| /* drivers/net/ethernet/freescale/gianfar.c | 
 |  * | 
 |  * Gianfar Ethernet Driver | 
 |  * This driver is designed for the non-CPM ethernet controllers | 
 |  * on the 85xx and 83xx family of integrated processors | 
 |  * Based on 8260_io/fcc_enet.c | 
 |  * | 
 |  * Author: Andy Fleming | 
 |  * Maintainer: Kumar Gala | 
 |  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> | 
 |  * | 
 |  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. | 
 |  * Copyright 2007 MontaVista Software, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute  it and/or modify it | 
 |  * under  the terms of  the GNU General  Public License as published by the | 
 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 |  * option) any later version. | 
 |  * | 
 |  *  Gianfar:  AKA Lambda Draconis, "Dragon" | 
 |  *  RA 11 31 24.2 | 
 |  *  Dec +69 19 52 | 
 |  *  V 3.84 | 
 |  *  B-V +1.62 | 
 |  * | 
 |  *  Theory of operation | 
 |  * | 
 |  *  The driver is initialized through of_device. Configuration information | 
 |  *  is therefore conveyed through an OF-style device tree. | 
 |  * | 
 |  *  The Gianfar Ethernet Controller uses a ring of buffer | 
 |  *  descriptors.  The beginning is indicated by a register | 
 |  *  pointing to the physical address of the start of the ring. | 
 |  *  The end is determined by a "wrap" bit being set in the | 
 |  *  last descriptor of the ring. | 
 |  * | 
 |  *  When a packet is received, the RXF bit in the | 
 |  *  IEVENT register is set, triggering an interrupt when the | 
 |  *  corresponding bit in the IMASK register is also set (if | 
 |  *  interrupt coalescing is active, then the interrupt may not | 
 |  *  happen immediately, but will wait until either a set number | 
 |  *  of frames or amount of time have passed).  In NAPI, the | 
 |  *  interrupt handler will signal there is work to be done, and | 
 |  *  exit. This method will start at the last known empty | 
 |  *  descriptor, and process every subsequent descriptor until there | 
 |  *  are none left with data (NAPI will stop after a set number of | 
 |  *  packets to give time to other tasks, but will eventually | 
 |  *  process all the packets).  The data arrives inside a | 
 |  *  pre-allocated skb, and so after the skb is passed up to the | 
 |  *  stack, a new skb must be allocated, and the address field in | 
 |  *  the buffer descriptor must be updated to indicate this new | 
 |  *  skb. | 
 |  * | 
 |  *  When the kernel requests that a packet be transmitted, the | 
 |  *  driver starts where it left off last time, and points the | 
 |  *  descriptor at the buffer which was passed in.  The driver | 
 |  *  then informs the DMA engine that there are packets ready to | 
 |  *  be transmitted.  Once the controller is finished transmitting | 
 |  *  the packet, an interrupt may be triggered (under the same | 
 |  *  conditions as for reception, but depending on the TXF bit). | 
 |  *  The driver then cleans up the buffer. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #define DEBUG | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_mdio.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/in.h> | 
 | #include <linux/net_tstamp.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #ifdef CONFIG_PPC | 
 | #include <asm/reg.h> | 
 | #include <asm/mpc85xx.h> | 
 | #endif | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/module.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/phy.h> | 
 | #include <linux/phy_fixed.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_net.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 |  | 
 | #include "gianfar.h" | 
 |  | 
 | #define TX_TIMEOUT      (5*HZ) | 
 |  | 
 | const char gfar_driver_version[] = "2.0"; | 
 |  | 
 | static int gfar_enet_open(struct net_device *dev); | 
 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); | 
 | static void gfar_reset_task(struct work_struct *work); | 
 | static void gfar_timeout(struct net_device *dev); | 
 | static int gfar_close(struct net_device *dev); | 
 | static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, | 
 | 				int alloc_cnt); | 
 | static int gfar_set_mac_address(struct net_device *dev); | 
 | static int gfar_change_mtu(struct net_device *dev, int new_mtu); | 
 | static irqreturn_t gfar_error(int irq, void *dev_id); | 
 | static irqreturn_t gfar_transmit(int irq, void *dev_id); | 
 | static irqreturn_t gfar_interrupt(int irq, void *dev_id); | 
 | static void adjust_link(struct net_device *dev); | 
 | static noinline void gfar_update_link_state(struct gfar_private *priv); | 
 | static int init_phy(struct net_device *dev); | 
 | static int gfar_probe(struct platform_device *ofdev); | 
 | static int gfar_remove(struct platform_device *ofdev); | 
 | static void free_skb_resources(struct gfar_private *priv); | 
 | static void gfar_set_multi(struct net_device *dev); | 
 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); | 
 | static void gfar_configure_serdes(struct net_device *dev); | 
 | static int gfar_poll_rx(struct napi_struct *napi, int budget); | 
 | static int gfar_poll_tx(struct napi_struct *napi, int budget); | 
 | static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); | 
 | static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void gfar_netpoll(struct net_device *dev); | 
 | #endif | 
 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); | 
 | static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); | 
 | static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb); | 
 | static void gfar_halt_nodisable(struct gfar_private *priv); | 
 | static void gfar_clear_exact_match(struct net_device *dev); | 
 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, | 
 | 				  const u8 *addr); | 
 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | 
 |  | 
 | MODULE_AUTHOR("Freescale Semiconductor, Inc"); | 
 | MODULE_DESCRIPTION("Gianfar Ethernet Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, | 
 | 			    dma_addr_t buf) | 
 | { | 
 | 	u32 lstatus; | 
 |  | 
 | 	bdp->bufPtr = cpu_to_be32(buf); | 
 |  | 
 | 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); | 
 | 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) | 
 | 		lstatus |= BD_LFLAG(RXBD_WRAP); | 
 |  | 
 | 	gfar_wmb(); | 
 |  | 
 | 	bdp->lstatus = cpu_to_be32(lstatus); | 
 | } | 
 |  | 
 | static void gfar_init_bds(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	struct txbd8 *txbdp; | 
 | 	u32 __iomem *rfbptr; | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		/* Initialize some variables in our dev structure */ | 
 | 		tx_queue->num_txbdfree = tx_queue->tx_ring_size; | 
 | 		tx_queue->dirty_tx = tx_queue->tx_bd_base; | 
 | 		tx_queue->cur_tx = tx_queue->tx_bd_base; | 
 | 		tx_queue->skb_curtx = 0; | 
 | 		tx_queue->skb_dirtytx = 0; | 
 |  | 
 | 		/* Initialize Transmit Descriptor Ring */ | 
 | 		txbdp = tx_queue->tx_bd_base; | 
 | 		for (j = 0; j < tx_queue->tx_ring_size; j++) { | 
 | 			txbdp->lstatus = 0; | 
 | 			txbdp->bufPtr = 0; | 
 | 			txbdp++; | 
 | 		} | 
 |  | 
 | 		/* Set the last descriptor in the ring to indicate wrap */ | 
 | 		txbdp--; | 
 | 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | | 
 | 					    TXBD_WRAP); | 
 | 	} | 
 |  | 
 | 	rfbptr = ®s->rfbptr0; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 |  | 
 | 		rx_queue->next_to_clean = 0; | 
 | 		rx_queue->next_to_use = 0; | 
 | 		rx_queue->next_to_alloc = 0; | 
 |  | 
 | 		/* make sure next_to_clean != next_to_use after this | 
 | 		 * by leaving at least 1 unused descriptor | 
 | 		 */ | 
 | 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); | 
 |  | 
 | 		rx_queue->rfbptr = rfbptr; | 
 | 		rfbptr += 2; | 
 | 	} | 
 | } | 
 |  | 
 | static int gfar_alloc_skb_resources(struct net_device *ndev) | 
 | { | 
 | 	void *vaddr; | 
 | 	dma_addr_t addr; | 
 | 	int i, j; | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct device *dev = priv->dev; | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 |  | 
 | 	priv->total_tx_ring_size = 0; | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; | 
 |  | 
 | 	priv->total_rx_ring_size = 0; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; | 
 |  | 
 | 	/* Allocate memory for the buffer descriptors */ | 
 | 	vaddr = dma_alloc_coherent(dev, | 
 | 				   (priv->total_tx_ring_size * | 
 | 				    sizeof(struct txbd8)) + | 
 | 				   (priv->total_rx_ring_size * | 
 | 				    sizeof(struct rxbd8)), | 
 | 				   &addr, GFP_KERNEL); | 
 | 	if (!vaddr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		tx_queue->tx_bd_base = vaddr; | 
 | 		tx_queue->tx_bd_dma_base = addr; | 
 | 		tx_queue->dev = ndev; | 
 | 		/* enet DMA only understands physical addresses */ | 
 | 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size; | 
 | 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; | 
 | 	} | 
 |  | 
 | 	/* Start the rx descriptor ring where the tx ring leaves off */ | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		rx_queue->rx_bd_base = vaddr; | 
 | 		rx_queue->rx_bd_dma_base = addr; | 
 | 		rx_queue->ndev = ndev; | 
 | 		rx_queue->dev = dev; | 
 | 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size; | 
 | 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; | 
 | 	} | 
 |  | 
 | 	/* Setup the skbuff rings */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		tx_queue->tx_skbuff = | 
 | 			kmalloc_array(tx_queue->tx_ring_size, | 
 | 				      sizeof(*tx_queue->tx_skbuff), | 
 | 				      GFP_KERNEL); | 
 | 		if (!tx_queue->tx_skbuff) | 
 | 			goto cleanup; | 
 |  | 
 | 		for (j = 0; j < tx_queue->tx_ring_size; j++) | 
 | 			tx_queue->tx_skbuff[j] = NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, | 
 | 					    sizeof(*rx_queue->rx_buff), | 
 | 					    GFP_KERNEL); | 
 | 		if (!rx_queue->rx_buff) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | 	gfar_init_bds(ndev); | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	free_skb_resources(priv); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void gfar_init_tx_rx_base(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 __iomem *baddr; | 
 | 	int i; | 
 |  | 
 | 	baddr = ®s->tbase0; | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); | 
 | 		baddr += 2; | 
 | 	} | 
 |  | 
 | 	baddr = ®s->rbase0; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); | 
 | 		baddr += 2; | 
 | 	} | 
 | } | 
 |  | 
 | static void gfar_init_rqprm(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 __iomem *baddr; | 
 | 	int i; | 
 |  | 
 | 	baddr = ®s->rqprm0; | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | | 
 | 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); | 
 | 		baddr++; | 
 | 	} | 
 | } | 
 |  | 
 | static void gfar_rx_offload_en(struct gfar_private *priv) | 
 | { | 
 | 	/* set this when rx hw offload (TOE) functions are being used */ | 
 | 	priv->uses_rxfcb = 0; | 
 |  | 
 | 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) | 
 | 		priv->uses_rxfcb = 1; | 
 |  | 
 | 	if (priv->hwts_rx_en || priv->rx_filer_enable) | 
 | 		priv->uses_rxfcb = 1; | 
 | } | 
 |  | 
 | static void gfar_mac_rx_config(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 rctrl = 0; | 
 |  | 
 | 	if (priv->rx_filer_enable) { | 
 | 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; | 
 | 		/* Program the RIR0 reg with the required distribution */ | 
 | 		if (priv->poll_mode == GFAR_SQ_POLLING) | 
 | 			gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); | 
 | 		else /* GFAR_MQ_POLLING */ | 
 | 			gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); | 
 | 	} | 
 |  | 
 | 	/* Restore PROMISC mode */ | 
 | 	if (priv->ndev->flags & IFF_PROMISC) | 
 | 		rctrl |= RCTRL_PROM; | 
 |  | 
 | 	if (priv->ndev->features & NETIF_F_RXCSUM) | 
 | 		rctrl |= RCTRL_CHECKSUMMING; | 
 |  | 
 | 	if (priv->extended_hash) | 
 | 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; | 
 |  | 
 | 	if (priv->padding) { | 
 | 		rctrl &= ~RCTRL_PAL_MASK; | 
 | 		rctrl |= RCTRL_PADDING(priv->padding); | 
 | 	} | 
 |  | 
 | 	/* Enable HW time stamping if requested from user space */ | 
 | 	if (priv->hwts_rx_en) | 
 | 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; | 
 |  | 
 | 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) | 
 | 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; | 
 |  | 
 | 	/* Clear the LFC bit */ | 
 | 	gfar_write(®s->rctrl, rctrl); | 
 | 	/* Init flow control threshold values */ | 
 | 	gfar_init_rqprm(priv); | 
 | 	gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); | 
 | 	rctrl |= RCTRL_LFC; | 
 |  | 
 | 	/* Init rctrl based on our settings */ | 
 | 	gfar_write(®s->rctrl, rctrl); | 
 | } | 
 |  | 
 | static void gfar_mac_tx_config(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tctrl = 0; | 
 |  | 
 | 	if (priv->ndev->features & NETIF_F_IP_CSUM) | 
 | 		tctrl |= TCTRL_INIT_CSUM; | 
 |  | 
 | 	if (priv->prio_sched_en) | 
 | 		tctrl |= TCTRL_TXSCHED_PRIO; | 
 | 	else { | 
 | 		tctrl |= TCTRL_TXSCHED_WRRS; | 
 | 		gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); | 
 | 		gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); | 
 | 	} | 
 |  | 
 | 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) | 
 | 		tctrl |= TCTRL_VLINS; | 
 |  | 
 | 	gfar_write(®s->tctrl, tctrl); | 
 | } | 
 |  | 
 | static void gfar_configure_coalescing(struct gfar_private *priv, | 
 | 			       unsigned long tx_mask, unsigned long rx_mask) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 __iomem *baddr; | 
 |  | 
 | 	if (priv->mode == MQ_MG_MODE) { | 
 | 		int i = 0; | 
 |  | 
 | 		baddr = ®s->txic0; | 
 | 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { | 
 | 			gfar_write(baddr + i, 0); | 
 | 			if (likely(priv->tx_queue[i]->txcoalescing)) | 
 | 				gfar_write(baddr + i, priv->tx_queue[i]->txic); | 
 | 		} | 
 |  | 
 | 		baddr = ®s->rxic0; | 
 | 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { | 
 | 			gfar_write(baddr + i, 0); | 
 | 			if (likely(priv->rx_queue[i]->rxcoalescing)) | 
 | 				gfar_write(baddr + i, priv->rx_queue[i]->rxic); | 
 | 		} | 
 | 	} else { | 
 | 		/* Backward compatible case -- even if we enable | 
 | 		 * multiple queues, there's only single reg to program | 
 | 		 */ | 
 | 		gfar_write(®s->txic, 0); | 
 | 		if (likely(priv->tx_queue[0]->txcoalescing)) | 
 | 			gfar_write(®s->txic, priv->tx_queue[0]->txic); | 
 |  | 
 | 		gfar_write(®s->rxic, 0); | 
 | 		if (unlikely(priv->rx_queue[0]->rxcoalescing)) | 
 | 			gfar_write(®s->rxic, priv->rx_queue[0]->rxic); | 
 | 	} | 
 | } | 
 |  | 
 | void gfar_configure_coalescing_all(struct gfar_private *priv) | 
 | { | 
 | 	gfar_configure_coalescing(priv, 0xFF, 0xFF); | 
 | } | 
 |  | 
 | static struct net_device_stats *gfar_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; | 
 | 	unsigned long tx_packets = 0, tx_bytes = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_packets += priv->rx_queue[i]->stats.rx_packets; | 
 | 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes; | 
 | 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped; | 
 | 	} | 
 |  | 
 | 	dev->stats.rx_packets = rx_packets; | 
 | 	dev->stats.rx_bytes   = rx_bytes; | 
 | 	dev->stats.rx_dropped = rx_dropped; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes; | 
 | 		tx_packets += priv->tx_queue[i]->stats.tx_packets; | 
 | 	} | 
 |  | 
 | 	dev->stats.tx_bytes   = tx_bytes; | 
 | 	dev->stats.tx_packets = tx_packets; | 
 |  | 
 | 	return &dev->stats; | 
 | } | 
 |  | 
 | static int gfar_set_mac_addr(struct net_device *dev, void *p) | 
 | { | 
 | 	eth_mac_addr(dev, p); | 
 |  | 
 | 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct net_device_ops gfar_netdev_ops = { | 
 | 	.ndo_open = gfar_enet_open, | 
 | 	.ndo_start_xmit = gfar_start_xmit, | 
 | 	.ndo_stop = gfar_close, | 
 | 	.ndo_change_mtu = gfar_change_mtu, | 
 | 	.ndo_set_features = gfar_set_features, | 
 | 	.ndo_set_rx_mode = gfar_set_multi, | 
 | 	.ndo_tx_timeout = gfar_timeout, | 
 | 	.ndo_do_ioctl = gfar_ioctl, | 
 | 	.ndo_get_stats = gfar_get_stats, | 
 | 	.ndo_set_mac_address = gfar_set_mac_addr, | 
 | 	.ndo_validate_addr = eth_validate_addr, | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller = gfar_netpoll, | 
 | #endif | 
 | }; | 
 |  | 
 | static void gfar_ints_disable(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		struct gfar __iomem *regs = priv->gfargrp[i].regs; | 
 | 		/* Clear IEVENT */ | 
 | 		gfar_write(®s->ievent, IEVENT_INIT_CLEAR); | 
 |  | 
 | 		/* Initialize IMASK */ | 
 | 		gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 | 	} | 
 | } | 
 |  | 
 | static void gfar_ints_enable(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		struct gfar __iomem *regs = priv->gfargrp[i].regs; | 
 | 		/* Unmask the interrupts we look for */ | 
 | 		gfar_write(®s->imask, IMASK_DEFAULT); | 
 | 	} | 
 | } | 
 |  | 
 | static int gfar_alloc_tx_queues(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), | 
 | 					    GFP_KERNEL); | 
 | 		if (!priv->tx_queue[i]) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		priv->tx_queue[i]->tx_skbuff = NULL; | 
 | 		priv->tx_queue[i]->qindex = i; | 
 | 		priv->tx_queue[i]->dev = priv->ndev; | 
 | 		spin_lock_init(&(priv->tx_queue[i]->txlock)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_alloc_rx_queues(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), | 
 | 					    GFP_KERNEL); | 
 | 		if (!priv->rx_queue[i]) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		priv->rx_queue[i]->qindex = i; | 
 | 		priv->rx_queue[i]->ndev = priv->ndev; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gfar_free_tx_queues(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		kfree(priv->tx_queue[i]); | 
 | } | 
 |  | 
 | static void gfar_free_rx_queues(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		kfree(priv->rx_queue[i]); | 
 | } | 
 |  | 
 | static void unmap_group_regs(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAXGROUPS; i++) | 
 | 		if (priv->gfargrp[i].regs) | 
 | 			iounmap(priv->gfargrp[i].regs); | 
 | } | 
 |  | 
 | static void free_gfar_dev(struct gfar_private *priv) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) | 
 | 		for (j = 0; j < GFAR_NUM_IRQS; j++) { | 
 | 			kfree(priv->gfargrp[i].irqinfo[j]); | 
 | 			priv->gfargrp[i].irqinfo[j] = NULL; | 
 | 		} | 
 |  | 
 | 	free_netdev(priv->ndev); | 
 | } | 
 |  | 
 | static void disable_napi(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		napi_disable(&priv->gfargrp[i].napi_rx); | 
 | 		napi_disable(&priv->gfargrp[i].napi_tx); | 
 | 	} | 
 | } | 
 |  | 
 | static void enable_napi(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		napi_enable(&priv->gfargrp[i].napi_rx); | 
 | 		napi_enable(&priv->gfargrp[i].napi_tx); | 
 | 	} | 
 | } | 
 |  | 
 | static int gfar_parse_group(struct device_node *np, | 
 | 			    struct gfar_private *priv, const char *model) | 
 | { | 
 | 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GFAR_NUM_IRQS; i++) { | 
 | 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), | 
 | 					  GFP_KERNEL); | 
 | 		if (!grp->irqinfo[i]) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	grp->regs = of_iomap(np, 0); | 
 | 	if (!grp->regs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); | 
 |  | 
 | 	/* If we aren't the FEC we have multiple interrupts */ | 
 | 	if (model && strcasecmp(model, "FEC")) { | 
 | 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); | 
 | 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); | 
 | 		if (!gfar_irq(grp, TX)->irq || | 
 | 		    !gfar_irq(grp, RX)->irq || | 
 | 		    !gfar_irq(grp, ER)->irq) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	grp->priv = priv; | 
 | 	spin_lock_init(&grp->grplock); | 
 | 	if (priv->mode == MQ_MG_MODE) { | 
 | 		u32 rxq_mask, txq_mask; | 
 | 		int ret; | 
 |  | 
 | 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); | 
 | 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); | 
 |  | 
 | 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); | 
 | 		if (!ret) { | 
 | 			grp->rx_bit_map = rxq_mask ? | 
 | 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); | 
 | 		} | 
 |  | 
 | 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); | 
 | 		if (!ret) { | 
 | 			grp->tx_bit_map = txq_mask ? | 
 | 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps); | 
 | 		} | 
 |  | 
 | 		if (priv->poll_mode == GFAR_SQ_POLLING) { | 
 | 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */ | 
 | 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); | 
 | 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); | 
 | 		} | 
 | 	} else { | 
 | 		grp->rx_bit_map = 0xFF; | 
 | 		grp->tx_bit_map = 0xFF; | 
 | 	} | 
 |  | 
 | 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses | 
 | 	 * right to left, so we need to revert the 8 bits to get the q index | 
 | 	 */ | 
 | 	grp->rx_bit_map = bitrev8(grp->rx_bit_map); | 
 | 	grp->tx_bit_map = bitrev8(grp->tx_bit_map); | 
 |  | 
 | 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, | 
 | 	 * also assign queues to groups | 
 | 	 */ | 
 | 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { | 
 | 		if (!grp->rx_queue) | 
 | 			grp->rx_queue = priv->rx_queue[i]; | 
 | 		grp->num_rx_queues++; | 
 | 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i); | 
 | 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); | 
 | 		priv->rx_queue[i]->grp = grp; | 
 | 	} | 
 |  | 
 | 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { | 
 | 		if (!grp->tx_queue) | 
 | 			grp->tx_queue = priv->tx_queue[i]; | 
 | 		grp->num_tx_queues++; | 
 | 		grp->tstat |= (TSTAT_CLEAR_THALT >> i); | 
 | 		priv->tqueue |= (TQUEUE_EN0 >> i); | 
 | 		priv->tx_queue[i]->grp = grp; | 
 | 	} | 
 |  | 
 | 	priv->num_grps++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_of_group_count(struct device_node *np) | 
 | { | 
 | 	struct device_node *child; | 
 | 	int num = 0; | 
 |  | 
 | 	for_each_available_child_of_node(np, child) | 
 | 		if (!of_node_cmp(child->name, "queue-group")) | 
 | 			num++; | 
 |  | 
 | 	return num; | 
 | } | 
 |  | 
 | static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) | 
 | { | 
 | 	const char *model; | 
 | 	const char *ctype; | 
 | 	const void *mac_addr; | 
 | 	int err = 0, i; | 
 | 	struct net_device *dev = NULL; | 
 | 	struct gfar_private *priv = NULL; | 
 | 	struct device_node *np = ofdev->dev.of_node; | 
 | 	struct device_node *child = NULL; | 
 | 	u32 stash_len = 0; | 
 | 	u32 stash_idx = 0; | 
 | 	unsigned int num_tx_qs, num_rx_qs; | 
 | 	unsigned short mode, poll_mode; | 
 |  | 
 | 	if (!np) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (of_device_is_compatible(np, "fsl,etsec2")) { | 
 | 		mode = MQ_MG_MODE; | 
 | 		poll_mode = GFAR_SQ_POLLING; | 
 | 	} else { | 
 | 		mode = SQ_SG_MODE; | 
 | 		poll_mode = GFAR_SQ_POLLING; | 
 | 	} | 
 |  | 
 | 	if (mode == SQ_SG_MODE) { | 
 | 		num_tx_qs = 1; | 
 | 		num_rx_qs = 1; | 
 | 	} else { /* MQ_MG_MODE */ | 
 | 		/* get the actual number of supported groups */ | 
 | 		unsigned int num_grps = gfar_of_group_count(np); | 
 |  | 
 | 		if (num_grps == 0 || num_grps > MAXGROUPS) { | 
 | 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", | 
 | 				num_grps); | 
 | 			pr_err("Cannot do alloc_etherdev, aborting\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (poll_mode == GFAR_SQ_POLLING) { | 
 | 			num_tx_qs = num_grps; /* one txq per int group */ | 
 | 			num_rx_qs = num_grps; /* one rxq per int group */ | 
 | 		} else { /* GFAR_MQ_POLLING */ | 
 | 			u32 tx_queues, rx_queues; | 
 | 			int ret; | 
 |  | 
 | 			/* parse the num of HW tx and rx queues */ | 
 | 			ret = of_property_read_u32(np, "fsl,num_tx_queues", | 
 | 						   &tx_queues); | 
 | 			num_tx_qs = ret ? 1 : tx_queues; | 
 |  | 
 | 			ret = of_property_read_u32(np, "fsl,num_rx_queues", | 
 | 						   &rx_queues); | 
 | 			num_rx_qs = ret ? 1 : rx_queues; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (num_tx_qs > MAX_TX_QS) { | 
 | 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", | 
 | 		       num_tx_qs, MAX_TX_QS); | 
 | 		pr_err("Cannot do alloc_etherdev, aborting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (num_rx_qs > MAX_RX_QS) { | 
 | 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", | 
 | 		       num_rx_qs, MAX_RX_QS); | 
 | 		pr_err("Cannot do alloc_etherdev, aborting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); | 
 | 	dev = *pdev; | 
 | 	if (NULL == dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 | 	priv->ndev = dev; | 
 |  | 
 | 	priv->mode = mode; | 
 | 	priv->poll_mode = poll_mode; | 
 |  | 
 | 	priv->num_tx_queues = num_tx_qs; | 
 | 	netif_set_real_num_rx_queues(dev, num_rx_qs); | 
 | 	priv->num_rx_queues = num_rx_qs; | 
 |  | 
 | 	err = gfar_alloc_tx_queues(priv); | 
 | 	if (err) | 
 | 		goto tx_alloc_failed; | 
 |  | 
 | 	err = gfar_alloc_rx_queues(priv); | 
 | 	if (err) | 
 | 		goto rx_alloc_failed; | 
 |  | 
 | 	err = of_property_read_string(np, "model", &model); | 
 | 	if (err) { | 
 | 		pr_err("Device model property missing, aborting\n"); | 
 | 		goto rx_alloc_failed; | 
 | 	} | 
 |  | 
 | 	/* Init Rx queue filer rule set linked list */ | 
 | 	INIT_LIST_HEAD(&priv->rx_list.list); | 
 | 	priv->rx_list.count = 0; | 
 | 	mutex_init(&priv->rx_queue_access); | 
 |  | 
 | 	for (i = 0; i < MAXGROUPS; i++) | 
 | 		priv->gfargrp[i].regs = NULL; | 
 |  | 
 | 	/* Parse and initialize group specific information */ | 
 | 	if (priv->mode == MQ_MG_MODE) { | 
 | 		for_each_available_child_of_node(np, child) { | 
 | 			if (of_node_cmp(child->name, "queue-group")) | 
 | 				continue; | 
 |  | 
 | 			err = gfar_parse_group(child, priv, model); | 
 | 			if (err) | 
 | 				goto err_grp_init; | 
 | 		} | 
 | 	} else { /* SQ_SG_MODE */ | 
 | 		err = gfar_parse_group(np, priv, model); | 
 | 		if (err) | 
 | 			goto err_grp_init; | 
 | 	} | 
 |  | 
 | 	if (of_property_read_bool(np, "bd-stash")) { | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; | 
 | 		priv->bd_stash_en = 1; | 
 | 	} | 
 |  | 
 | 	err = of_property_read_u32(np, "rx-stash-len", &stash_len); | 
 |  | 
 | 	if (err == 0) | 
 | 		priv->rx_stash_size = stash_len; | 
 |  | 
 | 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); | 
 |  | 
 | 	if (err == 0) | 
 | 		priv->rx_stash_index = stash_idx; | 
 |  | 
 | 	if (stash_len || stash_idx) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; | 
 |  | 
 | 	mac_addr = of_get_mac_address(np); | 
 |  | 
 | 	if (mac_addr) | 
 | 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN); | 
 |  | 
 | 	if (model && !strcasecmp(model, "TSEC")) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | | 
 | 				     FSL_GIANFAR_DEV_HAS_COALESCE | | 
 | 				     FSL_GIANFAR_DEV_HAS_RMON | | 
 | 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR; | 
 |  | 
 | 	if (model && !strcasecmp(model, "eTSEC")) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | | 
 | 				     FSL_GIANFAR_DEV_HAS_COALESCE | | 
 | 				     FSL_GIANFAR_DEV_HAS_RMON | | 
 | 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR | | 
 | 				     FSL_GIANFAR_DEV_HAS_CSUM | | 
 | 				     FSL_GIANFAR_DEV_HAS_VLAN | | 
 | 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | | 
 | 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | | 
 | 				     FSL_GIANFAR_DEV_HAS_TIMER | | 
 | 				     FSL_GIANFAR_DEV_HAS_RX_FILER; | 
 |  | 
 | 	err = of_property_read_string(np, "phy-connection-type", &ctype); | 
 |  | 
 | 	/* We only care about rgmii-id.  The rest are autodetected */ | 
 | 	if (err == 0 && !strcmp(ctype, "rgmii-id")) | 
 | 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID; | 
 | 	else | 
 | 		priv->interface = PHY_INTERFACE_MODE_MII; | 
 |  | 
 | 	if (of_find_property(np, "fsl,magic-packet", NULL)) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; | 
 |  | 
 | 	if (of_get_property(np, "fsl,wake-on-filer", NULL)) | 
 | 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; | 
 |  | 
 | 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0); | 
 |  | 
 | 	/* In the case of a fixed PHY, the DT node associated | 
 | 	 * to the PHY is the Ethernet MAC DT node. | 
 | 	 */ | 
 | 	if (!priv->phy_node && of_phy_is_fixed_link(np)) { | 
 | 		err = of_phy_register_fixed_link(np); | 
 | 		if (err) | 
 | 			goto err_grp_init; | 
 |  | 
 | 		priv->phy_node = of_node_get(np); | 
 | 	} | 
 |  | 
 | 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */ | 
 | 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_grp_init: | 
 | 	unmap_group_regs(priv); | 
 | rx_alloc_failed: | 
 | 	gfar_free_rx_queues(priv); | 
 | tx_alloc_failed: | 
 | 	gfar_free_tx_queues(priv); | 
 | 	free_gfar_dev(priv); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) | 
 | { | 
 | 	struct hwtstamp_config config; | 
 | 	struct gfar_private *priv = netdev_priv(netdev); | 
 |  | 
 | 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* reserved for future extensions */ | 
 | 	if (config.flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (config.tx_type) { | 
 | 	case HWTSTAMP_TX_OFF: | 
 | 		priv->hwts_tx_en = 0; | 
 | 		break; | 
 | 	case HWTSTAMP_TX_ON: | 
 | 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) | 
 | 			return -ERANGE; | 
 | 		priv->hwts_tx_en = 1; | 
 | 		break; | 
 | 	default: | 
 | 		return -ERANGE; | 
 | 	} | 
 |  | 
 | 	switch (config.rx_filter) { | 
 | 	case HWTSTAMP_FILTER_NONE: | 
 | 		if (priv->hwts_rx_en) { | 
 | 			priv->hwts_rx_en = 0; | 
 | 			reset_gfar(netdev); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) | 
 | 			return -ERANGE; | 
 | 		if (!priv->hwts_rx_en) { | 
 | 			priv->hwts_rx_en = 1; | 
 | 			reset_gfar(netdev); | 
 | 		} | 
 | 		config.rx_filter = HWTSTAMP_FILTER_ALL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
 | 		-EFAULT : 0; | 
 | } | 
 |  | 
 | static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) | 
 | { | 
 | 	struct hwtstamp_config config; | 
 | 	struct gfar_private *priv = netdev_priv(netdev); | 
 |  | 
 | 	config.flags = 0; | 
 | 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; | 
 | 	config.rx_filter = (priv->hwts_rx_en ? | 
 | 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); | 
 |  | 
 | 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
 | 		-EFAULT : 0; | 
 | } | 
 |  | 
 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct phy_device *phydev = dev->phydev; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (cmd == SIOCSHWTSTAMP) | 
 | 		return gfar_hwtstamp_set(dev, rq); | 
 | 	if (cmd == SIOCGHWTSTAMP) | 
 | 		return gfar_hwtstamp_get(dev, rq); | 
 |  | 
 | 	if (!phydev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return phy_mii_ioctl(phydev, rq, cmd); | 
 | } | 
 |  | 
 | static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, | 
 | 				   u32 class) | 
 | { | 
 | 	u32 rqfpr = FPR_FILER_MASK; | 
 | 	u32 rqfcr = 0x0; | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; | 
 | 	priv->ftp_rqfpr[rqfar] = rqfpr; | 
 | 	priv->ftp_rqfcr[rqfar] = rqfcr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_NOMATCH; | 
 | 	priv->ftp_rqfpr[rqfar] = rqfpr; | 
 | 	priv->ftp_rqfcr[rqfar] = rqfcr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; | 
 | 	rqfpr = class; | 
 | 	priv->ftp_rqfcr[rqfar] = rqfcr; | 
 | 	priv->ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar--; | 
 | 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; | 
 | 	rqfpr = class; | 
 | 	priv->ftp_rqfcr[rqfar] = rqfcr; | 
 | 	priv->ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	return rqfar; | 
 | } | 
 |  | 
 | static void gfar_init_filer_table(struct gfar_private *priv) | 
 | { | 
 | 	int i = 0x0; | 
 | 	u32 rqfar = MAX_FILER_IDX; | 
 | 	u32 rqfcr = 0x0; | 
 | 	u32 rqfpr = FPR_FILER_MASK; | 
 |  | 
 | 	/* Default rule */ | 
 | 	rqfcr = RQFCR_CMP_MATCH; | 
 | 	priv->ftp_rqfcr[rqfar] = rqfcr; | 
 | 	priv->ftp_rqfpr[rqfar] = rqfpr; | 
 | 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr); | 
 |  | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); | 
 | 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); | 
 |  | 
 | 	/* cur_filer_idx indicated the first non-masked rule */ | 
 | 	priv->cur_filer_idx = rqfar; | 
 |  | 
 | 	/* Rest are masked rules */ | 
 | 	rqfcr = RQFCR_CMP_NOMATCH; | 
 | 	for (i = 0; i < rqfar; i++) { | 
 | 		priv->ftp_rqfcr[i] = rqfcr; | 
 | 		priv->ftp_rqfpr[i] = rqfpr; | 
 | 		gfar_write_filer(priv, i, rqfcr, rqfpr); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC | 
 | static void __gfar_detect_errata_83xx(struct gfar_private *priv) | 
 | { | 
 | 	unsigned int pvr = mfspr(SPRN_PVR); | 
 | 	unsigned int svr = mfspr(SPRN_SVR); | 
 | 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ | 
 | 	unsigned int rev = svr & 0xffff; | 
 |  | 
 | 	/* MPC8313 Rev 2.0 and higher; All MPC837x */ | 
 | 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || | 
 | 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) | 
 | 		priv->errata |= GFAR_ERRATA_74; | 
 |  | 
 | 	/* MPC8313 and MPC837x all rev */ | 
 | 	if ((pvr == 0x80850010 && mod == 0x80b0) || | 
 | 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) | 
 | 		priv->errata |= GFAR_ERRATA_76; | 
 |  | 
 | 	/* MPC8313 Rev < 2.0 */ | 
 | 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) | 
 | 		priv->errata |= GFAR_ERRATA_12; | 
 | } | 
 |  | 
 | static void __gfar_detect_errata_85xx(struct gfar_private *priv) | 
 | { | 
 | 	unsigned int svr = mfspr(SPRN_SVR); | 
 |  | 
 | 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) | 
 | 		priv->errata |= GFAR_ERRATA_12; | 
 | 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */ | 
 | 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || | 
 | 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || | 
 | 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) | 
 | 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ | 
 | } | 
 | #endif | 
 |  | 
 | static void gfar_detect_errata(struct gfar_private *priv) | 
 | { | 
 | 	struct device *dev = &priv->ofdev->dev; | 
 |  | 
 | 	/* no plans to fix */ | 
 | 	priv->errata |= GFAR_ERRATA_A002; | 
 |  | 
 | #ifdef CONFIG_PPC | 
 | 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) | 
 | 		__gfar_detect_errata_85xx(priv); | 
 | 	else /* non-mpc85xx parts, i.e. e300 core based */ | 
 | 		__gfar_detect_errata_83xx(priv); | 
 | #endif | 
 |  | 
 | 	if (priv->errata) | 
 | 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", | 
 | 			 priv->errata); | 
 | } | 
 |  | 
 | void gfar_mac_reset(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 |  | 
 | 	/* Reset MAC layer */ | 
 | 	gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); | 
 |  | 
 | 	/* We need to delay at least 3 TX clocks */ | 
 | 	udelay(3); | 
 |  | 
 | 	/* the soft reset bit is not self-resetting, so we need to | 
 | 	 * clear it before resuming normal operation | 
 | 	 */ | 
 | 	gfar_write(®s->maccfg1, 0); | 
 |  | 
 | 	udelay(3); | 
 |  | 
 | 	gfar_rx_offload_en(priv); | 
 |  | 
 | 	/* Initialize the max receive frame/buffer lengths */ | 
 | 	gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); | 
 | 	gfar_write(®s->mrblr, GFAR_RXB_SIZE); | 
 |  | 
 | 	/* Initialize the Minimum Frame Length Register */ | 
 | 	gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); | 
 |  | 
 | 	/* Initialize MACCFG2. */ | 
 | 	tempval = MACCFG2_INIT_SETTINGS; | 
 |  | 
 | 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 | 
 | 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1, | 
 | 	 * and by checking RxBD[LG] and discarding larger than MAXFRM. | 
 | 	 */ | 
 | 	if (gfar_has_errata(priv, GFAR_ERRATA_74)) | 
 | 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; | 
 |  | 
 | 	gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 	/* Clear mac addr hash registers */ | 
 | 	gfar_write(®s->igaddr0, 0); | 
 | 	gfar_write(®s->igaddr1, 0); | 
 | 	gfar_write(®s->igaddr2, 0); | 
 | 	gfar_write(®s->igaddr3, 0); | 
 | 	gfar_write(®s->igaddr4, 0); | 
 | 	gfar_write(®s->igaddr5, 0); | 
 | 	gfar_write(®s->igaddr6, 0); | 
 | 	gfar_write(®s->igaddr7, 0); | 
 |  | 
 | 	gfar_write(®s->gaddr0, 0); | 
 | 	gfar_write(®s->gaddr1, 0); | 
 | 	gfar_write(®s->gaddr2, 0); | 
 | 	gfar_write(®s->gaddr3, 0); | 
 | 	gfar_write(®s->gaddr4, 0); | 
 | 	gfar_write(®s->gaddr5, 0); | 
 | 	gfar_write(®s->gaddr6, 0); | 
 | 	gfar_write(®s->gaddr7, 0); | 
 |  | 
 | 	if (priv->extended_hash) | 
 | 		gfar_clear_exact_match(priv->ndev); | 
 |  | 
 | 	gfar_mac_rx_config(priv); | 
 |  | 
 | 	gfar_mac_tx_config(priv); | 
 |  | 
 | 	gfar_set_mac_address(priv->ndev); | 
 |  | 
 | 	gfar_set_multi(priv->ndev); | 
 |  | 
 | 	/* clear ievent and imask before configuring coalescing */ | 
 | 	gfar_ints_disable(priv); | 
 |  | 
 | 	/* Configure the coalescing support */ | 
 | 	gfar_configure_coalescing_all(priv); | 
 | } | 
 |  | 
 | static void gfar_hw_init(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 attrs; | 
 |  | 
 | 	/* Stop the DMA engine now, in case it was running before | 
 | 	 * (The firmware could have used it, and left it running). | 
 | 	 */ | 
 | 	gfar_halt(priv); | 
 |  | 
 | 	gfar_mac_reset(priv); | 
 |  | 
 | 	/* Zero out the rmon mib registers if it has them */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { | 
 | 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); | 
 |  | 
 | 		/* Mask off the CAM interrupts */ | 
 | 		gfar_write(®s->rmon.cam1, 0xffffffff); | 
 | 		gfar_write(®s->rmon.cam2, 0xffffffff); | 
 | 	} | 
 |  | 
 | 	/* Initialize ECNTRL */ | 
 | 	gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); | 
 |  | 
 | 	/* Set the extraction length and index */ | 
 | 	attrs = ATTRELI_EL(priv->rx_stash_size) | | 
 | 		ATTRELI_EI(priv->rx_stash_index); | 
 |  | 
 | 	gfar_write(®s->attreli, attrs); | 
 |  | 
 | 	/* Start with defaults, and add stashing | 
 | 	 * depending on driver parameters | 
 | 	 */ | 
 | 	attrs = ATTR_INIT_SETTINGS; | 
 |  | 
 | 	if (priv->bd_stash_en) | 
 | 		attrs |= ATTR_BDSTASH; | 
 |  | 
 | 	if (priv->rx_stash_size != 0) | 
 | 		attrs |= ATTR_BUFSTASH; | 
 |  | 
 | 	gfar_write(®s->attr, attrs); | 
 |  | 
 | 	/* FIFO configs */ | 
 | 	gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); | 
 | 	gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); | 
 | 	gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); | 
 |  | 
 | 	/* Program the interrupt steering regs, only for MG devices */ | 
 | 	if (priv->num_grps > 1) | 
 | 		gfar_write_isrg(priv); | 
 | } | 
 |  | 
 | static void gfar_init_addr_hash_table(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { | 
 | 		priv->extended_hash = 1; | 
 | 		priv->hash_width = 9; | 
 |  | 
 | 		priv->hash_regs[0] = ®s->igaddr0; | 
 | 		priv->hash_regs[1] = ®s->igaddr1; | 
 | 		priv->hash_regs[2] = ®s->igaddr2; | 
 | 		priv->hash_regs[3] = ®s->igaddr3; | 
 | 		priv->hash_regs[4] = ®s->igaddr4; | 
 | 		priv->hash_regs[5] = ®s->igaddr5; | 
 | 		priv->hash_regs[6] = ®s->igaddr6; | 
 | 		priv->hash_regs[7] = ®s->igaddr7; | 
 | 		priv->hash_regs[8] = ®s->gaddr0; | 
 | 		priv->hash_regs[9] = ®s->gaddr1; | 
 | 		priv->hash_regs[10] = ®s->gaddr2; | 
 | 		priv->hash_regs[11] = ®s->gaddr3; | 
 | 		priv->hash_regs[12] = ®s->gaddr4; | 
 | 		priv->hash_regs[13] = ®s->gaddr5; | 
 | 		priv->hash_regs[14] = ®s->gaddr6; | 
 | 		priv->hash_regs[15] = ®s->gaddr7; | 
 |  | 
 | 	} else { | 
 | 		priv->extended_hash = 0; | 
 | 		priv->hash_width = 8; | 
 |  | 
 | 		priv->hash_regs[0] = ®s->gaddr0; | 
 | 		priv->hash_regs[1] = ®s->gaddr1; | 
 | 		priv->hash_regs[2] = ®s->gaddr2; | 
 | 		priv->hash_regs[3] = ®s->gaddr3; | 
 | 		priv->hash_regs[4] = ®s->gaddr4; | 
 | 		priv->hash_regs[5] = ®s->gaddr5; | 
 | 		priv->hash_regs[6] = ®s->gaddr6; | 
 | 		priv->hash_regs[7] = ®s->gaddr7; | 
 | 	} | 
 | } | 
 |  | 
 | /* Set up the ethernet device structure, private data, | 
 |  * and anything else we need before we start | 
 |  */ | 
 | static int gfar_probe(struct platform_device *ofdev) | 
 | { | 
 | 	struct net_device *dev = NULL; | 
 | 	struct gfar_private *priv = NULL; | 
 | 	int err = 0, i; | 
 |  | 
 | 	err = gfar_of_init(ofdev, &dev); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 | 	priv->ndev = dev; | 
 | 	priv->ofdev = ofdev; | 
 | 	priv->dev = &ofdev->dev; | 
 | 	SET_NETDEV_DEV(dev, &ofdev->dev); | 
 |  | 
 | 	INIT_WORK(&priv->reset_task, gfar_reset_task); | 
 |  | 
 | 	platform_set_drvdata(ofdev, priv); | 
 |  | 
 | 	gfar_detect_errata(priv); | 
 |  | 
 | 	/* Set the dev->base_addr to the gfar reg region */ | 
 | 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs; | 
 |  | 
 | 	/* Fill in the dev structure */ | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->mtu = 1500; | 
 | 	dev->netdev_ops = &gfar_netdev_ops; | 
 | 	dev->ethtool_ops = &gfar_ethtool_ops; | 
 |  | 
 | 	/* Register for napi ...We are registering NAPI for each grp */ | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		if (priv->poll_mode == GFAR_SQ_POLLING) { | 
 | 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx, | 
 | 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT); | 
 | 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, | 
 | 				       gfar_poll_tx_sq, 2); | 
 | 		} else { | 
 | 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx, | 
 | 				       gfar_poll_rx, GFAR_DEV_WEIGHT); | 
 | 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, | 
 | 				       gfar_poll_tx, 2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { | 
 | 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | | 
 | 				   NETIF_F_RXCSUM; | 
 | 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | | 
 | 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { | 
 | 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | | 
 | 				    NETIF_F_HW_VLAN_CTAG_RX; | 
 | 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX; | 
 | 	} | 
 |  | 
 | 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; | 
 |  | 
 | 	gfar_init_addr_hash_table(priv); | 
 |  | 
 | 	/* Insert receive time stamps into padding alignment bytes */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) | 
 | 		priv->padding = 8; | 
 |  | 
 | 	if (dev->features & NETIF_F_IP_CSUM || | 
 | 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) | 
 | 		dev->needed_headroom = GMAC_FCB_LEN; | 
 |  | 
 | 	/* Initializing some of the rx/tx queue level parameters */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; | 
 | 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; | 
 | 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; | 
 | 		priv->tx_queue[i]->txic = DEFAULT_TXIC; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; | 
 | 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; | 
 | 		priv->rx_queue[i]->rxic = DEFAULT_RXIC; | 
 | 	} | 
 |  | 
 | 	/* Always enable rx filer if available */ | 
 | 	priv->rx_filer_enable = | 
 | 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; | 
 | 	/* Enable most messages by default */ | 
 | 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; | 
 | 	/* use pritority h/w tx queue scheduling for single queue devices */ | 
 | 	if (priv->num_tx_queues == 1) | 
 | 		priv->prio_sched_en = 1; | 
 |  | 
 | 	set_bit(GFAR_DOWN, &priv->state); | 
 |  | 
 | 	gfar_hw_init(priv); | 
 |  | 
 | 	/* Carrier starts down, phylib will bring it up */ | 
 | 	netif_carrier_off(dev); | 
 |  | 
 | 	err = register_netdev(dev); | 
 |  | 
 | 	if (err) { | 
 | 		pr_err("%s: Cannot register net device, aborting\n", dev->name); | 
 | 		goto register_fail; | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) | 
 | 		priv->wol_supported |= GFAR_WOL_MAGIC; | 
 |  | 
 | 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && | 
 | 	    priv->rx_filer_enable) | 
 | 		priv->wol_supported |= GFAR_WOL_FILER_UCAST; | 
 |  | 
 | 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); | 
 |  | 
 | 	/* fill out IRQ number and name fields */ | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		struct gfar_priv_grp *grp = &priv->gfargrp[i]; | 
 | 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", | 
 | 				dev->name, "_g", '0' + i, "_tx"); | 
 | 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", | 
 | 				dev->name, "_g", '0' + i, "_rx"); | 
 | 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", | 
 | 				dev->name, "_g", '0' + i, "_er"); | 
 | 		} else | 
 | 			strcpy(gfar_irq(grp, TX)->name, dev->name); | 
 | 	} | 
 |  | 
 | 	/* Initialize the filer table */ | 
 | 	gfar_init_filer_table(priv); | 
 |  | 
 | 	/* Print out the device info */ | 
 | 	netdev_info(dev, "mac: %pM\n", dev->dev_addr); | 
 |  | 
 | 	/* Even more device info helps when determining which kernel | 
 | 	 * provided which set of benchmarks. | 
 | 	 */ | 
 | 	netdev_info(dev, "Running with NAPI enabled\n"); | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) | 
 | 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", | 
 | 			    i, priv->rx_queue[i]->rx_ring_size); | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) | 
 | 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", | 
 | 			    i, priv->tx_queue[i]->tx_ring_size); | 
 |  | 
 | 	return 0; | 
 |  | 
 | register_fail: | 
 | 	unmap_group_regs(priv); | 
 | 	gfar_free_rx_queues(priv); | 
 | 	gfar_free_tx_queues(priv); | 
 | 	of_node_put(priv->phy_node); | 
 | 	of_node_put(priv->tbi_node); | 
 | 	free_gfar_dev(priv); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int gfar_remove(struct platform_device *ofdev) | 
 | { | 
 | 	struct gfar_private *priv = platform_get_drvdata(ofdev); | 
 |  | 
 | 	of_node_put(priv->phy_node); | 
 | 	of_node_put(priv->tbi_node); | 
 |  | 
 | 	unregister_netdev(priv->ndev); | 
 | 	unmap_group_regs(priv); | 
 | 	gfar_free_rx_queues(priv); | 
 | 	gfar_free_tx_queues(priv); | 
 | 	free_gfar_dev(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 |  | 
 | static void __gfar_filer_disable(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 temp; | 
 |  | 
 | 	temp = gfar_read(®s->rctrl); | 
 | 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); | 
 | 	gfar_write(®s->rctrl, temp); | 
 | } | 
 |  | 
 | static void __gfar_filer_enable(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 temp; | 
 |  | 
 | 	temp = gfar_read(®s->rctrl); | 
 | 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; | 
 | 	gfar_write(®s->rctrl, temp); | 
 | } | 
 |  | 
 | /* Filer rules implementing wol capabilities */ | 
 | static void gfar_filer_config_wol(struct gfar_private *priv) | 
 | { | 
 | 	unsigned int i; | 
 | 	u32 rqfcr; | 
 |  | 
 | 	__gfar_filer_disable(priv); | 
 |  | 
 | 	/* clear the filer table, reject any packet by default */ | 
 | 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; | 
 | 	for (i = 0; i <= MAX_FILER_IDX; i++) | 
 | 		gfar_write_filer(priv, i, rqfcr, 0); | 
 |  | 
 | 	i = 0; | 
 | 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { | 
 | 		/* unicast packet, accept it */ | 
 | 		struct net_device *ndev = priv->ndev; | 
 | 		/* get the default rx queue index */ | 
 | 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; | 
 | 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | | 
 | 				    (ndev->dev_addr[1] << 8) | | 
 | 				     ndev->dev_addr[2]; | 
 |  | 
 | 		rqfcr = (qindex << 10) | RQFCR_AND | | 
 | 			RQFCR_CMP_EXACT | RQFCR_PID_DAH; | 
 |  | 
 | 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); | 
 |  | 
 | 		dest_mac_addr = (ndev->dev_addr[3] << 16) | | 
 | 				(ndev->dev_addr[4] << 8) | | 
 | 				 ndev->dev_addr[5]; | 
 | 		rqfcr = (qindex << 10) | RQFCR_GPI | | 
 | 			RQFCR_CMP_EXACT | RQFCR_PID_DAL; | 
 | 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); | 
 | 	} | 
 |  | 
 | 	__gfar_filer_enable(priv); | 
 | } | 
 |  | 
 | static void gfar_filer_restore_table(struct gfar_private *priv) | 
 | { | 
 | 	u32 rqfcr, rqfpr; | 
 | 	unsigned int i; | 
 |  | 
 | 	__gfar_filer_disable(priv); | 
 |  | 
 | 	for (i = 0; i <= MAX_FILER_IDX; i++) { | 
 | 		rqfcr = priv->ftp_rqfcr[i]; | 
 | 		rqfpr = priv->ftp_rqfpr[i]; | 
 | 		gfar_write_filer(priv, i, rqfcr, rqfpr); | 
 | 	} | 
 |  | 
 | 	__gfar_filer_enable(priv); | 
 | } | 
 |  | 
 | /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ | 
 | static void gfar_start_wol_filer(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	int i = 0; | 
 |  | 
 | 	/* Enable Rx hw queues */ | 
 | 	gfar_write(®s->rqueue, priv->rqueue); | 
 |  | 
 | 	/* Initialize DMACTRL to have WWR and WOP */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval |= DMACTRL_INIT_SETTINGS; | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	/* Make sure we aren't stopped */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval &= ~DMACTRL_GRS; | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs = priv->gfargrp[i].regs; | 
 | 		/* Clear RHLT, so that the DMA starts polling now */ | 
 | 		gfar_write(®s->rstat, priv->gfargrp[i].rstat); | 
 | 		/* enable the Filer General Purpose Interrupt */ | 
 | 		gfar_write(®s->imask, IMASK_FGPI); | 
 | 	} | 
 |  | 
 | 	/* Enable Rx DMA */ | 
 | 	tempval = gfar_read(®s->maccfg1); | 
 | 	tempval |= MACCFG1_RX_EN; | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 | } | 
 |  | 
 | static int gfar_suspend(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	u16 wol = priv->wol_opts; | 
 |  | 
 | 	if (!netif_running(ndev)) | 
 | 		return 0; | 
 |  | 
 | 	disable_napi(priv); | 
 | 	netif_tx_lock(ndev); | 
 | 	netif_device_detach(ndev); | 
 | 	netif_tx_unlock(ndev); | 
 |  | 
 | 	gfar_halt(priv); | 
 |  | 
 | 	if (wol & GFAR_WOL_MAGIC) { | 
 | 		/* Enable interrupt on Magic Packet */ | 
 | 		gfar_write(®s->imask, IMASK_MAG); | 
 |  | 
 | 		/* Enable Magic Packet mode */ | 
 | 		tempval = gfar_read(®s->maccfg2); | 
 | 		tempval |= MACCFG2_MPEN; | 
 | 		gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 		/* re-enable the Rx block */ | 
 | 		tempval = gfar_read(®s->maccfg1); | 
 | 		tempval |= MACCFG1_RX_EN; | 
 | 		gfar_write(®s->maccfg1, tempval); | 
 |  | 
 | 	} else if (wol & GFAR_WOL_FILER_UCAST) { | 
 | 		gfar_filer_config_wol(priv); | 
 | 		gfar_start_wol_filer(priv); | 
 |  | 
 | 	} else { | 
 | 		phy_stop(ndev->phydev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_resume(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	u16 wol = priv->wol_opts; | 
 |  | 
 | 	if (!netif_running(ndev)) | 
 | 		return 0; | 
 |  | 
 | 	if (wol & GFAR_WOL_MAGIC) { | 
 | 		/* Disable Magic Packet mode */ | 
 | 		tempval = gfar_read(®s->maccfg2); | 
 | 		tempval &= ~MACCFG2_MPEN; | 
 | 		gfar_write(®s->maccfg2, tempval); | 
 |  | 
 | 	} else if (wol & GFAR_WOL_FILER_UCAST) { | 
 | 		/* need to stop rx only, tx is already down */ | 
 | 		gfar_halt(priv); | 
 | 		gfar_filer_restore_table(priv); | 
 |  | 
 | 	} else { | 
 | 		phy_start(ndev->phydev); | 
 | 	} | 
 |  | 
 | 	gfar_start(priv); | 
 |  | 
 | 	netif_device_attach(ndev); | 
 | 	enable_napi(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_restore(struct device *dev) | 
 | { | 
 | 	struct gfar_private *priv = dev_get_drvdata(dev); | 
 | 	struct net_device *ndev = priv->ndev; | 
 |  | 
 | 	if (!netif_running(ndev)) { | 
 | 		netif_device_attach(ndev); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	gfar_init_bds(ndev); | 
 |  | 
 | 	gfar_mac_reset(priv); | 
 |  | 
 | 	gfar_init_tx_rx_base(priv); | 
 |  | 
 | 	gfar_start(priv); | 
 |  | 
 | 	priv->oldlink = 0; | 
 | 	priv->oldspeed = 0; | 
 | 	priv->oldduplex = -1; | 
 |  | 
 | 	if (ndev->phydev) | 
 | 		phy_start(ndev->phydev); | 
 |  | 
 | 	netif_device_attach(ndev); | 
 | 	enable_napi(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dev_pm_ops gfar_pm_ops = { | 
 | 	.suspend = gfar_suspend, | 
 | 	.resume = gfar_resume, | 
 | 	.freeze = gfar_suspend, | 
 | 	.thaw = gfar_resume, | 
 | 	.restore = gfar_restore, | 
 | }; | 
 |  | 
 | #define GFAR_PM_OPS (&gfar_pm_ops) | 
 |  | 
 | #else | 
 |  | 
 | #define GFAR_PM_OPS NULL | 
 |  | 
 | #endif | 
 |  | 
 | /* Reads the controller's registers to determine what interface | 
 |  * connects it to the PHY. | 
 |  */ | 
 | static phy_interface_t gfar_get_interface(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 ecntrl; | 
 |  | 
 | 	ecntrl = gfar_read(®s->ecntrl); | 
 |  | 
 | 	if (ecntrl & ECNTRL_SGMII_MODE) | 
 | 		return PHY_INTERFACE_MODE_SGMII; | 
 |  | 
 | 	if (ecntrl & ECNTRL_TBI_MODE) { | 
 | 		if (ecntrl & ECNTRL_REDUCED_MODE) | 
 | 			return PHY_INTERFACE_MODE_RTBI; | 
 | 		else | 
 | 			return PHY_INTERFACE_MODE_TBI; | 
 | 	} | 
 |  | 
 | 	if (ecntrl & ECNTRL_REDUCED_MODE) { | 
 | 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) { | 
 | 			return PHY_INTERFACE_MODE_RMII; | 
 | 		} | 
 | 		else { | 
 | 			phy_interface_t interface = priv->interface; | 
 |  | 
 | 			/* This isn't autodetected right now, so it must | 
 | 			 * be set by the device tree or platform code. | 
 | 			 */ | 
 | 			if (interface == PHY_INTERFACE_MODE_RGMII_ID) | 
 | 				return PHY_INTERFACE_MODE_RGMII_ID; | 
 |  | 
 | 			return PHY_INTERFACE_MODE_RGMII; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) | 
 | 		return PHY_INTERFACE_MODE_GMII; | 
 |  | 
 | 	return PHY_INTERFACE_MODE_MII; | 
 | } | 
 |  | 
 |  | 
 | /* Initializes driver's PHY state, and attaches to the PHY. | 
 |  * Returns 0 on success. | 
 |  */ | 
 | static int init_phy(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	uint gigabit_support = | 
 | 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? | 
 | 		GFAR_SUPPORTED_GBIT : 0; | 
 | 	phy_interface_t interface; | 
 | 	struct phy_device *phydev; | 
 |  | 
 | 	priv->oldlink = 0; | 
 | 	priv->oldspeed = 0; | 
 | 	priv->oldduplex = -1; | 
 |  | 
 | 	interface = gfar_get_interface(dev); | 
 |  | 
 | 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, | 
 | 				interface); | 
 | 	if (!phydev) { | 
 | 		dev_err(&dev->dev, "could not attach to PHY\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (interface == PHY_INTERFACE_MODE_SGMII) | 
 | 		gfar_configure_serdes(dev); | 
 |  | 
 | 	/* Remove any features not supported by the controller */ | 
 | 	phydev->supported &= (GFAR_SUPPORTED | gigabit_support); | 
 | 	phydev->advertising = phydev->supported; | 
 |  | 
 | 	/* Add support for flow control, but don't advertise it by default */ | 
 | 	phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Initialize TBI PHY interface for communicating with the | 
 |  * SERDES lynx PHY on the chip.  We communicate with this PHY | 
 |  * through the MDIO bus on each controller, treating it as a | 
 |  * "normal" PHY at the address found in the TBIPA register.  We assume | 
 |  * that the TBIPA register is valid.  Either the MDIO bus code will set | 
 |  * it to a value that doesn't conflict with other PHYs on the bus, or the | 
 |  * value doesn't matter, as there are no other PHYs on the bus. | 
 |  */ | 
 | static void gfar_configure_serdes(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct phy_device *tbiphy; | 
 |  | 
 | 	if (!priv->tbi_node) { | 
 | 		dev_warn(&dev->dev, "error: SGMII mode requires that the " | 
 | 				    "device tree specify a tbi-handle\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tbiphy = of_phy_find_device(priv->tbi_node); | 
 | 	if (!tbiphy) { | 
 | 		dev_err(&dev->dev, "error: Could not get TBI device\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* If the link is already up, we must already be ok, and don't need to | 
 | 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured | 
 | 	 * everything for us?  Resetting it takes the link down and requires | 
 | 	 * several seconds for it to come back. | 
 | 	 */ | 
 | 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { | 
 | 		put_device(&tbiphy->mdio.dev); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Single clk mode, mii mode off(for serdes communication) */ | 
 | 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); | 
 |  | 
 | 	phy_write(tbiphy, MII_ADVERTISE, | 
 | 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | | 
 | 		  ADVERTISE_1000XPSE_ASYM); | 
 |  | 
 | 	phy_write(tbiphy, MII_BMCR, | 
 | 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | | 
 | 		  BMCR_SPEED1000); | 
 |  | 
 | 	put_device(&tbiphy->mdio.dev); | 
 | } | 
 |  | 
 | static int __gfar_is_rx_idle(struct gfar_private *priv) | 
 | { | 
 | 	u32 res; | 
 |  | 
 | 	/* Normaly TSEC should not hang on GRS commands, so we should | 
 | 	 * actually wait for IEVENT_GRSC flag. | 
 | 	 */ | 
 | 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) | 
 | 		return 0; | 
 |  | 
 | 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are | 
 | 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle | 
 | 	 * and the Rx can be safely reset. | 
 | 	 */ | 
 | 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); | 
 | 	res &= 0x7f807f80; | 
 | 	if ((res & 0xffff) == (res >> 16)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Halt the receive and transmit queues */ | 
 | static void gfar_halt_nodisable(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	unsigned int timeout; | 
 | 	int stopped; | 
 |  | 
 | 	gfar_ints_disable(priv); | 
 |  | 
 | 	if (gfar_is_dma_stopped(priv)) | 
 | 		return; | 
 |  | 
 | 	/* Stop the DMA, and wait for it to stop */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval |= (DMACTRL_GRS | DMACTRL_GTS); | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | retry: | 
 | 	timeout = 1000; | 
 | 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { | 
 | 		cpu_relax(); | 
 | 		timeout--; | 
 | 	} | 
 |  | 
 | 	if (!timeout) | 
 | 		stopped = gfar_is_dma_stopped(priv); | 
 |  | 
 | 	if (!stopped && !gfar_is_rx_dma_stopped(priv) && | 
 | 	    !__gfar_is_rx_idle(priv)) | 
 | 		goto retry; | 
 | } | 
 |  | 
 | /* Halt the receive and transmit queues */ | 
 | void gfar_halt(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 |  | 
 | 	/* Dissable the Rx/Tx hw queues */ | 
 | 	gfar_write(®s->rqueue, 0); | 
 | 	gfar_write(®s->tqueue, 0); | 
 |  | 
 | 	mdelay(10); | 
 |  | 
 | 	gfar_halt_nodisable(priv); | 
 |  | 
 | 	/* Disable Rx/Tx DMA */ | 
 | 	tempval = gfar_read(®s->maccfg1); | 
 | 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 | } | 
 |  | 
 | void stop_gfar(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	netif_tx_stop_all_queues(dev); | 
 |  | 
 | 	smp_mb__before_atomic(); | 
 | 	set_bit(GFAR_DOWN, &priv->state); | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	disable_napi(priv); | 
 |  | 
 | 	/* disable ints and gracefully shut down Rx/Tx DMA */ | 
 | 	gfar_halt(priv); | 
 |  | 
 | 	phy_stop(dev->phydev); | 
 |  | 
 | 	free_skb_resources(priv); | 
 | } | 
 |  | 
 | static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) | 
 | { | 
 | 	struct txbd8 *txbdp; | 
 | 	struct gfar_private *priv = netdev_priv(tx_queue->dev); | 
 | 	int i, j; | 
 |  | 
 | 	txbdp = tx_queue->tx_bd_base; | 
 |  | 
 | 	for (i = 0; i < tx_queue->tx_ring_size; i++) { | 
 | 		if (!tx_queue->tx_skbuff[i]) | 
 | 			continue; | 
 |  | 
 | 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), | 
 | 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); | 
 | 		txbdp->lstatus = 0; | 
 | 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; | 
 | 		     j++) { | 
 | 			txbdp++; | 
 | 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), | 
 | 				       be16_to_cpu(txbdp->length), | 
 | 				       DMA_TO_DEVICE); | 
 | 		} | 
 | 		txbdp++; | 
 | 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]); | 
 | 		tx_queue->tx_skbuff[i] = NULL; | 
 | 	} | 
 | 	kfree(tx_queue->tx_skbuff); | 
 | 	tx_queue->tx_skbuff = NULL; | 
 | } | 
 |  | 
 | static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base; | 
 |  | 
 | 	if (rx_queue->skb) | 
 | 		dev_kfree_skb(rx_queue->skb); | 
 |  | 
 | 	for (i = 0; i < rx_queue->rx_ring_size; i++) { | 
 | 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; | 
 |  | 
 | 		rxbdp->lstatus = 0; | 
 | 		rxbdp->bufPtr = 0; | 
 | 		rxbdp++; | 
 |  | 
 | 		if (!rxb->page) | 
 | 			continue; | 
 |  | 
 | 		dma_unmap_single(rx_queue->dev, rxb->dma, | 
 | 				 PAGE_SIZE, DMA_FROM_DEVICE); | 
 | 		__free_page(rxb->page); | 
 |  | 
 | 		rxb->page = NULL; | 
 | 	} | 
 |  | 
 | 	kfree(rx_queue->rx_buff); | 
 | 	rx_queue->rx_buff = NULL; | 
 | } | 
 |  | 
 | /* If there are any tx skbs or rx skbs still around, free them. | 
 |  * Then free tx_skbuff and rx_skbuff | 
 |  */ | 
 | static void free_skb_resources(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	int i; | 
 |  | 
 | 	/* Go through all the buffer descriptors and free their data buffers */ | 
 | 	for (i = 0; i < priv->num_tx_queues; i++) { | 
 | 		struct netdev_queue *txq; | 
 |  | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); | 
 | 		if (tx_queue->tx_skbuff) | 
 | 			free_skb_tx_queue(tx_queue); | 
 | 		netdev_tx_reset_queue(txq); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		if (rx_queue->rx_buff) | 
 | 			free_skb_rx_queue(rx_queue); | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(priv->dev, | 
 | 			  sizeof(struct txbd8) * priv->total_tx_ring_size + | 
 | 			  sizeof(struct rxbd8) * priv->total_rx_ring_size, | 
 | 			  priv->tx_queue[0]->tx_bd_base, | 
 | 			  priv->tx_queue[0]->tx_bd_dma_base); | 
 | } | 
 |  | 
 | void gfar_start(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	int i = 0; | 
 |  | 
 | 	/* Enable Rx/Tx hw queues */ | 
 | 	gfar_write(®s->rqueue, priv->rqueue); | 
 | 	gfar_write(®s->tqueue, priv->tqueue); | 
 |  | 
 | 	/* Initialize DMACTRL to have WWR and WOP */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval |= DMACTRL_INIT_SETTINGS; | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	/* Make sure we aren't stopped */ | 
 | 	tempval = gfar_read(®s->dmactrl); | 
 | 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); | 
 | 	gfar_write(®s->dmactrl, tempval); | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		regs = priv->gfargrp[i].regs; | 
 | 		/* Clear THLT/RHLT, so that the DMA starts polling now */ | 
 | 		gfar_write(®s->tstat, priv->gfargrp[i].tstat); | 
 | 		gfar_write(®s->rstat, priv->gfargrp[i].rstat); | 
 | 	} | 
 |  | 
 | 	/* Enable Rx/Tx DMA */ | 
 | 	tempval = gfar_read(®s->maccfg1); | 
 | 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 	gfar_write(®s->maccfg1, tempval); | 
 |  | 
 | 	gfar_ints_enable(priv); | 
 |  | 
 | 	netif_trans_update(priv->ndev); /* prevent tx timeout */ | 
 | } | 
 |  | 
 | static void free_grp_irqs(struct gfar_priv_grp *grp) | 
 | { | 
 | 	free_irq(gfar_irq(grp, TX)->irq, grp); | 
 | 	free_irq(gfar_irq(grp, RX)->irq, grp); | 
 | 	free_irq(gfar_irq(grp, ER)->irq, grp); | 
 | } | 
 |  | 
 | static int register_grp_irqs(struct gfar_priv_grp *grp) | 
 | { | 
 | 	struct gfar_private *priv = grp->priv; | 
 | 	struct net_device *dev = priv->ndev; | 
 | 	int err; | 
 |  | 
 | 	/* If the device has multiple interrupts, register for | 
 | 	 * them.  Otherwise, only register for the one | 
 | 	 */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		/* Install our interrupt handlers for Error, | 
 | 		 * Transmit, and Receive | 
 | 		 */ | 
 | 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, | 
 | 				  gfar_irq(grp, ER)->name, grp); | 
 | 		if (err < 0) { | 
 | 			netif_err(priv, intr, dev, "Can't get IRQ %d\n", | 
 | 				  gfar_irq(grp, ER)->irq); | 
 |  | 
 | 			goto err_irq_fail; | 
 | 		} | 
 | 		enable_irq_wake(gfar_irq(grp, ER)->irq); | 
 |  | 
 | 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, | 
 | 				  gfar_irq(grp, TX)->name, grp); | 
 | 		if (err < 0) { | 
 | 			netif_err(priv, intr, dev, "Can't get IRQ %d\n", | 
 | 				  gfar_irq(grp, TX)->irq); | 
 | 			goto tx_irq_fail; | 
 | 		} | 
 | 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, | 
 | 				  gfar_irq(grp, RX)->name, grp); | 
 | 		if (err < 0) { | 
 | 			netif_err(priv, intr, dev, "Can't get IRQ %d\n", | 
 | 				  gfar_irq(grp, RX)->irq); | 
 | 			goto rx_irq_fail; | 
 | 		} | 
 | 		enable_irq_wake(gfar_irq(grp, RX)->irq); | 
 |  | 
 | 	} else { | 
 | 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, | 
 | 				  gfar_irq(grp, TX)->name, grp); | 
 | 		if (err < 0) { | 
 | 			netif_err(priv, intr, dev, "Can't get IRQ %d\n", | 
 | 				  gfar_irq(grp, TX)->irq); | 
 | 			goto err_irq_fail; | 
 | 		} | 
 | 		enable_irq_wake(gfar_irq(grp, TX)->irq); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | rx_irq_fail: | 
 | 	free_irq(gfar_irq(grp, TX)->irq, grp); | 
 | tx_irq_fail: | 
 | 	free_irq(gfar_irq(grp, ER)->irq, grp); | 
 | err_irq_fail: | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | static void gfar_free_irq(struct gfar_private *priv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Free the IRQs */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		for (i = 0; i < priv->num_grps; i++) | 
 | 			free_grp_irqs(&priv->gfargrp[i]); | 
 | 	} else { | 
 | 		for (i = 0; i < priv->num_grps; i++) | 
 | 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, | 
 | 				 &priv->gfargrp[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static int gfar_request_irq(struct gfar_private *priv) | 
 | { | 
 | 	int err, i, j; | 
 |  | 
 | 	for (i = 0; i < priv->num_grps; i++) { | 
 | 		err = register_grp_irqs(&priv->gfargrp[i]); | 
 | 		if (err) { | 
 | 			for (j = 0; j < i; j++) | 
 | 				free_grp_irqs(&priv->gfargrp[j]); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Bring the controller up and running */ | 
 | int startup_gfar(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	int err; | 
 |  | 
 | 	gfar_mac_reset(priv); | 
 |  | 
 | 	err = gfar_alloc_skb_resources(ndev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	gfar_init_tx_rx_base(priv); | 
 |  | 
 | 	smp_mb__before_atomic(); | 
 | 	clear_bit(GFAR_DOWN, &priv->state); | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	/* Start Rx/Tx DMA and enable the interrupts */ | 
 | 	gfar_start(priv); | 
 |  | 
 | 	/* force link state update after mac reset */ | 
 | 	priv->oldlink = 0; | 
 | 	priv->oldspeed = 0; | 
 | 	priv->oldduplex = -1; | 
 |  | 
 | 	phy_start(ndev->phydev); | 
 |  | 
 | 	enable_napi(priv); | 
 |  | 
 | 	netif_tx_wake_all_queues(ndev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Called when something needs to use the ethernet device | 
 |  * Returns 0 for success. | 
 |  */ | 
 | static int gfar_enet_open(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	err = init_phy(dev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = gfar_request_irq(priv); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = startup_gfar(dev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) | 
 | { | 
 | 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); | 
 |  | 
 | 	memset(fcb, 0, GMAC_FCB_LEN); | 
 |  | 
 | 	return fcb; | 
 | } | 
 |  | 
 | static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, | 
 | 				    int fcb_length) | 
 | { | 
 | 	/* If we're here, it's a IP packet with a TCP or UDP | 
 | 	 * payload.  We set it to checksum, using a pseudo-header | 
 | 	 * we provide | 
 | 	 */ | 
 | 	u8 flags = TXFCB_DEFAULT; | 
 |  | 
 | 	/* Tell the controller what the protocol is | 
 | 	 * And provide the already calculated phcs | 
 | 	 */ | 
 | 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) { | 
 | 		flags |= TXFCB_UDP; | 
 | 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check); | 
 | 	} else | 
 | 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); | 
 |  | 
 | 	/* l3os is the distance between the start of the | 
 | 	 * frame (skb->data) and the start of the IP hdr. | 
 | 	 * l4os is the distance between the start of the | 
 | 	 * l3 hdr and the l4 hdr | 
 | 	 */ | 
 | 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); | 
 | 	fcb->l4os = skb_network_header_len(skb); | 
 |  | 
 | 	fcb->flags = flags; | 
 | } | 
 |  | 
 | void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) | 
 | { | 
 | 	fcb->flags |= TXFCB_VLN; | 
 | 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); | 
 | } | 
 |  | 
 | static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, | 
 | 				      struct txbd8 *base, int ring_size) | 
 | { | 
 | 	struct txbd8 *new_bd = bdp + stride; | 
 |  | 
 | 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; | 
 | } | 
 |  | 
 | static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, | 
 | 				      int ring_size) | 
 | { | 
 | 	return skip_txbd(bdp, 1, base, ring_size); | 
 | } | 
 |  | 
 | /* eTSEC12: csum generation not supported for some fcb offsets */ | 
 | static inline bool gfar_csum_errata_12(struct gfar_private *priv, | 
 | 				       unsigned long fcb_addr) | 
 | { | 
 | 	return (gfar_has_errata(priv, GFAR_ERRATA_12) && | 
 | 	       (fcb_addr % 0x20) > 0x18); | 
 | } | 
 |  | 
 | /* eTSEC76: csum generation for frames larger than 2500 may | 
 |  * cause excess delays before start of transmission | 
 |  */ | 
 | static inline bool gfar_csum_errata_76(struct gfar_private *priv, | 
 | 				       unsigned int len) | 
 | { | 
 | 	return (gfar_has_errata(priv, GFAR_ERRATA_76) && | 
 | 	       (len > 2500)); | 
 | } | 
 |  | 
 | /* This is called by the kernel when a frame is ready for transmission. | 
 |  * It is pointed to by the dev->hard_start_xmit function pointer | 
 |  */ | 
 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	struct netdev_queue *txq; | 
 | 	struct gfar __iomem *regs = NULL; | 
 | 	struct txfcb *fcb = NULL; | 
 | 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; | 
 | 	u32 lstatus; | 
 | 	skb_frag_t *frag; | 
 | 	int i, rq = 0; | 
 | 	int do_tstamp, do_csum, do_vlan; | 
 | 	u32 bufaddr; | 
 | 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; | 
 |  | 
 | 	rq = skb->queue_mapping; | 
 | 	tx_queue = priv->tx_queue[rq]; | 
 | 	txq = netdev_get_tx_queue(dev, rq); | 
 | 	base = tx_queue->tx_bd_base; | 
 | 	regs = tx_queue->grp->regs; | 
 |  | 
 | 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); | 
 | 	do_vlan = skb_vlan_tag_present(skb); | 
 | 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && | 
 | 		    priv->hwts_tx_en; | 
 |  | 
 | 	if (do_csum || do_vlan) | 
 | 		fcb_len = GMAC_FCB_LEN; | 
 |  | 
 | 	/* check if time stamp should be generated */ | 
 | 	if (unlikely(do_tstamp)) | 
 | 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; | 
 |  | 
 | 	/* make space for additional header when fcb is needed */ | 
 | 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { | 
 | 		struct sk_buff *skb_new; | 
 |  | 
 | 		skb_new = skb_realloc_headroom(skb, fcb_len); | 
 | 		if (!skb_new) { | 
 | 			dev->stats.tx_errors++; | 
 | 			dev_kfree_skb_any(skb); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 |  | 
 | 		if (skb->sk) | 
 | 			skb_set_owner_w(skb_new, skb->sk); | 
 | 		dev_consume_skb_any(skb); | 
 | 		skb = skb_new; | 
 | 	} | 
 |  | 
 | 	/* total number of fragments in the SKB */ | 
 | 	nr_frags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 	/* calculate the required number of TxBDs for this skb */ | 
 | 	if (unlikely(do_tstamp)) | 
 | 		nr_txbds = nr_frags + 2; | 
 | 	else | 
 | 		nr_txbds = nr_frags + 1; | 
 |  | 
 | 	/* check if there is space to queue this packet */ | 
 | 	if (nr_txbds > tx_queue->num_txbdfree) { | 
 | 		/* no space, stop the queue */ | 
 | 		netif_tx_stop_queue(txq); | 
 | 		dev->stats.tx_fifo_errors++; | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	/* Update transmit stats */ | 
 | 	bytes_sent = skb->len; | 
 | 	tx_queue->stats.tx_bytes += bytes_sent; | 
 | 	/* keep Tx bytes on wire for BQL accounting */ | 
 | 	GFAR_CB(skb)->bytes_sent = bytes_sent; | 
 | 	tx_queue->stats.tx_packets++; | 
 |  | 
 | 	txbdp = txbdp_start = tx_queue->cur_tx; | 
 | 	lstatus = be32_to_cpu(txbdp->lstatus); | 
 |  | 
 | 	/* Add TxPAL between FCB and frame if required */ | 
 | 	if (unlikely(do_tstamp)) { | 
 | 		skb_push(skb, GMAC_TXPAL_LEN); | 
 | 		memset(skb->data, 0, GMAC_TXPAL_LEN); | 
 | 	} | 
 |  | 
 | 	/* Add TxFCB if required */ | 
 | 	if (fcb_len) { | 
 | 		fcb = gfar_add_fcb(skb); | 
 | 		lstatus |= BD_LFLAG(TXBD_TOE); | 
 | 	} | 
 |  | 
 | 	/* Set up checksumming */ | 
 | 	if (do_csum) { | 
 | 		gfar_tx_checksum(skb, fcb, fcb_len); | 
 |  | 
 | 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || | 
 | 		    unlikely(gfar_csum_errata_76(priv, skb->len))) { | 
 | 			__skb_pull(skb, GMAC_FCB_LEN); | 
 | 			skb_checksum_help(skb); | 
 | 			if (do_vlan || do_tstamp) { | 
 | 				/* put back a new fcb for vlan/tstamp TOE */ | 
 | 				fcb = gfar_add_fcb(skb); | 
 | 			} else { | 
 | 				/* Tx TOE not used */ | 
 | 				lstatus &= ~(BD_LFLAG(TXBD_TOE)); | 
 | 				fcb = NULL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (do_vlan) | 
 | 		gfar_tx_vlan(skb, fcb); | 
 |  | 
 | 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), | 
 | 				 DMA_TO_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(priv->dev, bufaddr))) | 
 | 		goto dma_map_err; | 
 |  | 
 | 	txbdp_start->bufPtr = cpu_to_be32(bufaddr); | 
 |  | 
 | 	/* Time stamp insertion requires one additional TxBD */ | 
 | 	if (unlikely(do_tstamp)) | 
 | 		txbdp_tstamp = txbdp = next_txbd(txbdp, base, | 
 | 						 tx_queue->tx_ring_size); | 
 |  | 
 | 	if (likely(!nr_frags)) { | 
 | 		lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); | 
 | 	} else { | 
 | 		u32 lstatus_start = lstatus; | 
 |  | 
 | 		/* Place the fragment addresses and lengths into the TxBDs */ | 
 | 		frag = &skb_shinfo(skb)->frags[0]; | 
 | 		for (i = 0; i < nr_frags; i++, frag++) { | 
 | 			unsigned int size; | 
 |  | 
 | 			/* Point at the next BD, wrapping as needed */ | 
 | 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 |  | 
 | 			size = skb_frag_size(frag); | 
 |  | 
 | 			lstatus = be32_to_cpu(txbdp->lstatus) | size | | 
 | 				  BD_LFLAG(TXBD_READY); | 
 |  | 
 | 			/* Handle the last BD specially */ | 
 | 			if (i == nr_frags - 1) | 
 | 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); | 
 |  | 
 | 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0, | 
 | 						   size, DMA_TO_DEVICE); | 
 | 			if (unlikely(dma_mapping_error(priv->dev, bufaddr))) | 
 | 				goto dma_map_err; | 
 |  | 
 | 			/* set the TxBD length and buffer pointer */ | 
 | 			txbdp->bufPtr = cpu_to_be32(bufaddr); | 
 | 			txbdp->lstatus = cpu_to_be32(lstatus); | 
 | 		} | 
 |  | 
 | 		lstatus = lstatus_start; | 
 | 	} | 
 |  | 
 | 	/* If time stamping is requested one additional TxBD must be set up. The | 
 | 	 * first TxBD points to the FCB and must have a data length of | 
 | 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with | 
 | 	 * the full frame length. | 
 | 	 */ | 
 | 	if (unlikely(do_tstamp)) { | 
 | 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); | 
 |  | 
 | 		bufaddr = be32_to_cpu(txbdp_start->bufPtr); | 
 | 		bufaddr += fcb_len; | 
 |  | 
 | 		lstatus_ts |= BD_LFLAG(TXBD_READY) | | 
 | 			      (skb_headlen(skb) - fcb_len); | 
 | 		if (!nr_frags) | 
 | 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); | 
 |  | 
 | 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); | 
 | 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); | 
 | 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; | 
 |  | 
 | 		/* Setup tx hardware time stamping */ | 
 | 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | 
 | 		fcb->ptp = 1; | 
 | 	} else { | 
 | 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); | 
 | 	} | 
 |  | 
 | 	netdev_tx_sent_queue(txq, bytes_sent); | 
 |  | 
 | 	gfar_wmb(); | 
 |  | 
 | 	txbdp_start->lstatus = cpu_to_be32(lstatus); | 
 |  | 
 | 	gfar_wmb(); /* force lstatus write before tx_skbuff */ | 
 |  | 
 | 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; | 
 |  | 
 | 	/* Update the current skb pointer to the next entry we will use | 
 | 	 * (wrapping if necessary) | 
 | 	 */ | 
 | 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & | 
 | 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size); | 
 |  | 
 | 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 |  | 
 | 	/* We can work in parallel with gfar_clean_tx_ring(), except | 
 | 	 * when modifying num_txbdfree. Note that we didn't grab the lock | 
 | 	 * when we were reading the num_txbdfree and checking for available | 
 | 	 * space, that's because outside of this function it can only grow. | 
 | 	 */ | 
 | 	spin_lock_bh(&tx_queue->txlock); | 
 | 	/* reduce TxBD free count */ | 
 | 	tx_queue->num_txbdfree -= (nr_txbds); | 
 | 	spin_unlock_bh(&tx_queue->txlock); | 
 |  | 
 | 	/* If the next BD still needs to be cleaned up, then the bds | 
 | 	 * are full.  We need to tell the kernel to stop sending us stuff. | 
 | 	 */ | 
 | 	if (!tx_queue->num_txbdfree) { | 
 | 		netif_tx_stop_queue(txq); | 
 |  | 
 | 		dev->stats.tx_fifo_errors++; | 
 | 	} | 
 |  | 
 | 	/* Tell the DMA to go go go */ | 
 | 	gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 |  | 
 | dma_map_err: | 
 | 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); | 
 | 	if (do_tstamp) | 
 | 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 | 	for (i = 0; i < nr_frags; i++) { | 
 | 		lstatus = be32_to_cpu(txbdp->lstatus); | 
 | 		if (!(lstatus & BD_LFLAG(TXBD_READY))) | 
 | 			break; | 
 |  | 
 | 		lstatus &= ~BD_LFLAG(TXBD_READY); | 
 | 		txbdp->lstatus = cpu_to_be32(lstatus); | 
 | 		bufaddr = be32_to_cpu(txbdp->bufPtr); | 
 | 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), | 
 | 			       DMA_TO_DEVICE); | 
 | 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); | 
 | 	} | 
 | 	gfar_wmb(); | 
 | 	dev_kfree_skb_any(skb); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /* Stops the kernel queue, and halts the controller */ | 
 | static int gfar_close(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	cancel_work_sync(&priv->reset_task); | 
 | 	stop_gfar(dev); | 
 |  | 
 | 	/* Disconnect from the PHY */ | 
 | 	phy_disconnect(dev->phydev); | 
 |  | 
 | 	gfar_free_irq(priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Changes the mac address if the controller is not running. */ | 
 | static int gfar_set_mac_address(struct net_device *dev) | 
 | { | 
 | 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	int frame_size = new_mtu + ETH_HLEN; | 
 |  | 
 | 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) { | 
 | 		netif_err(priv, drv, dev, "Invalid MTU setting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	if (dev->flags & IFF_UP) | 
 | 		stop_gfar(dev); | 
 |  | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	if (dev->flags & IFF_UP) | 
 | 		startup_gfar(dev); | 
 |  | 
 | 	clear_bit_unlock(GFAR_RESETTING, &priv->state); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void reset_gfar(struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 |  | 
 | 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	stop_gfar(ndev); | 
 | 	startup_gfar(ndev); | 
 |  | 
 | 	clear_bit_unlock(GFAR_RESETTING, &priv->state); | 
 | } | 
 |  | 
 | /* gfar_reset_task gets scheduled when a packet has not been | 
 |  * transmitted after a set amount of time. | 
 |  * For now, assume that clearing out all the structures, and | 
 |  * starting over will fix the problem. | 
 |  */ | 
 | static void gfar_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct gfar_private *priv = container_of(work, struct gfar_private, | 
 | 						 reset_task); | 
 | 	reset_gfar(priv->ndev); | 
 | } | 
 |  | 
 | static void gfar_timeout(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 |  | 
 | 	dev->stats.tx_errors++; | 
 | 	schedule_work(&priv->reset_task); | 
 | } | 
 |  | 
 | /* Interrupt Handler for Transmit complete */ | 
 | static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) | 
 | { | 
 | 	struct net_device *dev = tx_queue->dev; | 
 | 	struct netdev_queue *txq; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct txbd8 *bdp, *next = NULL; | 
 | 	struct txbd8 *lbdp = NULL; | 
 | 	struct txbd8 *base = tx_queue->tx_bd_base; | 
 | 	struct sk_buff *skb; | 
 | 	int skb_dirtytx; | 
 | 	int tx_ring_size = tx_queue->tx_ring_size; | 
 | 	int frags = 0, nr_txbds = 0; | 
 | 	int i; | 
 | 	int howmany = 0; | 
 | 	int tqi = tx_queue->qindex; | 
 | 	unsigned int bytes_sent = 0; | 
 | 	u32 lstatus; | 
 | 	size_t buflen; | 
 |  | 
 | 	txq = netdev_get_tx_queue(dev, tqi); | 
 | 	bdp = tx_queue->dirty_tx; | 
 | 	skb_dirtytx = tx_queue->skb_dirtytx; | 
 |  | 
 | 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { | 
 |  | 
 | 		frags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 		/* When time stamping, one additional TxBD must be freed. | 
 | 		 * Also, we need to dma_unmap_single() the TxPAL. | 
 | 		 */ | 
 | 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) | 
 | 			nr_txbds = frags + 2; | 
 | 		else | 
 | 			nr_txbds = frags + 1; | 
 |  | 
 | 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); | 
 |  | 
 | 		lstatus = be32_to_cpu(lbdp->lstatus); | 
 |  | 
 | 		/* Only clean completed frames */ | 
 | 		if ((lstatus & BD_LFLAG(TXBD_READY)) && | 
 | 		    (lstatus & BD_LENGTH_MASK)) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { | 
 | 			next = next_txbd(bdp, base, tx_ring_size); | 
 | 			buflen = be16_to_cpu(next->length) + | 
 | 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN; | 
 | 		} else | 
 | 			buflen = be16_to_cpu(bdp->length); | 
 |  | 
 | 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), | 
 | 				 buflen, DMA_TO_DEVICE); | 
 |  | 
 | 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { | 
 | 			struct skb_shared_hwtstamps shhwtstamps; | 
 | 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & | 
 | 					  ~0x7UL); | 
 |  | 
 | 			memset(&shhwtstamps, 0, sizeof(shhwtstamps)); | 
 | 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); | 
 | 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); | 
 | 			skb_tstamp_tx(skb, &shhwtstamps); | 
 | 			gfar_clear_txbd_status(bdp); | 
 | 			bdp = next; | 
 | 		} | 
 |  | 
 | 		gfar_clear_txbd_status(bdp); | 
 | 		bdp = next_txbd(bdp, base, tx_ring_size); | 
 |  | 
 | 		for (i = 0; i < frags; i++) { | 
 | 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), | 
 | 				       be16_to_cpu(bdp->length), | 
 | 				       DMA_TO_DEVICE); | 
 | 			gfar_clear_txbd_status(bdp); | 
 | 			bdp = next_txbd(bdp, base, tx_ring_size); | 
 | 		} | 
 |  | 
 | 		bytes_sent += GFAR_CB(skb)->bytes_sent; | 
 |  | 
 | 		dev_kfree_skb_any(skb); | 
 |  | 
 | 		tx_queue->tx_skbuff[skb_dirtytx] = NULL; | 
 |  | 
 | 		skb_dirtytx = (skb_dirtytx + 1) & | 
 | 			      TX_RING_MOD_MASK(tx_ring_size); | 
 |  | 
 | 		howmany++; | 
 | 		spin_lock(&tx_queue->txlock); | 
 | 		tx_queue->num_txbdfree += nr_txbds; | 
 | 		spin_unlock(&tx_queue->txlock); | 
 | 	} | 
 |  | 
 | 	/* If we freed a buffer, we can restart transmission, if necessary */ | 
 | 	if (tx_queue->num_txbdfree && | 
 | 	    netif_tx_queue_stopped(txq) && | 
 | 	    !(test_bit(GFAR_DOWN, &priv->state))) | 
 | 		netif_wake_subqueue(priv->ndev, tqi); | 
 |  | 
 | 	/* Update dirty indicators */ | 
 | 	tx_queue->skb_dirtytx = skb_dirtytx; | 
 | 	tx_queue->dirty_tx = bdp; | 
 |  | 
 | 	netdev_tx_completed_queue(txq, howmany, bytes_sent); | 
 | } | 
 |  | 
 | static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) | 
 | { | 
 | 	struct page *page; | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	page = dev_alloc_page(); | 
 | 	if (unlikely(!page)) | 
 | 		return false; | 
 |  | 
 | 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(rxq->dev, addr))) { | 
 | 		__free_page(page); | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	rxb->dma = addr; | 
 | 	rxb->page = page; | 
 | 	rxb->page_offset = 0; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(rx_queue->ndev); | 
 | 	struct gfar_extra_stats *estats = &priv->extra_stats; | 
 |  | 
 | 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); | 
 | 	atomic64_inc(&estats->rx_alloc_err); | 
 | } | 
 |  | 
 | static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, | 
 | 				int alloc_cnt) | 
 | { | 
 | 	struct rxbd8 *bdp; | 
 | 	struct gfar_rx_buff *rxb; | 
 | 	int i; | 
 |  | 
 | 	i = rx_queue->next_to_use; | 
 | 	bdp = &rx_queue->rx_bd_base[i]; | 
 | 	rxb = &rx_queue->rx_buff[i]; | 
 |  | 
 | 	while (alloc_cnt--) { | 
 | 		/* try reuse page */ | 
 | 		if (unlikely(!rxb->page)) { | 
 | 			if (unlikely(!gfar_new_page(rx_queue, rxb))) { | 
 | 				gfar_rx_alloc_err(rx_queue); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Setup the new RxBD */ | 
 | 		gfar_init_rxbdp(rx_queue, bdp, | 
 | 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); | 
 |  | 
 | 		/* Update to the next pointer */ | 
 | 		bdp++; | 
 | 		rxb++; | 
 |  | 
 | 		if (unlikely(++i == rx_queue->rx_ring_size)) { | 
 | 			i = 0; | 
 | 			bdp = rx_queue->rx_bd_base; | 
 | 			rxb = rx_queue->rx_buff; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rx_queue->next_to_use = i; | 
 | 	rx_queue->next_to_alloc = i; | 
 | } | 
 |  | 
 | static void count_errors(u32 lstatus, struct net_device *ndev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct net_device_stats *stats = &ndev->stats; | 
 | 	struct gfar_extra_stats *estats = &priv->extra_stats; | 
 |  | 
 | 	/* If the packet was truncated, none of the other errors matter */ | 
 | 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { | 
 | 		stats->rx_length_errors++; | 
 |  | 
 | 		atomic64_inc(&estats->rx_trunc); | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	/* Count the errors, if there were any */ | 
 | 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { | 
 | 		stats->rx_length_errors++; | 
 |  | 
 | 		if (lstatus & BD_LFLAG(RXBD_LARGE)) | 
 | 			atomic64_inc(&estats->rx_large); | 
 | 		else | 
 | 			atomic64_inc(&estats->rx_short); | 
 | 	} | 
 | 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { | 
 | 		stats->rx_frame_errors++; | 
 | 		atomic64_inc(&estats->rx_nonoctet); | 
 | 	} | 
 | 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) { | 
 | 		atomic64_inc(&estats->rx_crcerr); | 
 | 		stats->rx_crc_errors++; | 
 | 	} | 
 | 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { | 
 | 		atomic64_inc(&estats->rx_overrun); | 
 | 		stats->rx_over_errors++; | 
 | 	} | 
 | } | 
 |  | 
 | irqreturn_t gfar_receive(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; | 
 | 	unsigned long flags; | 
 | 	u32 imask, ievent; | 
 |  | 
 | 	ievent = gfar_read(&grp->regs->ievent); | 
 |  | 
 | 	if (unlikely(ievent & IEVENT_FGPI)) { | 
 | 		gfar_write(&grp->regs->ievent, IEVENT_FGPI); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (likely(napi_schedule_prep(&grp->napi_rx))) { | 
 | 		spin_lock_irqsave(&grp->grplock, flags); | 
 | 		imask = gfar_read(&grp->regs->imask); | 
 | 		imask &= IMASK_RX_DISABLED; | 
 | 		gfar_write(&grp->regs->imask, imask); | 
 | 		spin_unlock_irqrestore(&grp->grplock, flags); | 
 | 		__napi_schedule(&grp->napi_rx); | 
 | 	} else { | 
 | 		/* Clear IEVENT, so interrupts aren't called again | 
 | 		 * because of the packets that have already arrived. | 
 | 		 */ | 
 | 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Interrupt Handler for Transmit complete */ | 
 | static irqreturn_t gfar_transmit(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; | 
 | 	unsigned long flags; | 
 | 	u32 imask; | 
 |  | 
 | 	if (likely(napi_schedule_prep(&grp->napi_tx))) { | 
 | 		spin_lock_irqsave(&grp->grplock, flags); | 
 | 		imask = gfar_read(&grp->regs->imask); | 
 | 		imask &= IMASK_TX_DISABLED; | 
 | 		gfar_write(&grp->regs->imask, imask); | 
 | 		spin_unlock_irqrestore(&grp->grplock, flags); | 
 | 		__napi_schedule(&grp->napi_tx); | 
 | 	} else { | 
 | 		/* Clear IEVENT, so interrupts aren't called again | 
 | 		 * because of the packets that have already arrived. | 
 | 		 */ | 
 | 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, | 
 | 			     struct sk_buff *skb, bool first) | 
 | { | 
 | 	unsigned int size = lstatus & BD_LENGTH_MASK; | 
 | 	struct page *page = rxb->page; | 
 |  | 
 | 	/* Remove the FCS from the packet length */ | 
 | 	if (likely(lstatus & BD_LFLAG(RXBD_LAST))) | 
 | 		size -= ETH_FCS_LEN; | 
 |  | 
 | 	if (likely(first)) | 
 | 		skb_put(skb, size); | 
 | 	else | 
 | 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, | 
 | 				rxb->page_offset + RXBUF_ALIGNMENT, | 
 | 				size, GFAR_RXB_TRUESIZE); | 
 |  | 
 | 	/* try reuse page */ | 
 | 	if (unlikely(page_count(page) != 1)) | 
 | 		return false; | 
 |  | 
 | 	/* change offset to the other half */ | 
 | 	rxb->page_offset ^= GFAR_RXB_TRUESIZE; | 
 |  | 
 | 	page_ref_inc(page); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, | 
 | 			       struct gfar_rx_buff *old_rxb) | 
 | { | 
 | 	struct gfar_rx_buff *new_rxb; | 
 | 	u16 nta = rxq->next_to_alloc; | 
 |  | 
 | 	new_rxb = &rxq->rx_buff[nta]; | 
 |  | 
 | 	/* find next buf that can reuse a page */ | 
 | 	nta++; | 
 | 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; | 
 |  | 
 | 	/* copy page reference */ | 
 | 	*new_rxb = *old_rxb; | 
 |  | 
 | 	/* sync for use by the device */ | 
 | 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, | 
 | 					 old_rxb->page_offset, | 
 | 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, | 
 | 					    u32 lstatus, struct sk_buff *skb) | 
 | { | 
 | 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; | 
 | 	struct page *page = rxb->page; | 
 | 	bool first = false; | 
 |  | 
 | 	if (likely(!skb)) { | 
 | 		void *buff_addr = page_address(page) + rxb->page_offset; | 
 |  | 
 | 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); | 
 | 		if (unlikely(!skb)) { | 
 | 			gfar_rx_alloc_err(rx_queue); | 
 | 			return NULL; | 
 | 		} | 
 | 		skb_reserve(skb, RXBUF_ALIGNMENT); | 
 | 		first = true; | 
 | 	} | 
 |  | 
 | 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, | 
 | 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); | 
 |  | 
 | 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { | 
 | 		/* reuse the free half of the page */ | 
 | 		gfar_reuse_rx_page(rx_queue, rxb); | 
 | 	} else { | 
 | 		/* page cannot be reused, unmap it */ | 
 | 		dma_unmap_page(rx_queue->dev, rxb->dma, | 
 | 			       PAGE_SIZE, DMA_FROM_DEVICE); | 
 | 	} | 
 |  | 
 | 	/* clear rxb content */ | 
 | 	rxb->page = NULL; | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) | 
 | { | 
 | 	/* If valid headers were found, and valid sums | 
 | 	 * were verified, then we tell the kernel that no | 
 | 	 * checksumming is necessary.  Otherwise, it is [FIXME] | 
 | 	 */ | 
 | 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == | 
 | 	    (RXFCB_CIP | RXFCB_CTU)) | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	else | 
 | 		skb_checksum_none_assert(skb); | 
 | } | 
 |  | 
 | /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ | 
 | static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct rxfcb *fcb = NULL; | 
 |  | 
 | 	/* fcb is at the beginning if exists */ | 
 | 	fcb = (struct rxfcb *)skb->data; | 
 |  | 
 | 	/* Remove the FCB from the skb | 
 | 	 * Remove the padded bytes, if there are any | 
 | 	 */ | 
 | 	if (priv->uses_rxfcb) | 
 | 		skb_pull(skb, GMAC_FCB_LEN); | 
 |  | 
 | 	/* Get receive timestamp from the skb */ | 
 | 	if (priv->hwts_rx_en) { | 
 | 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); | 
 | 		u64 *ns = (u64 *) skb->data; | 
 |  | 
 | 		memset(shhwtstamps, 0, sizeof(*shhwtstamps)); | 
 | 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); | 
 | 	} | 
 |  | 
 | 	if (priv->padding) | 
 | 		skb_pull(skb, priv->padding); | 
 |  | 
 | 	if (ndev->features & NETIF_F_RXCSUM) | 
 | 		gfar_rx_checksum(skb, fcb); | 
 |  | 
 | 	/* Tell the skb what kind of packet this is */ | 
 | 	skb->protocol = eth_type_trans(skb, ndev); | 
 |  | 
 | 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. | 
 | 	 * Even if vlan rx accel is disabled, on some chips | 
 | 	 * RXFCB_VLN is pseudo randomly set. | 
 | 	 */ | 
 | 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && | 
 | 	    be16_to_cpu(fcb->flags) & RXFCB_VLN) | 
 | 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), | 
 | 				       be16_to_cpu(fcb->vlctl)); | 
 | } | 
 |  | 
 | /* gfar_clean_rx_ring() -- Processes each frame in the rx ring | 
 |  * until the budget/quota has been reached. Returns the number | 
 |  * of frames handled | 
 |  */ | 
 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) | 
 | { | 
 | 	struct net_device *ndev = rx_queue->ndev; | 
 | 	struct gfar_private *priv = netdev_priv(ndev); | 
 | 	struct rxbd8 *bdp; | 
 | 	int i, howmany = 0; | 
 | 	struct sk_buff *skb = rx_queue->skb; | 
 | 	int cleaned_cnt = gfar_rxbd_unused(rx_queue); | 
 | 	unsigned int total_bytes = 0, total_pkts = 0; | 
 |  | 
 | 	/* Get the first full descriptor */ | 
 | 	i = rx_queue->next_to_clean; | 
 |  | 
 | 	while (rx_work_limit--) { | 
 | 		u32 lstatus; | 
 |  | 
 | 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { | 
 | 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); | 
 | 			cleaned_cnt = 0; | 
 | 		} | 
 |  | 
 | 		bdp = &rx_queue->rx_bd_base[i]; | 
 | 		lstatus = be32_to_cpu(bdp->lstatus); | 
 | 		if (lstatus & BD_LFLAG(RXBD_EMPTY)) | 
 | 			break; | 
 |  | 
 | 		/* order rx buffer descriptor reads */ | 
 | 		rmb(); | 
 |  | 
 | 		/* fetch next to clean buffer from the ring */ | 
 | 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); | 
 | 		if (unlikely(!skb)) | 
 | 			break; | 
 |  | 
 | 		cleaned_cnt++; | 
 | 		howmany++; | 
 |  | 
 | 		if (unlikely(++i == rx_queue->rx_ring_size)) | 
 | 			i = 0; | 
 |  | 
 | 		rx_queue->next_to_clean = i; | 
 |  | 
 | 		/* fetch next buffer if not the last in frame */ | 
 | 		if (!(lstatus & BD_LFLAG(RXBD_LAST))) | 
 | 			continue; | 
 |  | 
 | 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { | 
 | 			count_errors(lstatus, ndev); | 
 |  | 
 | 			/* discard faulty buffer */ | 
 | 			dev_kfree_skb(skb); | 
 | 			skb = NULL; | 
 | 			rx_queue->stats.rx_dropped++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Increment the number of packets */ | 
 | 		total_pkts++; | 
 | 		total_bytes += skb->len; | 
 |  | 
 | 		skb_record_rx_queue(skb, rx_queue->qindex); | 
 |  | 
 | 		gfar_process_frame(ndev, skb); | 
 |  | 
 | 		/* Send the packet up the stack */ | 
 | 		napi_gro_receive(&rx_queue->grp->napi_rx, skb); | 
 |  | 
 | 		skb = NULL; | 
 | 	} | 
 |  | 
 | 	/* Store incomplete frames for completion */ | 
 | 	rx_queue->skb = skb; | 
 |  | 
 | 	rx_queue->stats.rx_packets += total_pkts; | 
 | 	rx_queue->stats.rx_bytes += total_bytes; | 
 |  | 
 | 	if (cleaned_cnt) | 
 | 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); | 
 |  | 
 | 	/* Update Last Free RxBD pointer for LFC */ | 
 | 	if (unlikely(priv->tx_actual_en)) { | 
 | 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); | 
 |  | 
 | 		gfar_write(rx_queue->rfbptr, bdp_dma); | 
 | 	} | 
 |  | 
 | 	return howmany; | 
 | } | 
 |  | 
 | static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = | 
 | 		container_of(napi, struct gfar_priv_grp, napi_rx); | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; | 
 | 	int work_done = 0; | 
 |  | 
 | 	/* Clear IEVENT, so interrupts aren't called again | 
 | 	 * because of the packets that have already arrived | 
 | 	 */ | 
 | 	gfar_write(®s->ievent, IEVENT_RX_MASK); | 
 |  | 
 | 	work_done = gfar_clean_rx_ring(rx_queue, budget); | 
 |  | 
 | 	if (work_done < budget) { | 
 | 		u32 imask; | 
 | 		napi_complete(napi); | 
 | 		/* Clear the halt bit in RSTAT */ | 
 | 		gfar_write(®s->rstat, gfargrp->rstat); | 
 |  | 
 | 		spin_lock_irq(&gfargrp->grplock); | 
 | 		imask = gfar_read(®s->imask); | 
 | 		imask |= IMASK_RX_DEFAULT; | 
 | 		gfar_write(®s->imask, imask); | 
 | 		spin_unlock_irq(&gfargrp->grplock); | 
 | 	} | 
 |  | 
 | 	return work_done; | 
 | } | 
 |  | 
 | static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = | 
 | 		container_of(napi, struct gfar_priv_grp, napi_tx); | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; | 
 | 	u32 imask; | 
 |  | 
 | 	/* Clear IEVENT, so interrupts aren't called again | 
 | 	 * because of the packets that have already arrived | 
 | 	 */ | 
 | 	gfar_write(®s->ievent, IEVENT_TX_MASK); | 
 |  | 
 | 	/* run Tx cleanup to completion */ | 
 | 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) | 
 | 		gfar_clean_tx_ring(tx_queue); | 
 |  | 
 | 	napi_complete(napi); | 
 |  | 
 | 	spin_lock_irq(&gfargrp->grplock); | 
 | 	imask = gfar_read(®s->imask); | 
 | 	imask |= IMASK_TX_DEFAULT; | 
 | 	gfar_write(®s->imask, imask); | 
 | 	spin_unlock_irq(&gfargrp->grplock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gfar_poll_rx(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = | 
 | 		container_of(napi, struct gfar_priv_grp, napi_rx); | 
 | 	struct gfar_private *priv = gfargrp->priv; | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	int work_done = 0, work_done_per_q = 0; | 
 | 	int i, budget_per_q = 0; | 
 | 	unsigned long rstat_rxf; | 
 | 	int num_act_queues; | 
 |  | 
 | 	/* Clear IEVENT, so interrupts aren't called again | 
 | 	 * because of the packets that have already arrived | 
 | 	 */ | 
 | 	gfar_write(®s->ievent, IEVENT_RX_MASK); | 
 |  | 
 | 	rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; | 
 |  | 
 | 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); | 
 | 	if (num_act_queues) | 
 | 		budget_per_q = budget/num_act_queues; | 
 |  | 
 | 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { | 
 | 		/* skip queue if not active */ | 
 | 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) | 
 | 			continue; | 
 |  | 
 | 		rx_queue = priv->rx_queue[i]; | 
 | 		work_done_per_q = | 
 | 			gfar_clean_rx_ring(rx_queue, budget_per_q); | 
 | 		work_done += work_done_per_q; | 
 |  | 
 | 		/* finished processing this queue */ | 
 | 		if (work_done_per_q < budget_per_q) { | 
 | 			/* clear active queue hw indication */ | 
 | 			gfar_write(®s->rstat, | 
 | 				   RSTAT_CLEAR_RXF0 >> i); | 
 | 			num_act_queues--; | 
 |  | 
 | 			if (!num_act_queues) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!num_act_queues) { | 
 | 		u32 imask; | 
 | 		napi_complete(napi); | 
 |  | 
 | 		/* Clear the halt bit in RSTAT */ | 
 | 		gfar_write(®s->rstat, gfargrp->rstat); | 
 |  | 
 | 		spin_lock_irq(&gfargrp->grplock); | 
 | 		imask = gfar_read(®s->imask); | 
 | 		imask |= IMASK_RX_DEFAULT; | 
 | 		gfar_write(®s->imask, imask); | 
 | 		spin_unlock_irq(&gfargrp->grplock); | 
 | 	} | 
 |  | 
 | 	return work_done; | 
 | } | 
 |  | 
 | static int gfar_poll_tx(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = | 
 | 		container_of(napi, struct gfar_priv_grp, napi_tx); | 
 | 	struct gfar_private *priv = gfargrp->priv; | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_priv_tx_q *tx_queue = NULL; | 
 | 	int has_tx_work = 0; | 
 | 	int i; | 
 |  | 
 | 	/* Clear IEVENT, so interrupts aren't called again | 
 | 	 * because of the packets that have already arrived | 
 | 	 */ | 
 | 	gfar_write(®s->ievent, IEVENT_TX_MASK); | 
 |  | 
 | 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { | 
 | 		tx_queue = priv->tx_queue[i]; | 
 | 		/* run Tx cleanup to completion */ | 
 | 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { | 
 | 			gfar_clean_tx_ring(tx_queue); | 
 | 			has_tx_work = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!has_tx_work) { | 
 | 		u32 imask; | 
 | 		napi_complete(napi); | 
 |  | 
 | 		spin_lock_irq(&gfargrp->grplock); | 
 | 		imask = gfar_read(®s->imask); | 
 | 		imask |= IMASK_TX_DEFAULT; | 
 | 		gfar_write(®s->imask, imask); | 
 | 		spin_unlock_irq(&gfargrp->grplock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | /* Polling 'interrupt' - used by things like netconsole to send skbs | 
 |  * without having to re-enable interrupts. It's not called while | 
 |  * the interrupt routine is executing. | 
 |  */ | 
 | static void gfar_netpoll(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | 	/* If the device has multiple interrupts, run tx/rx */ | 
 | 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 		for (i = 0; i < priv->num_grps; i++) { | 
 | 			struct gfar_priv_grp *grp = &priv->gfargrp[i]; | 
 |  | 
 | 			disable_irq(gfar_irq(grp, TX)->irq); | 
 | 			disable_irq(gfar_irq(grp, RX)->irq); | 
 | 			disable_irq(gfar_irq(grp, ER)->irq); | 
 | 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp); | 
 | 			enable_irq(gfar_irq(grp, ER)->irq); | 
 | 			enable_irq(gfar_irq(grp, RX)->irq); | 
 | 			enable_irq(gfar_irq(grp, TX)->irq); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < priv->num_grps; i++) { | 
 | 			struct gfar_priv_grp *grp = &priv->gfargrp[i]; | 
 |  | 
 | 			disable_irq(gfar_irq(grp, TX)->irq); | 
 | 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp); | 
 | 			enable_irq(gfar_irq(grp, TX)->irq); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* The interrupt handler for devices with one interrupt */ | 
 | static irqreturn_t gfar_interrupt(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = grp_id; | 
 |  | 
 | 	/* Save ievent for future reference */ | 
 | 	u32 events = gfar_read(&gfargrp->regs->ievent); | 
 |  | 
 | 	/* Check for reception */ | 
 | 	if (events & IEVENT_RX_MASK) | 
 | 		gfar_receive(irq, grp_id); | 
 |  | 
 | 	/* Check for transmit completion */ | 
 | 	if (events & IEVENT_TX_MASK) | 
 | 		gfar_transmit(irq, grp_id); | 
 |  | 
 | 	/* Check for errors */ | 
 | 	if (events & IEVENT_ERR_MASK) | 
 | 		gfar_error(irq, grp_id); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Called every time the controller might need to be made | 
 |  * aware of new link state.  The PHY code conveys this | 
 |  * information through variables in the phydev structure, and this | 
 |  * function converts those variables into the appropriate | 
 |  * register values, and can bring down the device if needed. | 
 |  */ | 
 | static void adjust_link(struct net_device *dev) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct phy_device *phydev = dev->phydev; | 
 |  | 
 | 	if (unlikely(phydev->link != priv->oldlink || | 
 | 		     (phydev->link && (phydev->duplex != priv->oldduplex || | 
 | 				       phydev->speed != priv->oldspeed)))) | 
 | 		gfar_update_link_state(priv); | 
 | } | 
 |  | 
 | /* Update the hash table based on the current list of multicast | 
 |  * addresses we subscribe to.  Also, change the promiscuity of | 
 |  * the device based on the flags (this function is called | 
 |  * whenever dev->flags is changed | 
 |  */ | 
 | static void gfar_set_multi(struct net_device *dev) | 
 | { | 
 | 	struct netdev_hw_addr *ha; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		/* Set RCTRL to PROM */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval |= RCTRL_PROM; | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} else { | 
 | 		/* Set RCTRL to not PROM */ | 
 | 		tempval = gfar_read(®s->rctrl); | 
 | 		tempval &= ~(RCTRL_PROM); | 
 | 		gfar_write(®s->rctrl, tempval); | 
 | 	} | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI) { | 
 | 		/* Set the hash to rx all multicast frames */ | 
 | 		gfar_write(®s->igaddr0, 0xffffffff); | 
 | 		gfar_write(®s->igaddr1, 0xffffffff); | 
 | 		gfar_write(®s->igaddr2, 0xffffffff); | 
 | 		gfar_write(®s->igaddr3, 0xffffffff); | 
 | 		gfar_write(®s->igaddr4, 0xffffffff); | 
 | 		gfar_write(®s->igaddr5, 0xffffffff); | 
 | 		gfar_write(®s->igaddr6, 0xffffffff); | 
 | 		gfar_write(®s->igaddr7, 0xffffffff); | 
 | 		gfar_write(®s->gaddr0, 0xffffffff); | 
 | 		gfar_write(®s->gaddr1, 0xffffffff); | 
 | 		gfar_write(®s->gaddr2, 0xffffffff); | 
 | 		gfar_write(®s->gaddr3, 0xffffffff); | 
 | 		gfar_write(®s->gaddr4, 0xffffffff); | 
 | 		gfar_write(®s->gaddr5, 0xffffffff); | 
 | 		gfar_write(®s->gaddr6, 0xffffffff); | 
 | 		gfar_write(®s->gaddr7, 0xffffffff); | 
 | 	} else { | 
 | 		int em_num; | 
 | 		int idx; | 
 |  | 
 | 		/* zero out the hash */ | 
 | 		gfar_write(®s->igaddr0, 0x0); | 
 | 		gfar_write(®s->igaddr1, 0x0); | 
 | 		gfar_write(®s->igaddr2, 0x0); | 
 | 		gfar_write(®s->igaddr3, 0x0); | 
 | 		gfar_write(®s->igaddr4, 0x0); | 
 | 		gfar_write(®s->igaddr5, 0x0); | 
 | 		gfar_write(®s->igaddr6, 0x0); | 
 | 		gfar_write(®s->igaddr7, 0x0); | 
 | 		gfar_write(®s->gaddr0, 0x0); | 
 | 		gfar_write(®s->gaddr1, 0x0); | 
 | 		gfar_write(®s->gaddr2, 0x0); | 
 | 		gfar_write(®s->gaddr3, 0x0); | 
 | 		gfar_write(®s->gaddr4, 0x0); | 
 | 		gfar_write(®s->gaddr5, 0x0); | 
 | 		gfar_write(®s->gaddr6, 0x0); | 
 | 		gfar_write(®s->gaddr7, 0x0); | 
 |  | 
 | 		/* If we have extended hash tables, we need to | 
 | 		 * clear the exact match registers to prepare for | 
 | 		 * setting them | 
 | 		 */ | 
 | 		if (priv->extended_hash) { | 
 | 			em_num = GFAR_EM_NUM + 1; | 
 | 			gfar_clear_exact_match(dev); | 
 | 			idx = 1; | 
 | 		} else { | 
 | 			idx = 0; | 
 | 			em_num = 0; | 
 | 		} | 
 |  | 
 | 		if (netdev_mc_empty(dev)) | 
 | 			return; | 
 |  | 
 | 		/* Parse the list, and set the appropriate bits */ | 
 | 		netdev_for_each_mc_addr(ha, dev) { | 
 | 			if (idx < em_num) { | 
 | 				gfar_set_mac_for_addr(dev, idx, ha->addr); | 
 | 				idx++; | 
 | 			} else | 
 | 				gfar_set_hash_for_addr(dev, ha->addr); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Clears each of the exact match registers to zero, so they | 
 |  * don't interfere with normal reception | 
 |  */ | 
 | static void gfar_clear_exact_match(struct net_device *dev) | 
 | { | 
 | 	int idx; | 
 | 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; | 
 |  | 
 | 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) | 
 | 		gfar_set_mac_for_addr(dev, idx, zero_arr); | 
 | } | 
 |  | 
 | /* Set the appropriate hash bit for the given addr */ | 
 | /* The algorithm works like so: | 
 |  * 1) Take the Destination Address (ie the multicast address), and | 
 |  * do a CRC on it (little endian), and reverse the bits of the | 
 |  * result. | 
 |  * 2) Use the 8 most significant bits as a hash into a 256-entry | 
 |  * table.  The table is controlled through 8 32-bit registers: | 
 |  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is | 
 |  * gaddr7.  This means that the 3 most significant bits in the | 
 |  * hash index which gaddr register to use, and the 5 other bits | 
 |  * indicate which bit (assuming an IBM numbering scheme, which | 
 |  * for PowerPC (tm) is usually the case) in the register holds | 
 |  * the entry. | 
 |  */ | 
 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) | 
 | { | 
 | 	u32 tempval; | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	u32 result = ether_crc(ETH_ALEN, addr); | 
 | 	int width = priv->hash_width; | 
 | 	u8 whichbit = (result >> (32 - width)) & 0x1f; | 
 | 	u8 whichreg = result >> (32 - width + 5); | 
 | 	u32 value = (1 << (31-whichbit)); | 
 |  | 
 | 	tempval = gfar_read(priv->hash_regs[whichreg]); | 
 | 	tempval |= value; | 
 | 	gfar_write(priv->hash_regs[whichreg], tempval); | 
 | } | 
 |  | 
 |  | 
 | /* There are multiple MAC Address register pairs on some controllers | 
 |  * This function sets the numth pair to a given address | 
 |  */ | 
 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, | 
 | 				  const u8 *addr) | 
 | { | 
 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	u32 tempval; | 
 | 	u32 __iomem *macptr = ®s->macstnaddr1; | 
 |  | 
 | 	macptr += num*2; | 
 |  | 
 | 	/* For a station address of 0x12345678ABCD in transmission | 
 | 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and | 
 | 	 * MACnADDR2 is set to 0x34120000. | 
 | 	 */ | 
 | 	tempval = (addr[5] << 24) | (addr[4] << 16) | | 
 | 		  (addr[3] << 8)  |  addr[2]; | 
 |  | 
 | 	gfar_write(macptr, tempval); | 
 |  | 
 | 	tempval = (addr[1] << 24) | (addr[0] << 16); | 
 |  | 
 | 	gfar_write(macptr+1, tempval); | 
 | } | 
 |  | 
 | /* GFAR error interrupt handler */ | 
 | static irqreturn_t gfar_error(int irq, void *grp_id) | 
 | { | 
 | 	struct gfar_priv_grp *gfargrp = grp_id; | 
 | 	struct gfar __iomem *regs = gfargrp->regs; | 
 | 	struct gfar_private *priv= gfargrp->priv; | 
 | 	struct net_device *dev = priv->ndev; | 
 |  | 
 | 	/* Save ievent for future reference */ | 
 | 	u32 events = gfar_read(®s->ievent); | 
 |  | 
 | 	/* Clear IEVENT */ | 
 | 	gfar_write(®s->ievent, events & IEVENT_ERR_MASK); | 
 |  | 
 | 	/* Magic Packet is not an error. */ | 
 | 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && | 
 | 	    (events & IEVENT_MAG)) | 
 | 		events &= ~IEVENT_MAG; | 
 |  | 
 | 	/* Hmm... */ | 
 | 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) | 
 | 		netdev_dbg(dev, | 
 | 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n", | 
 | 			   events, gfar_read(®s->imask)); | 
 |  | 
 | 	/* Update the error counters */ | 
 | 	if (events & IEVENT_TXE) { | 
 | 		dev->stats.tx_errors++; | 
 |  | 
 | 		if (events & IEVENT_LC) | 
 | 			dev->stats.tx_window_errors++; | 
 | 		if (events & IEVENT_CRL) | 
 | 			dev->stats.tx_aborted_errors++; | 
 | 		if (events & IEVENT_XFUN) { | 
 | 			netif_dbg(priv, tx_err, dev, | 
 | 				  "TX FIFO underrun, packet dropped\n"); | 
 | 			dev->stats.tx_dropped++; | 
 | 			atomic64_inc(&priv->extra_stats.tx_underrun); | 
 |  | 
 | 			schedule_work(&priv->reset_task); | 
 | 		} | 
 | 		netif_dbg(priv, tx_err, dev, "Transmit Error\n"); | 
 | 	} | 
 | 	if (events & IEVENT_BSY) { | 
 | 		dev->stats.rx_over_errors++; | 
 | 		atomic64_inc(&priv->extra_stats.rx_bsy); | 
 |  | 
 | 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", | 
 | 			  gfar_read(®s->rstat)); | 
 | 	} | 
 | 	if (events & IEVENT_BABR) { | 
 | 		dev->stats.rx_errors++; | 
 | 		atomic64_inc(&priv->extra_stats.rx_babr); | 
 |  | 
 | 		netif_dbg(priv, rx_err, dev, "babbling RX error\n"); | 
 | 	} | 
 | 	if (events & IEVENT_EBERR) { | 
 | 		atomic64_inc(&priv->extra_stats.eberr); | 
 | 		netif_dbg(priv, rx_err, dev, "bus error\n"); | 
 | 	} | 
 | 	if (events & IEVENT_RXC) | 
 | 		netif_dbg(priv, rx_status, dev, "control frame\n"); | 
 |  | 
 | 	if (events & IEVENT_BABT) { | 
 | 		atomic64_inc(&priv->extra_stats.tx_babt); | 
 | 		netif_dbg(priv, tx_err, dev, "babbling TX error\n"); | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) | 
 | { | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct phy_device *phydev = ndev->phydev; | 
 | 	u32 val = 0; | 
 |  | 
 | 	if (!phydev->duplex) | 
 | 		return val; | 
 |  | 
 | 	if (!priv->pause_aneg_en) { | 
 | 		if (priv->tx_pause_en) | 
 | 			val |= MACCFG1_TX_FLOW; | 
 | 		if (priv->rx_pause_en) | 
 | 			val |= MACCFG1_RX_FLOW; | 
 | 	} else { | 
 | 		u16 lcl_adv, rmt_adv; | 
 | 		u8 flowctrl; | 
 | 		/* get link partner capabilities */ | 
 | 		rmt_adv = 0; | 
 | 		if (phydev->pause) | 
 | 			rmt_adv = LPA_PAUSE_CAP; | 
 | 		if (phydev->asym_pause) | 
 | 			rmt_adv |= LPA_PAUSE_ASYM; | 
 |  | 
 | 		lcl_adv = 0; | 
 | 		if (phydev->advertising & ADVERTISED_Pause) | 
 | 			lcl_adv |= ADVERTISE_PAUSE_CAP; | 
 | 		if (phydev->advertising & ADVERTISED_Asym_Pause) | 
 | 			lcl_adv |= ADVERTISE_PAUSE_ASYM; | 
 |  | 
 | 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); | 
 | 		if (flowctrl & FLOW_CTRL_TX) | 
 | 			val |= MACCFG1_TX_FLOW; | 
 | 		if (flowctrl & FLOW_CTRL_RX) | 
 | 			val |= MACCFG1_RX_FLOW; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static noinline void gfar_update_link_state(struct gfar_private *priv) | 
 | { | 
 | 	struct gfar __iomem *regs = priv->gfargrp[0].regs; | 
 | 	struct net_device *ndev = priv->ndev; | 
 | 	struct phy_device *phydev = ndev->phydev; | 
 | 	struct gfar_priv_rx_q *rx_queue = NULL; | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) | 
 | 		return; | 
 |  | 
 | 	if (phydev->link) { | 
 | 		u32 tempval1 = gfar_read(®s->maccfg1); | 
 | 		u32 tempval = gfar_read(®s->maccfg2); | 
 | 		u32 ecntrl = gfar_read(®s->ecntrl); | 
 | 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW); | 
 |  | 
 | 		if (phydev->duplex != priv->oldduplex) { | 
 | 			if (!(phydev->duplex)) | 
 | 				tempval &= ~(MACCFG2_FULL_DUPLEX); | 
 | 			else | 
 | 				tempval |= MACCFG2_FULL_DUPLEX; | 
 |  | 
 | 			priv->oldduplex = phydev->duplex; | 
 | 		} | 
 |  | 
 | 		if (phydev->speed != priv->oldspeed) { | 
 | 			switch (phydev->speed) { | 
 | 			case 1000: | 
 | 				tempval = | 
 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); | 
 |  | 
 | 				ecntrl &= ~(ECNTRL_R100); | 
 | 				break; | 
 | 			case 100: | 
 | 			case 10: | 
 | 				tempval = | 
 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); | 
 |  | 
 | 				/* Reduced mode distinguishes | 
 | 				 * between 10 and 100 | 
 | 				 */ | 
 | 				if (phydev->speed == SPEED_100) | 
 | 					ecntrl |= ECNTRL_R100; | 
 | 				else | 
 | 					ecntrl &= ~(ECNTRL_R100); | 
 | 				break; | 
 | 			default: | 
 | 				netif_warn(priv, link, priv->ndev, | 
 | 					   "Ack!  Speed (%d) is not 10/100/1000!\n", | 
 | 					   phydev->speed); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			priv->oldspeed = phydev->speed; | 
 | 		} | 
 |  | 
 | 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); | 
 | 		tempval1 |= gfar_get_flowctrl_cfg(priv); | 
 |  | 
 | 		/* Turn last free buffer recording on */ | 
 | 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { | 
 | 			for (i = 0; i < priv->num_rx_queues; i++) { | 
 | 				u32 bdp_dma; | 
 |  | 
 | 				rx_queue = priv->rx_queue[i]; | 
 | 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); | 
 | 				gfar_write(rx_queue->rfbptr, bdp_dma); | 
 | 			} | 
 |  | 
 | 			priv->tx_actual_en = 1; | 
 | 		} | 
 |  | 
 | 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) | 
 | 			priv->tx_actual_en = 0; | 
 |  | 
 | 		gfar_write(®s->maccfg1, tempval1); | 
 | 		gfar_write(®s->maccfg2, tempval); | 
 | 		gfar_write(®s->ecntrl, ecntrl); | 
 |  | 
 | 		if (!priv->oldlink) | 
 | 			priv->oldlink = 1; | 
 |  | 
 | 	} else if (priv->oldlink) { | 
 | 		priv->oldlink = 0; | 
 | 		priv->oldspeed = 0; | 
 | 		priv->oldduplex = -1; | 
 | 	} | 
 |  | 
 | 	if (netif_msg_link(priv)) | 
 | 		phy_print_status(phydev); | 
 | } | 
 |  | 
 | static const struct of_device_id gfar_match[] = | 
 | { | 
 | 	{ | 
 | 		.type = "network", | 
 | 		.compatible = "gianfar", | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "fsl,etsec2", | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, gfar_match); | 
 |  | 
 | /* Structure for a device driver */ | 
 | static struct platform_driver gfar_driver = { | 
 | 	.driver = { | 
 | 		.name = "fsl-gianfar", | 
 | 		.pm = GFAR_PM_OPS, | 
 | 		.of_match_table = gfar_match, | 
 | 	}, | 
 | 	.probe = gfar_probe, | 
 | 	.remove = gfar_remove, | 
 | }; | 
 |  | 
 | module_platform_driver(gfar_driver); |