_ENDPOINT_XFER_INT: | 
 | 					s = "-intr"; break; | 
 | 				 default: | 
 | 					s = "-iso"; break; | 
 | 				}; | 
 | 				s; | 
 | 			})); | 
 | 		usb_put_urb (urb); | 
 |  | 
 | 		/* list contents may have changed */ | 
 | 		spin_lock(&hcd_urb_list_lock); | 
 | 		goto rescan; | 
 | 	} | 
 | 	spin_unlock_irq(&hcd_urb_list_lock); | 
 |  | 
 | 	/* Wait until the endpoint queue is completely empty */ | 
 | 	while (!list_empty (&ep->urb_list)) { | 
 | 		spin_lock_irq(&hcd_urb_list_lock); | 
 |  | 
 | 		/* The list may have changed while we acquired the spinlock */ | 
 | 		urb = NULL; | 
 | 		if (!list_empty (&ep->urb_list)) { | 
 | 			urb = list_entry (ep->urb_list.prev, struct urb, | 
 | 					urb_list); | 
 | 			usb_get_urb (urb); | 
 | 		} | 
 | 		spin_unlock_irq(&hcd_urb_list_lock); | 
 |  | 
 | 		if (urb) { | 
 | 			usb_kill_urb (urb); | 
 | 			usb_put_urb (urb); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds | 
 |  *				the bus bandwidth | 
 |  * @udev: target &usb_device | 
 |  * @new_config: new configuration to install | 
 |  * @cur_alt: the current alternate interface setting | 
 |  * @new_alt: alternate interface setting that is being installed | 
 |  * | 
 |  * To change configurations, pass in the new configuration in new_config, | 
 |  * and pass NULL for cur_alt and new_alt. | 
 |  * | 
 |  * To reset a device's configuration (put the device in the ADDRESSED state), | 
 |  * pass in NULL for new_config, cur_alt, and new_alt. | 
 |  * | 
 |  * To change alternate interface settings, pass in NULL for new_config, | 
 |  * pass in the current alternate interface setting in cur_alt, | 
 |  * and pass in the new alternate interface setting in new_alt. | 
 |  * | 
 |  * Return: An error if the requested bandwidth change exceeds the | 
 |  * bus bandwidth or host controller internal resources. | 
 |  */ | 
 | int usb_hcd_alloc_bandwidth(struct usb_device *udev, | 
 | 		struct usb_host_config *new_config, | 
 | 		struct usb_host_interface *cur_alt, | 
 | 		struct usb_host_interface *new_alt) | 
 | { | 
 | 	int num_intfs, i, j; | 
 | 	struct usb_host_interface *alt = NULL; | 
 | 	int ret = 0; | 
 | 	struct usb_hcd *hcd; | 
 | 	struct usb_host_endpoint *ep; | 
 |  | 
 | 	hcd = bus_to_hcd(udev->bus); | 
 | 	if (!hcd->driver->check_bandwidth) | 
 | 		return 0; | 
 |  | 
 | 	/* Configuration is being removed - set configuration 0 */ | 
 | 	if (!new_config && !cur_alt) { | 
 | 		for (i = 1; i < 16; ++i) { | 
 | 			ep = udev->ep_out[i]; | 
 | 			if (ep) | 
 | 				hcd->driver->drop_endpoint(hcd, udev, ep); | 
 | 			ep = udev->ep_in[i]; | 
 | 			if (ep) | 
 | 				hcd->driver->drop_endpoint(hcd, udev, ep); | 
 | 		} | 
 | 		hcd->driver->check_bandwidth(hcd, udev); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints | 
 | 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth | 
 | 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's | 
 | 	 * ok to exclude it. | 
 | 	 */ | 
 | 	if (new_config) { | 
 | 		num_intfs = new_config->desc.bNumInterfaces; | 
 | 		/* Remove endpoints (except endpoint 0, which is always on the | 
 | 		 * schedule) from the old config from the schedule | 
 | 		 */ | 
 | 		for (i = 1; i < 16; ++i) { | 
 | 			ep = udev->ep_out[i]; | 
 | 			if (ep) { | 
 | 				ret = hcd->driver->drop_endpoint(hcd, udev, ep); | 
 | 				if (ret < 0) | 
 | 					goto reset; | 
 | 			} | 
 | 			ep = udev->ep_in[i]; | 
 | 			if (ep) { | 
 | 				ret = hcd->driver->drop_endpoint(hcd, udev, ep); | 
 | 				if (ret < 0) | 
 | 					goto reset; | 
 | 			} | 
 | 		} | 
 | 		for (i = 0; i < num_intfs; ++i) { | 
 | 			struct usb_host_interface *first_alt; | 
 | 			int iface_num; | 
 |  | 
 | 			first_alt = &new_config->intf_cache[i]->altsetting[0]; | 
 | 			iface_num = first_alt->desc.bInterfaceNumber; | 
 | 			/* Set up endpoints for alternate interface setting 0 */ | 
 | 			alt = usb_find_alt_setting(new_config, iface_num, 0); | 
 | 			if (!alt) | 
 | 				/* No alt setting 0? Pick the first setting. */ | 
 | 				alt = first_alt; | 
 |  | 
 | 			for (j = 0; j < alt->desc.bNumEndpoints; j++) { | 
 | 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); | 
 | 				if (ret < 0) | 
 | 					goto reset; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (cur_alt && new_alt) { | 
 | 		struct usb_interface *iface = usb_ifnum_to_if(udev, | 
 | 				cur_alt->desc.bInterfaceNumber); | 
 |  | 
 | 		if (!iface) | 
 | 			return -EINVAL; | 
 | 		if (iface->resetting_device) { | 
 | 			/* | 
 | 			 * The USB core just reset the device, so the xHCI host | 
 | 			 * and the device will think alt setting 0 is installed. | 
 | 			 * However, the USB core will pass in the alternate | 
 | 			 * setting installed before the reset as cur_alt.  Dig | 
 | 			 * out the alternate setting 0 structure, or the first | 
 | 			 * alternate setting if a broken device doesn't have alt | 
 | 			 * setting 0. | 
 | 			 */ | 
 | 			cur_alt = usb_altnum_to_altsetting(iface, 0); | 
 | 			if (!cur_alt) | 
 | 				cur_alt = &iface->altsetting[0]; | 
 | 		} | 
 |  | 
 | 		/* Drop all the endpoints in the current alt setting */ | 
 | 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { | 
 | 			ret = hcd->driver->drop_endpoint(hcd, udev, | 
 | 					&cur_alt->endpoint[i]); | 
 | 			if (ret < 0) | 
 | 				goto reset; | 
 | 		} | 
 | 		/* Add all the endpoints in the new alt setting */ | 
 | 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { | 
 | 			ret = hcd->driver->add_endpoint(hcd, udev, | 
 | 					&new_alt->endpoint[i]); | 
 | 			if (ret < 0) | 
 | 				goto reset; | 
 | 		} | 
 | 	} | 
 | 	ret = hcd->driver->check_bandwidth(hcd, udev); | 
 | reset: | 
 | 	if (ret < 0) | 
 | 		hcd->driver->reset_bandwidth(hcd, udev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Disables the endpoint: synchronizes with the hcd to make sure all | 
 |  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must | 
 |  * have been called previously.  Use for set_configuration, set_interface, | 
 |  * driver removal, physical disconnect. | 
 |  * | 
 |  * example:  a qh stored in ep->hcpriv, holding state related to endpoint | 
 |  * type, maxpacket size, toggle, halt status, and scheduling. | 
 |  */ | 
 | void usb_hcd_disable_endpoint(struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct usb_hcd		*hcd; | 
 |  | 
 | 	might_sleep(); | 
 | 	hcd = bus_to_hcd(udev->bus); | 
 | 	if (hcd->driver->endpoint_disable) | 
 | 		hcd->driver->endpoint_disable(hcd, ep); | 
 | } | 
 |  | 
 | /** | 
 |  * usb_hcd_reset_endpoint - reset host endpoint state | 
 |  * @udev: USB device. | 
 |  * @ep:   the endpoint to reset. | 
 |  * | 
 |  * Resets any host endpoint state such as the toggle bit, sequence | 
 |  * number and current window. | 
 |  */ | 
 | void usb_hcd_reset_endpoint(struct usb_device *udev, | 
 | 			    struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct usb_hcd *hcd = bus_to_hcd(udev->bus); | 
 |  | 
 | 	if (hcd->driver->endpoint_reset) | 
 | 		hcd->driver->endpoint_reset(hcd, ep); | 
 | 	else { | 
 | 		int epnum = usb_endpoint_num(&ep->desc); | 
 | 		int is_out = usb_endpoint_dir_out(&ep->desc); | 
 | 		int is_control = usb_endpoint_xfer_control(&ep->desc); | 
 |  | 
 | 		usb_settoggle(udev, epnum, is_out, 0); | 
 | 		if (is_control) | 
 | 			usb_settoggle(udev, epnum, !is_out, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * usb_alloc_streams - allocate bulk endpoint stream IDs. | 
 |  * @interface:		alternate setting that includes all endpoints. | 
 |  * @eps:		array of endpoints that need streams. | 
 |  * @num_eps:		number of endpoints in the array. | 
 |  * @num_streams:	number of streams to allocate. | 
 |  * @mem_flags:		flags hcd should use to allocate memory. | 
 |  * | 
 |  * Sets up a group of bulk endpoints to have @num_streams stream IDs available. | 
 |  * Drivers may queue multiple transfers to different stream IDs, which may | 
 |  * complete in a different order than they were queued. | 
 |  * | 
 |  * Return: On success, the number of allocated streams. On failure, a negative | 
 |  * error code. | 
 |  */ | 
 | int usb_alloc_streams(struct usb_interface *interface, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps, | 
 | 		unsigned int num_streams, gfp_t mem_flags) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	struct usb_device *dev; | 
 | 	int i, ret; | 
 |  | 
 | 	dev = interface_to_usbdev(interface); | 
 | 	hcd = bus_to_hcd(dev->bus); | 
 | 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) | 
 | 		return -EINVAL; | 
 | 	if (dev->speed != USB_SPEED_SUPER) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) { | 
 | 		/* Streams only apply to bulk endpoints. */ | 
 | 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) | 
 | 			return -EINVAL; | 
 | 		/* Re-alloc is not allowed */ | 
 | 		if (eps[i]->streams) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, | 
 | 			num_streams, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) | 
 | 		eps[i]->streams = ret; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_alloc_streams); | 
 |  | 
 | /** | 
 |  * usb_free_streams - free bulk endpoint stream IDs. | 
 |  * @interface:	alternate setting that includes all endpoints. | 
 |  * @eps:	array of endpoints to remove streams from. | 
 |  * @num_eps:	number of endpoints in the array. | 
 |  * @mem_flags:	flags hcd should use to allocate memory. | 
 |  * | 
 |  * Reverts a group of bulk endpoints back to not using stream IDs. | 
 |  * Can fail if we are given bad arguments, or HCD is broken. | 
 |  * | 
 |  * Return: 0 on success. On failure, a negative error code. | 
 |  */ | 
 | int usb_free_streams(struct usb_interface *interface, | 
 | 		struct usb_host_endpoint **eps, unsigned int num_eps, | 
 | 		gfp_t mem_flags) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 | 	struct usb_device *dev; | 
 | 	int i, ret; | 
 |  | 
 | 	dev = interface_to_usbdev(interface); | 
 | 	hcd = bus_to_hcd(dev->bus); | 
 | 	if (dev->speed != USB_SPEED_SUPER) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Double-free is not allowed */ | 
 | 	for (i = 0; i < num_eps; i++) | 
 | 		if (!eps[i] || !eps[i]->streams) | 
 | 			return -EINVAL; | 
 |  | 
 | 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < num_eps; i++) | 
 | 		eps[i]->streams = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_free_streams); | 
 |  | 
 | /* Protect against drivers that try to unlink URBs after the device | 
 |  * is gone, by waiting until all unlinks for @udev are finished. | 
 |  * Since we don't currently track URBs by device, simply wait until | 
 |  * nothing is running in the locked region of usb_hcd_unlink_urb(). | 
 |  */ | 
 | void usb_hcd_synchronize_unlinks(struct usb_device *udev) | 
 | { | 
 | 	spin_lock_irq(&hcd_urb_unlink_lock); | 
 | 	spin_unlock_irq(&hcd_urb_unlink_lock); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* called in any context */ | 
 | int usb_hcd_get_frame_number (struct usb_device *udev) | 
 | { | 
 | 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus); | 
 |  | 
 | 	if (!HCD_RH_RUNNING(hcd)) | 
 | 		return -ESHUTDOWN; | 
 | 	return hcd->driver->get_frame_number (hcd); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #ifdef	CONFIG_PM | 
 |  | 
 | int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) | 
 | { | 
 | 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self); | 
 | 	int		status; | 
 | 	int		old_state = hcd->state; | 
 |  | 
 | 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", | 
 | 			(PMSG_IS_AUTO(msg) ? "auto-" : ""), | 
 | 			rhdev->do_remote_wakeup); | 
 | 	if (HCD_DEAD(hcd)) { | 
 | 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!hcd->driver->bus_suspend) { | 
 | 		status = -ENOENT; | 
 | 	} else { | 
 | 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 		hcd->state = HC_STATE_QUIESCING; | 
 | 		status = hcd->driver->bus_suspend(hcd); | 
 | 	} | 
 | 	if (status == 0) { | 
 | 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED); | 
 | 		hcd->state = HC_STATE_SUSPENDED; | 
 |  | 
 | 		/* Did we race with a root-hub wakeup event? */ | 
 | 		if (rhdev->do_remote_wakeup) { | 
 | 			char	buffer[6]; | 
 |  | 
 | 			status = hcd->driver->hub_status_data(hcd, buffer); | 
 | 			if (status != 0) { | 
 | 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); | 
 | 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); | 
 | 				status = -EBUSY; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		spin_lock_irq(&hcd_root_hub_lock); | 
 | 		if (!HCD_DEAD(hcd)) { | 
 | 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 			hcd->state = old_state; | 
 | 		} | 
 | 		spin_unlock_irq(&hcd_root_hub_lock); | 
 | 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", | 
 | 				"suspend", status); | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) | 
 | { | 
 | 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self); | 
 | 	int		status; | 
 | 	int		old_state = hcd->state; | 
 |  | 
 | 	dev_dbg(&rhdev->dev, "usb %sresume\n", | 
 | 			(PMSG_IS_AUTO(msg) ? "auto-" : "")); | 
 | 	if (HCD_DEAD(hcd)) { | 
 | 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (!hcd->driver->bus_resume) | 
 | 		return -ENOENT; | 
 | 	if (HCD_RH_RUNNING(hcd)) | 
 | 		return 0; | 
 |  | 
 | 	hcd->state = HC_STATE_RESUMING; | 
 | 	status = hcd->driver->bus_resume(hcd); | 
 | 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); | 
 | 	if (status == 0) { | 
 | 		struct usb_device *udev; | 
 | 		int port1; | 
 |  | 
 | 		spin_lock_irq(&hcd_root_hub_lock); | 
 | 		if (!HCD_DEAD(hcd)) { | 
 | 			usb_set_device_state(rhdev, rhdev->actconfig | 
 | 					? USB_STATE_CONFIGURED | 
 | 					: USB_STATE_ADDRESS); | 
 | 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 			hcd->state = HC_STATE_RUNNING; | 
 | 		} | 
 | 		spin_unlock_irq(&hcd_root_hub_lock); | 
 |  | 
 | 		/* | 
 | 		 * Check whether any of the enabled ports on the root hub are | 
 | 		 * unsuspended.  If they are then a TRSMRCY delay is needed | 
 | 		 * (this is what the USB-2 spec calls a "global resume"). | 
 | 		 * Otherwise we can skip the delay. | 
 | 		 */ | 
 | 		usb_hub_for_each_child(rhdev, port1, udev) { | 
 | 			if (udev->state != USB_STATE_NOTATTACHED && | 
 | 					!udev->port_is_suspended) { | 
 | 				usleep_range(10000, 11000);	/* TRSMRCY */ | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		hcd->state = old_state; | 
 | 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", | 
 | 				"resume", status); | 
 | 		if (status != -ESHUTDOWN) | 
 | 			usb_hc_died(hcd); | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | #endif	/* CONFIG_PM */ | 
 |  | 
 | #ifdef	CONFIG_PM_RUNTIME | 
 |  | 
 | /* Workqueue routine for root-hub remote wakeup */ | 
 | static void hcd_resume_work(struct work_struct *work) | 
 | { | 
 | 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); | 
 | 	struct usb_device *udev = hcd->self.root_hub; | 
 |  | 
 | 	usb_remote_wakeup(udev); | 
 | } | 
 |  | 
 | /** | 
 |  * usb_hcd_resume_root_hub - called by HCD to resume its root hub | 
 |  * @hcd: host controller for this root hub | 
 |  * | 
 |  * The USB host controller calls this function when its root hub is | 
 |  * suspended (with the remote wakeup feature enabled) and a remote | 
 |  * wakeup request is received.  The routine submits a workqueue request | 
 |  * to resume the root hub (that is, manage its downstream ports again). | 
 |  */ | 
 | void usb_hcd_resume_root_hub (struct usb_hcd *hcd) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
 | 	if (hcd->rh_registered) { | 
 | 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); | 
 | 		queue_work(pm_wq, &hcd->wakeup_work); | 
 | 	} | 
 | 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); | 
 |  | 
 | #endif	/* CONFIG_PM_RUNTIME */ | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #ifdef	CONFIG_USB_OTG | 
 |  | 
 | /** | 
 |  * usb_bus_start_enum - start immediate enumeration (for OTG) | 
 |  * @bus: the bus (must use hcd framework) | 
 |  * @port_num: 1-based number of port; usually bus->otg_port | 
 |  * Context: in_interrupt() | 
 |  * | 
 |  * Starts enumeration, with an immediate reset followed later by | 
 |  * hub_wq identifying and possibly configuring the device. | 
 |  * This is needed by OTG controller drivers, where it helps meet | 
 |  * HNP protocol timing requirements for starting a port reset. | 
 |  * | 
 |  * Return: 0 if successful. | 
 |  */ | 
 | int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) | 
 | { | 
 | 	struct usb_hcd		*hcd; | 
 | 	int			status = -EOPNOTSUPP; | 
 |  | 
 | 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem, | 
 | 	 * boards with root hubs hooked up to internal devices (instead of | 
 | 	 * just the OTG port) may need more attention to resetting... | 
 | 	 */ | 
 | 	hcd = container_of (bus, struct usb_hcd, self); | 
 | 	if (port_num && hcd->driver->start_port_reset) | 
 | 		status = hcd->driver->start_port_reset(hcd, port_num); | 
 |  | 
 | 	/* allocate hub_wq shortly after (first) root port reset finishes; | 
 | 	 * it may issue others, until at least 50 msecs have passed. | 
 | 	 */ | 
 | 	if (status == 0) | 
 | 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_bus_start_enum); | 
 |  | 
 | #endif | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_hcd_irq - hook IRQs to HCD framework (bus glue) | 
 |  * @irq: the IRQ being raised | 
 |  * @__hcd: pointer to the HCD whose IRQ is being signaled | 
 |  * | 
 |  * If the controller isn't HALTed, calls the driver's irq handler. | 
 |  * Checks whether the controller is now dead. | 
 |  * | 
 |  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. | 
 |  */ | 
 | irqreturn_t usb_hcd_irq (int irq, void *__hcd) | 
 | { | 
 | 	struct usb_hcd		*hcd = __hcd; | 
 | 	irqreturn_t		rc; | 
 |  | 
 | 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) | 
 | 		rc = IRQ_NONE; | 
 | 	else if (hcd->driver->irq(hcd) == IRQ_NONE) | 
 | 		rc = IRQ_NONE; | 
 | 	else | 
 | 		rc = IRQ_HANDLED; | 
 |  | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_irq); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * usb_hc_died - report abnormal shutdown of a host controller (bus glue) | 
 |  * @hcd: pointer to the HCD representing the controller | 
 |  * | 
 |  * This is called by bus glue to report a USB host controller that died | 
 |  * while operations may still have been pending.  It's called automatically | 
 |  * by the PCI glue, so only glue for non-PCI busses should need to call it. | 
 |  * | 
 |  * Only call this function with the primary HCD. | 
 |  */ | 
 | void usb_hc_died (struct usb_hcd *hcd) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	dev_err (hcd->self.controller, "HC died; cleaning up\n"); | 
 |  | 
 | 	spin_lock_irqsave (&hcd_root_hub_lock, flags); | 
 | 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 	set_bit(HCD_FLAG_DEAD, &hcd->flags); | 
 | 	if (hcd->rh_registered) { | 
 | 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 |  | 
 | 		/* make hub_wq clean up old urbs and devices */ | 
 | 		usb_set_device_state (hcd->self.root_hub, | 
 | 				USB_STATE_NOTATTACHED); | 
 | 		usb_kick_hub_wq(hcd->self.root_hub); | 
 | 	} | 
 | 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { | 
 | 		hcd = hcd->shared_hcd; | 
 | 		if (hcd->rh_registered) { | 
 | 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 |  | 
 | 			/* make hub_wq clean up old urbs and devices */ | 
 | 			usb_set_device_state(hcd->self.root_hub, | 
 | 					USB_STATE_NOTATTACHED); | 
 | 			usb_kick_hub_wq(hcd->self.root_hub); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags); | 
 | 	/* Make sure that the other roothub is also deallocated. */ | 
 | } | 
 | EXPORT_SYMBOL_GPL (usb_hc_died); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | static void init_giveback_urb_bh(struct giveback_urb_bh *bh) | 
 | { | 
 |  | 
 | 	spin_lock_init(&bh->lock); | 
 | 	INIT_LIST_HEAD(&bh->head); | 
 | 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); | 
 | } | 
 |  | 
 | /** | 
 |  * usb_create_shared_hcd - create and initialize an HCD structure | 
 |  * @driver: HC driver that will use this hcd | 
 |  * @dev: device for this HC, stored in hcd->self.controller | 
 |  * @bus_name: value to store in hcd->self.bus_name | 
 |  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the | 
 |  *              PCI device.  Only allocate certain resources for the primary HCD | 
 |  * Context: !in_interrupt() | 
 |  * | 
 |  * Allocate a struct usb_hcd, with extra space at the end for the | 
 |  * HC driver's private data.  Initialize the generic members of the | 
 |  * hcd structure. | 
 |  * | 
 |  * Return: On success, a pointer to the created and initialized HCD structure. | 
 |  * On failure (e.g. if memory is unavailable), %NULL. | 
 |  */ | 
 | struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, | 
 | 		struct device *dev, const char *bus_name, | 
 | 		struct usb_hcd *primary_hcd) | 
 | { | 
 | 	struct usb_hcd *hcd; | 
 |  | 
 | 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); | 
 | 	if (!hcd) { | 
 | 		dev_dbg (dev, "hcd alloc failed\n"); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (primary_hcd == NULL) { | 
 | 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), | 
 | 				GFP_KERNEL); | 
 | 		if (!hcd->bandwidth_mutex) { | 
 | 			kfree(hcd); | 
 | 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); | 
 | 			return NULL; | 
 | 		} | 
 | 		mutex_init(hcd->bandwidth_mutex); | 
 | 		dev_set_drvdata(dev, hcd); | 
 | 	} else { | 
 | 		mutex_lock(&usb_port_peer_mutex); | 
 | 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; | 
 | 		hcd->primary_hcd = primary_hcd; | 
 | 		primary_hcd->primary_hcd = primary_hcd; | 
 | 		hcd->shared_hcd = primary_hcd; | 
 | 		primary_hcd->shared_hcd = hcd; | 
 | 		mutex_unlock(&usb_port_peer_mutex); | 
 | 	} | 
 |  | 
 | 	kref_init(&hcd->kref); | 
 |  | 
 | 	usb_bus_init(&hcd->self); | 
 | 	hcd->self.controller = dev; | 
 | 	hcd->self.bus_name = bus_name; | 
 | 	hcd->self.uses_dma = (dev->dma_mask != NULL); | 
 |  | 
 | 	init_timer(&hcd->rh_timer); | 
 | 	hcd->rh_timer.function = rh_timer_func; | 
 | 	hcd->rh_timer.data = (unsigned long) hcd; | 
 | #ifdef CONFIG_PM_RUNTIME | 
 | 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work); | 
 | #endif | 
 |  | 
 | 	hcd->driver = driver; | 
 | 	hcd->speed = driver->flags & HCD_MASK; | 
 | 	hcd->product_desc = (driver->product_desc) ? driver->product_desc : | 
 | 			"USB Host Controller"; | 
 | 	return hcd; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_create_shared_hcd); | 
 |  | 
 | /** | 
 |  * usb_create_hcd - create and initialize an HCD structure | 
 |  * @driver: HC driver that will use this hcd | 
 |  * @dev: device for this HC, stored in hcd->self.controller | 
 |  * @bus_name: value to store in hcd->self.bus_name | 
 |  * Context: !in_interrupt() | 
 |  * | 
 |  * Allocate a struct usb_hcd, with extra space at the end for the | 
 |  * HC driver's private data.  Initialize the generic members of the | 
 |  * hcd structure. | 
 |  * | 
 |  * Return: On success, a pointer to the created and initialized HCD | 
 |  * structure. On failure (e.g. if memory is unavailable), %NULL. | 
 |  */ | 
 | struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, | 
 | 		struct device *dev, const char *bus_name) | 
 | { | 
 | 	return usb_create_shared_hcd(driver, dev, bus_name, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_create_hcd); | 
 |  | 
 | /* | 
 |  * Roothubs that share one PCI device must also share the bandwidth mutex. | 
 |  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is | 
 |  * deallocated. | 
 |  * | 
 |  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is | 
 |  * freed.  When hcd_release() is called for either hcd in a peer set | 
 |  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to | 
 |  * block new peering attempts | 
 |  */ | 
 | static void hcd_release(struct kref *kref) | 
 | { | 
 | 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); | 
 |  | 
 | 	mutex_lock(&usb_port_peer_mutex); | 
 | 	if (usb_hcd_is_primary_hcd(hcd)) | 
 | 		kfree(hcd->bandwidth_mutex); | 
 | 	if (hcd->shared_hcd) { | 
 | 		struct usb_hcd *peer = hcd->shared_hcd; | 
 |  | 
 | 		peer->shared_hcd = NULL; | 
 | 		if (peer->primary_hcd == hcd) | 
 | 			peer->primary_hcd = NULL; | 
 | 	} | 
 | 	mutex_unlock(&usb_port_peer_mutex); | 
 | 	kfree(hcd); | 
 | } | 
 |  | 
 | struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) | 
 | { | 
 | 	if (hcd) | 
 | 		kref_get (&hcd->kref); | 
 | 	return hcd; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_get_hcd); | 
 |  | 
 | void usb_put_hcd (struct usb_hcd *hcd) | 
 | { | 
 | 	if (hcd) | 
 | 		kref_put (&hcd->kref, hcd_release); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_put_hcd); | 
 |  | 
 | int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) | 
 | { | 
 | 	if (!hcd->primary_hcd) | 
 | 		return 1; | 
 | 	return hcd == hcd->primary_hcd; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); | 
 |  | 
 | int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) | 
 | { | 
 | 	if (!hcd->driver->find_raw_port_number) | 
 | 		return port1; | 
 |  | 
 | 	return hcd->driver->find_raw_port_number(hcd, port1); | 
 | } | 
 |  | 
 | static int usb_hcd_request_irqs(struct usb_hcd *hcd, | 
 | 		unsigned int irqnum, unsigned long irqflags) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	if (hcd->driver->irq) { | 
 |  | 
 | 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", | 
 | 				hcd->driver->description, hcd->self.busnum); | 
 | 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags, | 
 | 				hcd->irq_descr, hcd); | 
 | 		if (retval != 0) { | 
 | 			dev_err(hcd->self.controller, | 
 | 					"request interrupt %d failed\n", | 
 | 					irqnum); | 
 | 			return retval; | 
 | 		} | 
 | 		hcd->irq = irqnum; | 
 | 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, | 
 | 				(hcd->driver->flags & HCD_MEMORY) ? | 
 | 					"io mem" : "io base", | 
 | 					(unsigned long long)hcd->rsrc_start); | 
 | 	} else { | 
 | 		hcd->irq = 0; | 
 | 		if (hcd->rsrc_start) | 
 | 			dev_info(hcd->self.controller, "%s 0x%08llx\n", | 
 | 					(hcd->driver->flags & HCD_MEMORY) ? | 
 | 					"io mem" : "io base", | 
 | 					(unsigned long long)hcd->rsrc_start); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Before we free this root hub, flush in-flight peering attempts | 
 |  * and disable peer lookups | 
 |  */ | 
 | static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) | 
 | { | 
 | 	struct usb_device *rhdev; | 
 |  | 
 | 	mutex_lock(&usb_port_peer_mutex); | 
 | 	rhdev = hcd->self.root_hub; | 
 | 	hcd->self.root_hub = NULL; | 
 | 	mutex_unlock(&usb_port_peer_mutex); | 
 | 	usb_put_dev(rhdev); | 
 | } | 
 |  | 
 | /** | 
 |  * usb_add_hcd - finish generic HCD structure initialization and register | 
 |  * @hcd: the usb_hcd structure to initialize | 
 |  * @irqnum: Interrupt line to allocate | 
 |  * @irqflags: Interrupt type flags | 
 |  * | 
 |  * Finish the remaining parts of generic HCD initialization: allocate the | 
 |  * buffers of consistent memory, register the bus, request the IRQ line, | 
 |  * and call the driver's reset() and start() routines. | 
 |  */ | 
 | int usb_add_hcd(struct usb_hcd *hcd, | 
 | 		unsigned int irqnum, unsigned long irqflags) | 
 | { | 
 | 	int retval; | 
 | 	struct usb_device *rhdev; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { | 
 | 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); | 
 |  | 
 | 		if (IS_ERR(phy)) { | 
 | 			retval = PTR_ERR(phy); | 
 | 			if (retval == -EPROBE_DEFER) | 
 | 				return retval; | 
 | 		} else { | 
 | 			retval = usb_phy_init(phy); | 
 | 			if (retval) { | 
 | 				usb_put_phy(phy); | 
 | 				return retval; | 
 | 			} | 
 | 			hcd->usb_phy = phy; | 
 | 			hcd->remove_phy = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc); | 
 |  | 
 | 	/* Keep old behaviour if authorized_default is not in [0, 1]. */ | 
 | 	if (authorized_default < 0 || authorized_default > 1) | 
 | 		hcd->authorized_default = hcd->wireless ? 0 : 1; | 
 | 	else | 
 | 		hcd->authorized_default = authorized_default; | 
 | 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
 |  | 
 | 	/* HC is in reset state, but accessible.  Now do the one-time init, | 
 | 	 * bottom up so that hcds can customize the root hubs before hub_wq | 
 | 	 * starts talking to them.  (Note, bus id is assigned early too.) | 
 | 	 */ | 
 | 	if ((retval = hcd_buffer_create(hcd)) != 0) { | 
 | 		dev_dbg(hcd->self.controller, "pool alloc failed\n"); | 
 | 		goto err_remove_phy; | 
 | 	} | 
 |  | 
 | 	if ((retval = usb_register_bus(&hcd->self)) < 0) | 
 | 		goto err_register_bus; | 
 |  | 
 | 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { | 
 | 		dev_err(hcd->self.controller, "unable to allocate root hub\n"); | 
 | 		retval = -ENOMEM; | 
 | 		goto err_allocate_root_hub; | 
 | 	} | 
 | 	mutex_lock(&usb_port_peer_mutex); | 
 | 	hcd->self.root_hub = rhdev; | 
 | 	mutex_unlock(&usb_port_peer_mutex); | 
 |  | 
 | 	switch (hcd->speed) { | 
 | 	case HCD_USB11: | 
 | 		rhdev->speed = USB_SPEED_FULL; | 
 | 		break; | 
 | 	case HCD_USB2: | 
 | 		rhdev->speed = USB_SPEED_HIGH; | 
 | 		break; | 
 | 	case HCD_USB25: | 
 | 		rhdev->speed = USB_SPEED_WIRELESS; | 
 | 		break; | 
 | 	case HCD_USB3: | 
 | 		rhdev->speed = USB_SPEED_SUPER; | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto err_set_rh_speed; | 
 | 	} | 
 |  | 
 | 	/* wakeup flag init defaults to "everything works" for root hubs, | 
 | 	 * but drivers can override it in reset() if needed, along with | 
 | 	 * recording the overall controller's system wakeup capability. | 
 | 	 */ | 
 | 	device_set_wakeup_capable(&rhdev->dev, 1); | 
 |  | 
 | 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is | 
 | 	 * registered.  But since the controller can die at any time, | 
 | 	 * let's initialize the flag before touching the hardware. | 
 | 	 */ | 
 | 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 |  | 
 | 	/* "reset" is misnamed; its role is now one-time init. the controller | 
 | 	 * should already have been reset (and boot firmware kicked off etc). | 
 | 	 */ | 
 | 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { | 
 | 		dev_err(hcd->self.controller, "can't setup: %d\n", retval); | 
 | 		goto err_hcd_driver_setup; | 
 | 	} | 
 | 	hcd->rh_pollable = 1; | 
 |  | 
 | 	/* NOTE: root hub and controller capabilities may not be the same */ | 
 | 	if (device_can_wakeup(hcd->self.controller) | 
 | 			&& device_can_wakeup(&hcd->self.root_hub->dev)) | 
 | 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); | 
 |  | 
 | 	/* initialize tasklets */ | 
 | 	init_giveback_urb_bh(&hcd->high_prio_bh); | 
 | 	init_giveback_urb_bh(&hcd->low_prio_bh); | 
 |  | 
 | 	/* enable irqs just before we start the controller, | 
 | 	 * if the BIOS provides legacy PCI irqs. | 
 | 	 */ | 
 | 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) { | 
 | 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); | 
 | 		if (retval) | 
 | 			goto err_request_irq; | 
 | 	} | 
 |  | 
 | 	hcd->state = HC_STATE_RUNNING; | 
 | 	retval = hcd->driver->start(hcd); | 
 | 	if (retval < 0) { | 
 | 		dev_err(hcd->self.controller, "startup error %d\n", retval); | 
 | 		goto err_hcd_driver_start; | 
 | 	} | 
 |  | 
 | 	/* starting here, usbcore will pay attention to this root hub */ | 
 | 	if ((retval = register_root_hub(hcd)) != 0) | 
 | 		goto err_register_root_hub; | 
 |  | 
 | 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); | 
 | 	if (retval < 0) { | 
 | 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", | 
 | 		       retval); | 
 | 		goto error_create_attr_group; | 
 | 	} | 
 | 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) | 
 | 		usb_hcd_poll_rh_status(hcd); | 
 |  | 
 | 	return retval; | 
 |  | 
 | error_create_attr_group: | 
 | 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 	if (HC_IS_RUNNING(hcd->state)) | 
 | 		hcd->state = HC_STATE_QUIESCING; | 
 | 	spin_lock_irq(&hcd_root_hub_lock); | 
 | 	hcd->rh_registered = 0; | 
 | 	spin_unlock_irq(&hcd_root_hub_lock); | 
 |  | 
 | #ifdef CONFIG_PM_RUNTIME | 
 | 	cancel_work_sync(&hcd->wakeup_work); | 
 | #endif | 
 | 	mutex_lock(&usb_bus_list_lock); | 
 | 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */ | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 | err_register_root_hub: | 
 | 	hcd->rh_pollable = 0; | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 | 	hcd->driver->stop(hcd); | 
 | 	hcd->state = HC_STATE_HALT; | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 | err_hcd_driver_start: | 
 | 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) | 
 | 		free_irq(irqnum, hcd); | 
 | err_request_irq: | 
 | err_hcd_driver_setup: | 
 | err_set_rh_speed: | 
 | 	usb_put_invalidate_rhdev(hcd); | 
 | err_allocate_root_hub: | 
 | 	usb_deregister_bus(&hcd->self); | 
 | err_register_bus: | 
 | 	hcd_buffer_destroy(hcd); | 
 | err_remove_phy: | 
 | 	if (hcd->remove_phy && hcd->usb_phy) { | 
 | 		usb_phy_shutdown(hcd->usb_phy); | 
 | 		usb_put_phy(hcd->usb_phy); | 
 | 		hcd->usb_phy = NULL; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_add_hcd); | 
 |  | 
 | /** | 
 |  * usb_remove_hcd - shutdown processing for generic HCDs | 
 |  * @hcd: the usb_hcd structure to remove | 
 |  * Context: !in_interrupt() | 
 |  * | 
 |  * Disconnects the root hub, then reverses the effects of usb_add_hcd(), | 
 |  * invoking the HCD's stop() method. | 
 |  */ | 
 | void usb_remove_hcd(struct usb_hcd *hcd) | 
 | { | 
 | 	struct usb_device *rhdev = hcd->self.root_hub; | 
 |  | 
 | 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); | 
 |  | 
 | 	usb_get_dev(rhdev); | 
 | 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); | 
 |  | 
 | 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); | 
 | 	if (HC_IS_RUNNING (hcd->state)) | 
 | 		hcd->state = HC_STATE_QUIESCING; | 
 |  | 
 | 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); | 
 | 	spin_lock_irq (&hcd_root_hub_lock); | 
 | 	hcd->rh_registered = 0; | 
 | 	spin_unlock_irq (&hcd_root_hub_lock); | 
 |  | 
 | #ifdef CONFIG_PM_RUNTIME | 
 | 	cancel_work_sync(&hcd->wakeup_work); | 
 | #endif | 
 |  | 
 | 	mutex_lock(&usb_bus_list_lock); | 
 | 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */ | 
 | 	mutex_unlock(&usb_bus_list_lock); | 
 |  | 
 | 	/* | 
 | 	 * tasklet_kill() isn't needed here because: | 
 | 	 * - driver's disconnect() called from usb_disconnect() should | 
 | 	 *   make sure its URBs are completed during the disconnect() | 
 | 	 *   callback | 
 | 	 * | 
 | 	 * - it is too late to run complete() here since driver may have | 
 | 	 *   been removed already now | 
 | 	 */ | 
 |  | 
 | 	/* Prevent any more root-hub status calls from the timer. | 
 | 	 * The HCD might still restart the timer (if a port status change | 
 | 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke | 
 | 	 * the hub_status_data() callback. | 
 | 	 */ | 
 | 	hcd->rh_pollable = 0; | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 |  | 
 | 	hcd->driver->stop(hcd); | 
 | 	hcd->state = HC_STATE_HALT; | 
 |  | 
 | 	/* In case the HCD restarted the timer, stop it again. */ | 
 | 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); | 
 | 	del_timer_sync(&hcd->rh_timer); | 
 |  | 
 | 	if (usb_hcd_is_primary_hcd(hcd)) { | 
 | 		if (hcd->irq > 0) | 
 | 			free_irq(hcd->irq, hcd); | 
 | 	} | 
 |  | 
 | 	usb_deregister_bus(&hcd->self); | 
 | 	hcd_buffer_destroy(hcd); | 
 | 	if (hcd->remove_phy && hcd->usb_phy) { | 
 | 		usb_phy_shutdown(hcd->usb_phy); | 
 | 		usb_put_phy(hcd->usb_phy); | 
 | 		hcd->usb_phy = NULL; | 
 | 	} | 
 |  | 
 | 	usb_put_invalidate_rhdev(hcd); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_remove_hcd); | 
 |  | 
 | void | 
 | usb_hcd_platform_shutdown(struct platform_device *dev) | 
 | { | 
 | 	struct usb_hcd *hcd = platform_get_drvdata(dev); | 
 |  | 
 | 	if (hcd->driver->shutdown) | 
 | 		hcd->driver->shutdown(hcd); | 
 | } | 
 | EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) | 
 |  | 
 | struct usb_mon_operations *mon_ops; | 
 |  | 
 | /* | 
 |  * The registration is unlocked. | 
 |  * We do it this way because we do not want to lock in hot paths. | 
 |  * | 
 |  * Notice that the code is minimally error-proof. Because usbmon needs | 
 |  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. | 
 |  */ | 
 |  | 
 | int usb_mon_register (struct usb_mon_operations *ops) | 
 | { | 
 |  | 
 | 	if (mon_ops) | 
 | 		return -EBUSY; | 
 |  | 
 | 	mon_ops = ops; | 
 | 	mb(); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL (usb_mon_register); | 
 |  | 
 | void usb_mon_deregister (void) | 
 | { | 
 |  | 
 | 	if (mon_ops == NULL) { | 
 | 		printk(KERN_ERR "USB: monitor was not registered\n"); | 
 | 		return; | 
 | 	} | 
 | 	mon_ops = NULL; | 
 | 	mb(); | 
 | } | 
 | EXPORT_SYMBOL_GPL (usb_mon_deregister); | 
 |  | 
 | #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ |