| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * ipmi_bt_sm.c |
| * |
| * The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part |
| * of the driver architecture at http://sourceforge.net/projects/openipmi |
| * |
| * Author: Rocky Craig <first.last@hp.com> |
| */ |
| |
| #include <linux/kernel.h> /* For printk. */ |
| #include <linux/string.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ipmi_msgdefs.h> /* for completion codes */ |
| #include "ipmi_si_sm.h" |
| |
| #define BT_DEBUG_OFF 0 /* Used in production */ |
| #define BT_DEBUG_ENABLE 1 /* Generic messages */ |
| #define BT_DEBUG_MSG 2 /* Prints all request/response buffers */ |
| #define BT_DEBUG_STATES 4 /* Verbose look at state changes */ |
| /* |
| * BT_DEBUG_OFF must be zero to correspond to the default uninitialized |
| * value |
| */ |
| |
| static int bt_debug; /* 0 == BT_DEBUG_OFF */ |
| |
| module_param(bt_debug, int, 0644); |
| MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states"); |
| |
| /* |
| * Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds, |
| * and 64 byte buffers. However, one HP implementation wants 255 bytes of |
| * buffer (with a documented message of 160 bytes) so go for the max. |
| * Since the Open IPMI architecture is single-message oriented at this |
| * stage, the queue depth of BT is of no concern. |
| */ |
| |
| #define BT_NORMAL_TIMEOUT 5 /* seconds */ |
| #define BT_NORMAL_RETRY_LIMIT 2 |
| #define BT_RESET_DELAY 6 /* seconds after warm reset */ |
| |
| /* |
| * States are written in chronological order and usually cover |
| * multiple rows of the state table discussion in the IPMI spec. |
| */ |
| |
| enum bt_states { |
| BT_STATE_IDLE = 0, /* Order is critical in this list */ |
| BT_STATE_XACTION_START, |
| BT_STATE_WRITE_BYTES, |
| BT_STATE_WRITE_CONSUME, |
| BT_STATE_READ_WAIT, |
| BT_STATE_CLEAR_B2H, |
| BT_STATE_READ_BYTES, |
| BT_STATE_RESET1, /* These must come last */ |
| BT_STATE_RESET2, |
| BT_STATE_RESET3, |
| BT_STATE_RESTART, |
| BT_STATE_PRINTME, |
| BT_STATE_CAPABILITIES_BEGIN, |
| BT_STATE_CAPABILITIES_END, |
| BT_STATE_LONG_BUSY /* BT doesn't get hosed :-) */ |
| }; |
| |
| /* |
| * Macros seen at the end of state "case" blocks. They help with legibility |
| * and debugging. |
| */ |
| |
| #define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; } |
| |
| #define BT_SI_SM_RETURN(Y) { last_printed = BT_STATE_PRINTME; return Y; } |
| |
| struct si_sm_data { |
| enum bt_states state; |
| unsigned char seq; /* BT sequence number */ |
| struct si_sm_io *io; |
| unsigned char write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */ |
| int write_count; |
| unsigned char read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */ |
| int read_count; |
| int truncated; |
| long timeout; /* microseconds countdown */ |
| int error_retries; /* end of "common" fields */ |
| int nonzero_status; /* hung BMCs stay all 0 */ |
| enum bt_states complete; /* to divert the state machine */ |
| int BT_CAP_outreqs; |
| long BT_CAP_req2rsp; |
| int BT_CAP_retries; /* Recommended retries */ |
| }; |
| |
| #define BT_CLR_WR_PTR 0x01 /* See IPMI 1.5 table 11.6.4 */ |
| #define BT_CLR_RD_PTR 0x02 |
| #define BT_H2B_ATN 0x04 |
| #define BT_B2H_ATN 0x08 |
| #define BT_SMS_ATN 0x10 |
| #define BT_OEM0 0x20 |
| #define BT_H_BUSY 0x40 |
| #define BT_B_BUSY 0x80 |
| |
| /* |
| * Some bits are toggled on each write: write once to set it, once |
| * more to clear it; writing a zero does nothing. To absolutely |
| * clear it, check its state and write if set. This avoids the "get |
| * current then use as mask" scheme to modify one bit. Note that the |
| * variable "bt" is hardcoded into these macros. |
| */ |
| |
| #define BT_STATUS bt->io->inputb(bt->io, 0) |
| #define BT_CONTROL(x) bt->io->outputb(bt->io, 0, x) |
| |
| #define BMC2HOST bt->io->inputb(bt->io, 1) |
| #define HOST2BMC(x) bt->io->outputb(bt->io, 1, x) |
| |
| #define BT_INTMASK_R bt->io->inputb(bt->io, 2) |
| #define BT_INTMASK_W(x) bt->io->outputb(bt->io, 2, x) |
| |
| /* |
| * Convenience routines for debugging. These are not multi-open safe! |
| * Note the macros have hardcoded variables in them. |
| */ |
| |
| static char *state2txt(unsigned char state) |
| { |
| switch (state) { |
| case BT_STATE_IDLE: return("IDLE"); |
| case BT_STATE_XACTION_START: return("XACTION"); |
| case BT_STATE_WRITE_BYTES: return("WR_BYTES"); |
| case BT_STATE_WRITE_CONSUME: return("WR_CONSUME"); |
| case BT_STATE_READ_WAIT: return("RD_WAIT"); |
| case BT_STATE_CLEAR_B2H: return("CLEAR_B2H"); |
| case BT_STATE_READ_BYTES: return("RD_BYTES"); |
| case BT_STATE_RESET1: return("RESET1"); |
| case BT_STATE_RESET2: return("RESET2"); |
| case BT_STATE_RESET3: return("RESET3"); |
| case BT_STATE_RESTART: return("RESTART"); |
| case BT_STATE_LONG_BUSY: return("LONG_BUSY"); |
| case BT_STATE_CAPABILITIES_BEGIN: return("CAP_BEGIN"); |
| case BT_STATE_CAPABILITIES_END: return("CAP_END"); |
| } |
| return("BAD STATE"); |
| } |
| #define STATE2TXT state2txt(bt->state) |
| |
| static char *status2txt(unsigned char status) |
| { |
| /* |
| * This cannot be called by two threads at the same time and |
| * the buffer is always consumed immediately, so the static is |
| * safe to use. |
| */ |
| static char buf[40]; |
| |
| strcpy(buf, "[ "); |
| if (status & BT_B_BUSY) |
| strcat(buf, "B_BUSY "); |
| if (status & BT_H_BUSY) |
| strcat(buf, "H_BUSY "); |
| if (status & BT_OEM0) |
| strcat(buf, "OEM0 "); |
| if (status & BT_SMS_ATN) |
| strcat(buf, "SMS "); |
| if (status & BT_B2H_ATN) |
| strcat(buf, "B2H "); |
| if (status & BT_H2B_ATN) |
| strcat(buf, "H2B "); |
| strcat(buf, "]"); |
| return buf; |
| } |
| #define STATUS2TXT status2txt(status) |
| |
| /* called externally at insmod time, and internally on cleanup */ |
| |
| static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io) |
| { |
| memset(bt, 0, sizeof(struct si_sm_data)); |
| if (bt->io != io) { |
| /* external: one-time only things */ |
| bt->io = io; |
| bt->seq = 0; |
| } |
| bt->state = BT_STATE_IDLE; /* start here */ |
| bt->complete = BT_STATE_IDLE; /* end here */ |
| bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC; |
| bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT; |
| /* BT_CAP_outreqs == zero is a flag to read BT Capabilities */ |
| return 3; /* We claim 3 bytes of space; ought to check SPMI table */ |
| } |
| |
| /* Jam a completion code (probably an error) into a response */ |
| |
| static void force_result(struct si_sm_data *bt, unsigned char completion_code) |
| { |
| bt->read_data[0] = 4; /* # following bytes */ |
| bt->read_data[1] = bt->write_data[1] | 4; /* Odd NetFn/LUN */ |
| bt->read_data[2] = bt->write_data[2]; /* seq (ignored) */ |
| bt->read_data[3] = bt->write_data[3]; /* Command */ |
| bt->read_data[4] = completion_code; |
| bt->read_count = 5; |
| } |
| |
| /* The upper state machine starts here */ |
| |
| static int bt_start_transaction(struct si_sm_data *bt, |
| unsigned char *data, |
| unsigned int size) |
| { |
| unsigned int i; |
| |
| if (size < 2) |
| return IPMI_REQ_LEN_INVALID_ERR; |
| if (size > IPMI_MAX_MSG_LENGTH) |
| return IPMI_REQ_LEN_EXCEEDED_ERR; |
| |
| if (bt->state == BT_STATE_LONG_BUSY) |
| return IPMI_NODE_BUSY_ERR; |
| |
| if (bt->state != BT_STATE_IDLE) |
| return IPMI_NOT_IN_MY_STATE_ERR; |
| |
| if (bt_debug & BT_DEBUG_MSG) { |
| printk(KERN_WARNING "BT: +++++++++++++++++ New command\n"); |
| printk(KERN_WARNING "BT: NetFn/LUN CMD [%d data]:", size - 2); |
| for (i = 0; i < size; i ++) |
| printk(" %02x", data[i]); |
| printk("\n"); |
| } |
| bt->write_data[0] = size + 1; /* all data plus seq byte */ |
| bt->write_data[1] = *data; /* NetFn/LUN */ |
| bt->write_data[2] = bt->seq++; |
| memcpy(bt->write_data + 3, data + 1, size - 1); |
| bt->write_count = size + 2; |
| bt->error_retries = 0; |
| bt->nonzero_status = 0; |
| bt->truncated = 0; |
| bt->state = BT_STATE_XACTION_START; |
| bt->timeout = bt->BT_CAP_req2rsp; |
| force_result(bt, IPMI_ERR_UNSPECIFIED); |
| return 0; |
| } |
| |
| /* |
| * After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE |
| * it calls this. Strip out the length and seq bytes. |
| */ |
| |
| static int bt_get_result(struct si_sm_data *bt, |
| unsigned char *data, |
| unsigned int length) |
| { |
| int i, msg_len; |
| |
| msg_len = bt->read_count - 2; /* account for length & seq */ |
| if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) { |
| force_result(bt, IPMI_ERR_UNSPECIFIED); |
| msg_len = 3; |
| } |
| data[0] = bt->read_data[1]; |
| data[1] = bt->read_data[3]; |
| if (length < msg_len || bt->truncated) { |
| data[2] = IPMI_ERR_MSG_TRUNCATED; |
| msg_len = 3; |
| } else |
| memcpy(data + 2, bt->read_data + 4, msg_len - 2); |
| |
| if (bt_debug & BT_DEBUG_MSG) { |
| printk(KERN_WARNING "BT: result %d bytes:", msg_len); |
| for (i = 0; i < msg_len; i++) |
| printk(" %02x", data[i]); |
| printk("\n"); |
| } |
| return msg_len; |
| } |
| |
| /* This bit's functionality is optional */ |
| #define BT_BMC_HWRST 0x80 |
| |
| static void reset_flags(struct si_sm_data *bt) |
| { |
| if (bt_debug) |
| printk(KERN_WARNING "IPMI BT: flag reset %s\n", |
| status2txt(BT_STATUS)); |
| if (BT_STATUS & BT_H_BUSY) |
| BT_CONTROL(BT_H_BUSY); /* force clear */ |
| BT_CONTROL(BT_CLR_WR_PTR); /* always reset */ |
| BT_CONTROL(BT_SMS_ATN); /* always clear */ |
| BT_INTMASK_W(BT_BMC_HWRST); |
| } |
| |
| /* |
| * Get rid of an unwanted/stale response. This should only be needed for |
| * BMCs that support multiple outstanding requests. |
| */ |
| |
| static void drain_BMC2HOST(struct si_sm_data *bt) |
| { |
| int i, size; |
| |
| if (!(BT_STATUS & BT_B2H_ATN)) /* Not signalling a response */ |
| return; |
| |
| BT_CONTROL(BT_H_BUSY); /* now set */ |
| BT_CONTROL(BT_B2H_ATN); /* always clear */ |
| BT_STATUS; /* pause */ |
| BT_CONTROL(BT_B2H_ATN); /* some BMCs are stubborn */ |
| BT_CONTROL(BT_CLR_RD_PTR); /* always reset */ |
| if (bt_debug) |
| printk(KERN_WARNING "IPMI BT: stale response %s; ", |
| status2txt(BT_STATUS)); |
| size = BMC2HOST; |
| for (i = 0; i < size ; i++) |
| BMC2HOST; |
| BT_CONTROL(BT_H_BUSY); /* now clear */ |
| if (bt_debug) |
| printk("drained %d bytes\n", size + 1); |
| } |
| |
| static inline void write_all_bytes(struct si_sm_data *bt) |
| { |
| int i; |
| |
| if (bt_debug & BT_DEBUG_MSG) { |
| printk(KERN_WARNING "BT: write %d bytes seq=0x%02X", |
| bt->write_count, bt->seq); |
| for (i = 0; i < bt->write_count; i++) |
| printk(" %02x", bt->write_data[i]); |
| printk("\n"); |
| } |
| for (i = 0; i < bt->write_count; i++) |
| HOST2BMC(bt->write_data[i]); |
| } |
| |
| static inline int read_all_bytes(struct si_sm_data *bt) |
| { |
| unsigned int i; |
| |
| /* |
| * length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode. |
| * Keep layout of first four bytes aligned with write_data[] |
| */ |
| |
| bt->read_data[0] = BMC2HOST; |
| bt->read_count = bt->read_data[0]; |
| |
| if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) { |
| if (bt_debug & BT_DEBUG_MSG) |
| printk(KERN_WARNING "BT: bad raw rsp len=%d\n", |
| bt->read_count); |
| bt->truncated = 1; |
| return 1; /* let next XACTION START clean it up */ |
| } |
| for (i = 1; i <= bt->read_count; i++) |
| bt->read_data[i] = BMC2HOST; |
| bt->read_count++; /* Account internally for length byte */ |
| |
| if (bt_debug & BT_DEBUG_MSG) { |
| int max = bt->read_count; |
| |
| printk(KERN_WARNING "BT: got %d bytes seq=0x%02X", |
| max, bt->read_data[2]); |
| if (max > 16) |
| max = 16; |
| for (i = 0; i < max; i++) |
| printk(KERN_CONT " %02x", bt->read_data[i]); |
| printk(KERN_CONT "%s\n", bt->read_count == max ? "" : " ..."); |
| } |
| |
| /* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */ |
| if ((bt->read_data[3] == bt->write_data[3]) && |
| (bt->read_data[2] == bt->write_data[2]) && |
| ((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8))) |
| return 1; |
| |
| if (bt_debug & BT_DEBUG_MSG) |
| printk(KERN_WARNING "IPMI BT: bad packet: " |
| "want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n", |
| bt->write_data[1] | 0x04, bt->write_data[2], bt->write_data[3], |
| bt->read_data[1], bt->read_data[2], bt->read_data[3]); |
| return 0; |
| } |
| |
| /* Restart if retries are left, or return an error completion code */ |
| |
| static enum si_sm_result error_recovery(struct si_sm_data *bt, |
| unsigned char status, |
| unsigned char cCode) |
| { |
| char *reason; |
| |
| bt->timeout = bt->BT_CAP_req2rsp; |
| |
| switch (cCode) { |
| case IPMI_TIMEOUT_ERR: |
| reason = "timeout"; |
| break; |
| default: |
| reason = "internal error"; |
| break; |
| } |
| |
| printk(KERN_WARNING "IPMI BT: %s in %s %s ", /* open-ended line */ |
| reason, STATE2TXT, STATUS2TXT); |
| |
| /* |
| * Per the IPMI spec, retries are based on the sequence number |
| * known only to this module, so manage a restart here. |
| */ |
| (bt->error_retries)++; |
| if (bt->error_retries < bt->BT_CAP_retries) { |
| printk("%d retries left\n", |
| bt->BT_CAP_retries - bt->error_retries); |
| bt->state = BT_STATE_RESTART; |
| return SI_SM_CALL_WITHOUT_DELAY; |
| } |
| |
| printk(KERN_WARNING "failed %d retries, sending error response\n", |
| bt->BT_CAP_retries); |
| if (!bt->nonzero_status) |
| printk(KERN_ERR "IPMI BT: stuck, try power cycle\n"); |
| |
| /* this is most likely during insmod */ |
| else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) { |
| printk(KERN_WARNING "IPMI: BT reset (takes 5 secs)\n"); |
| bt->state = BT_STATE_RESET1; |
| return SI_SM_CALL_WITHOUT_DELAY; |
| } |
| |
| /* |
| * Concoct a useful error message, set up the next state, and |
| * be done with this sequence. |
| */ |
| |
| bt->state = BT_STATE_IDLE; |
| switch (cCode) { |
| case IPMI_TIMEOUT_ERR: |
| if (status & BT_B_BUSY) { |
| cCode = IPMI_NODE_BUSY_ERR; |
| bt->state = BT_STATE_LONG_BUSY; |
| } |
| break; |
| default: |
| break; |
| } |
| force_result(bt, cCode); |
| return SI_SM_TRANSACTION_COMPLETE; |
| } |
| |
| /* Check status and (usually) take action and change this state machine. */ |
| |
| static enum si_sm_result bt_event(struct si_sm_data *bt, long time) |
| { |
| unsigned char status, BT_CAP[8]; |
| static enum bt_states last_printed = BT_STATE_PRINTME; |
| int i; |
| |
| status = BT_STATUS; |
| bt->nonzero_status |= status; |
| if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) { |
| printk(KERN_WARNING "BT: %s %s TO=%ld - %ld \n", |
| STATE2TXT, |
| STATUS2TXT, |
| bt->timeout, |
| time); |
| last_printed = bt->state; |
| } |
| |
| /* |
| * Commands that time out may still (eventually) provide a response. |
| * This stale response will get in the way of a new response so remove |
| * it if possible (hopefully during IDLE). Even if it comes up later |
| * it will be rejected by its (now-forgotten) seq number. |
| */ |
| |
| if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) { |
| drain_BMC2HOST(bt); |
| BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); |
| } |
| |
| if ((bt->state != BT_STATE_IDLE) && |
| (bt->state < BT_STATE_PRINTME)) { |
| /* check timeout */ |
| bt->timeout -= time; |
| if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1)) |
| return error_recovery(bt, |
| status, |
| IPMI_TIMEOUT_ERR); |
| } |
| |
| switch (bt->state) { |
| |
| /* |
| * Idle state first checks for asynchronous messages from another |
| * channel, then does some opportunistic housekeeping. |
| */ |
| |
| case BT_STATE_IDLE: |
| if (status & BT_SMS_ATN) { |
| BT_CONTROL(BT_SMS_ATN); /* clear it */ |
| return SI_SM_ATTN; |
| } |
| |
| if (status & BT_H_BUSY) /* clear a leftover H_BUSY */ |
| BT_CONTROL(BT_H_BUSY); |
| |
| bt->timeout = bt->BT_CAP_req2rsp; |
| |
| /* Read BT capabilities if it hasn't been done yet */ |
| if (!bt->BT_CAP_outreqs) |
| BT_STATE_CHANGE(BT_STATE_CAPABILITIES_BEGIN, |
| SI_SM_CALL_WITHOUT_DELAY); |
| BT_SI_SM_RETURN(SI_SM_IDLE); |
| |
| case BT_STATE_XACTION_START: |
| if (status & (BT_B_BUSY | BT_H2B_ATN)) |
| BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); |
| if (BT_STATUS & BT_H_BUSY) |
| BT_CONTROL(BT_H_BUSY); /* force clear */ |
| BT_STATE_CHANGE(BT_STATE_WRITE_BYTES, |
| SI_SM_CALL_WITHOUT_DELAY); |
| |
| case BT_STATE_WRITE_BYTES: |
| if (status & BT_H_BUSY) |
| BT_CONTROL(BT_H_BUSY); /* clear */ |
| BT_CONTROL(BT_CLR_WR_PTR); |
| write_all_bytes(bt); |
| BT_CONTROL(BT_H2B_ATN); /* can clear too fast to catch */ |
| BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME, |
| SI_SM_CALL_WITHOUT_DELAY); |
| |
| case BT_STATE_WRITE_CONSUME: |
| if (status & (BT_B_BUSY | BT_H2B_ATN)) |
| BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); |
| BT_STATE_CHANGE(BT_STATE_READ_WAIT, |
| SI_SM_CALL_WITHOUT_DELAY); |
| |
| /* Spinning hard can suppress B2H_ATN and force a timeout */ |
| |
| case BT_STATE_READ_WAIT: |
| if (!(status & BT_B2H_ATN)) |
| BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); |
| BT_CONTROL(BT_H_BUSY); /* set */ |
| |
| /* |
| * Uncached, ordered writes should just proceed serially but |
| * some BMCs don't clear B2H_ATN with one hit. Fast-path a |
| * workaround without too much penalty to the general case. |
| */ |
| |
| BT_CONTROL(BT_B2H_ATN); /* clear it to ACK the BMC */ |
| BT_STATE_CHANGE(BT_STATE_CLEAR_B2H, |
| SI_SM_CALL_WITHOUT_DELAY); |
| |
| case BT_STATE_CLEAR_B2H: |
| if (status & BT_B2H_ATN) { |
| /* keep hitting it */ |
| BT_CONTROL(BT_B2H_ATN); |
| BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY); |
| } |
| BT_STATE_CHANGE(BT_STATE_READ_BYTES, |
| SI_SM_CALL_WITHOUT_DELAY); |
| |
| case BT_STATE_READ_BYTES: |
| if (!(status & BT_H_BUSY)) |
| /* check in case of retry */ |
| BT_CONTROL(BT_H_BUSY); |
| BT_CONTROL(BT_CLR_RD_PTR); /* start of BMC2HOST buffer */ |
| i = read_all_bytes(bt); /* true == packet seq match */ |
| BT_CONTROL(BT_H_BUSY); /* NOW clear */ |
| if (!i) /* Not my message */ |
| BT_STATE_CHANGE(BT_STATE_READ_WAIT, |
| SI_SM_CALL_WITHOUT_DELAY); |
| bt->state = bt->complete; |
| return bt->state == BT_STATE_IDLE ? /* where to next? */ |
| SI_SM_TRANSACTION_COMPLETE : /* normal */ |
| SI_SM_CALL_WITHOUT_DELAY; /* Startup magic */ |
| |
| case BT_STATE_LONG_BUSY: /* For example: after FW update */ |
| if (!(status & BT_B_BUSY)) { |
| reset_flags(bt); /* next state is now IDLE */ |
| bt_init_data(bt, bt->io); |
| } |
| return SI_SM_CALL_WITH_DELAY; /* No repeat printing */ |
| |
| case BT_STATE_RESET1: |
| reset_flags(bt); |
| drain_BMC2HOST(bt); |
| BT_STATE_CHANGE(BT_STATE_RESET2, |
| SI_SM_CALL_WITH_DELAY); |
| |
| case BT_STATE_RESET2: /* Send a soft reset */ |
| BT_CONTROL(BT_CLR_WR_PTR); |
| HOST2BMC(3); /* number of bytes following */ |
| HOST2BMC(0x18); /* NetFn/LUN == Application, LUN 0 */ |
| HOST2BMC(42); /* Sequence number */ |
| HOST2BMC(3); /* Cmd == Soft reset */ |
| BT_CONTROL(BT_H2B_ATN); |
| bt->timeout = BT_RESET_DELAY * USEC_PER_SEC; |
| BT_STATE_CHANGE(BT_STATE_RESET3, |
| SI_SM_CALL_WITH_DELAY); |
| |
| case BT_STATE_RESET3: /* Hold off everything for a bit */ |
| if (bt->timeout > 0) |
| return SI_SM_CALL_WITH_DELAY; |
| drain_BMC2HOST(bt); |
| BT_STATE_CHANGE(BT_STATE_RESTART, |
| SI_SM_CALL_WITH_DELAY); |
| |
| case BT_STATE_RESTART: /* don't reset retries or seq! */ |
| bt->read_count = 0; |
| bt->nonzero_status = 0; |
| bt->timeout = bt->BT_CAP_req2rsp; |
| BT_STATE_CHANGE(BT_STATE_XACTION_START, |
| SI_SM_CALL_WITH_DELAY); |
| |
| /* |
| * Get BT Capabilities, using timing of upper level state machine. |
| * Set outreqs to prevent infinite loop on timeout. |
| */ |
| case BT_STATE_CAPABILITIES_BEGIN: |
| bt->BT_CAP_outreqs = 1; |
| { |
| unsigned char GetBT_CAP[] = { 0x18, 0x36 }; |
| bt->state = BT_STATE_IDLE; |
| bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP)); |
| } |
| bt->complete = BT_STATE_CAPABILITIES_END; |
| BT_STATE_CHANGE(BT_STATE_XACTION_START, |
| SI_SM_CALL_WITH_DELAY); |
| |
| case BT_STATE_CAPABILITIES_END: |
| i = bt_get_result(bt, BT_CAP, sizeof(BT_CAP)); |
| bt_init_data(bt, bt->io); |
| if ((i == 8) && !BT_CAP[2]) { |
| bt->BT_CAP_outreqs = BT_CAP[3]; |
| bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC; |
| bt->BT_CAP_retries = BT_CAP[7]; |
| } else |
| printk(KERN_WARNING "IPMI BT: using default values\n"); |
| if (!bt->BT_CAP_outreqs) |
| bt->BT_CAP_outreqs = 1; |
| printk(KERN_WARNING "IPMI BT: req2rsp=%ld secs retries=%d\n", |
| bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries); |
| bt->timeout = bt->BT_CAP_req2rsp; |
| return SI_SM_CALL_WITHOUT_DELAY; |
| |
| default: /* should never occur */ |
| return error_recovery(bt, |
| status, |
| IPMI_ERR_UNSPECIFIED); |
| } |
| return SI_SM_CALL_WITH_DELAY; |
| } |
| |
| static int bt_detect(struct si_sm_data *bt) |
| { |
| /* |
| * It's impossible for the BT status and interrupt registers to be |
| * all 1's, (assuming a properly functioning, self-initialized BMC) |
| * but that's what you get from reading a bogus address, so we |
| * test that first. The calling routine uses negative logic. |
| */ |
| |
| if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF)) |
| return 1; |
| reset_flags(bt); |
| return 0; |
| } |
| |
| static void bt_cleanup(struct si_sm_data *bt) |
| { |
| } |
| |
| static int bt_size(void) |
| { |
| return sizeof(struct si_sm_data); |
| } |
| |
| const struct si_sm_handlers bt_smi_handlers = { |
| .init_data = bt_init_data, |
| .start_transaction = bt_start_transaction, |
| .get_result = bt_get_result, |
| .event = bt_event, |
| .detect = bt_detect, |
| .cleanup = bt_cleanup, |
| .size = bt_size, |
| }; |