| /* | 
 |  * Pid namespaces | 
 |  * | 
 |  * Authors: | 
 |  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
 |  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
 |  *     Many thanks to Oleg Nesterov for comments and help | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/pid.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/user_namespace.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/err.h> | 
 | #include <linux/acct.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/proc_ns.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/export.h> | 
 |  | 
 | struct pid_cache { | 
 | 	int nr_ids; | 
 | 	char name[16]; | 
 | 	struct kmem_cache *cachep; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | static LIST_HEAD(pid_caches_lh); | 
 | static DEFINE_MUTEX(pid_caches_mutex); | 
 | static struct kmem_cache *pid_ns_cachep; | 
 |  | 
 | /* | 
 |  * creates the kmem cache to allocate pids from. | 
 |  * @nr_ids: the number of numerical ids this pid will have to carry | 
 |  */ | 
 |  | 
 | static struct kmem_cache *create_pid_cachep(int nr_ids) | 
 | { | 
 | 	struct pid_cache *pcache; | 
 | 	struct kmem_cache *cachep; | 
 |  | 
 | 	mutex_lock(&pid_caches_mutex); | 
 | 	list_for_each_entry(pcache, &pid_caches_lh, list) | 
 | 		if (pcache->nr_ids == nr_ids) | 
 | 			goto out; | 
 |  | 
 | 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); | 
 | 	if (pcache == NULL) | 
 | 		goto err_alloc; | 
 |  | 
 | 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); | 
 | 	cachep = kmem_cache_create(pcache->name, | 
 | 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), | 
 | 			0, SLAB_HWCACHE_ALIGN, NULL); | 
 | 	if (cachep == NULL) | 
 | 		goto err_cachep; | 
 |  | 
 | 	pcache->nr_ids = nr_ids; | 
 | 	pcache->cachep = cachep; | 
 | 	list_add(&pcache->list, &pid_caches_lh); | 
 | out: | 
 | 	mutex_unlock(&pid_caches_mutex); | 
 | 	return pcache->cachep; | 
 |  | 
 | err_cachep: | 
 | 	kfree(pcache); | 
 | err_alloc: | 
 | 	mutex_unlock(&pid_caches_mutex); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void proc_cleanup_work(struct work_struct *work) | 
 | { | 
 | 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); | 
 | 	pid_ns_release_proc(ns); | 
 | } | 
 |  | 
 | /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ | 
 | #define MAX_PID_NS_LEVEL 32 | 
 |  | 
 | static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, | 
 | 	struct pid_namespace *parent_pid_ns) | 
 | { | 
 | 	struct pid_namespace *ns; | 
 | 	unsigned int level = parent_pid_ns->level + 1; | 
 | 	int i; | 
 | 	int err; | 
 |  | 
 | 	if (level > MAX_PID_NS_LEVEL) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); | 
 | 	if (ns == NULL) | 
 | 		goto out; | 
 |  | 
 | 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!ns->pidmap[0].page) | 
 | 		goto out_free; | 
 |  | 
 | 	ns->pid_cachep = create_pid_cachep(level + 1); | 
 | 	if (ns->pid_cachep == NULL) | 
 | 		goto out_free_map; | 
 |  | 
 | 	err = proc_alloc_inum(&ns->proc_inum); | 
 | 	if (err) | 
 | 		goto out_free_map; | 
 |  | 
 | 	kref_init(&ns->kref); | 
 | 	ns->level = level; | 
 | 	ns->parent = get_pid_ns(parent_pid_ns); | 
 | 	ns->user_ns = get_user_ns(user_ns); | 
 | 	ns->nr_hashed = PIDNS_HASH_ADDING; | 
 | 	INIT_WORK(&ns->proc_work, proc_cleanup_work); | 
 |  | 
 | 	set_bit(0, ns->pidmap[0].page); | 
 | 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); | 
 |  | 
 | 	for (i = 1; i < PIDMAP_ENTRIES; i++) | 
 | 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); | 
 |  | 
 | 	return ns; | 
 |  | 
 | out_free_map: | 
 | 	kfree(ns->pidmap[0].page); | 
 | out_free: | 
 | 	kmem_cache_free(pid_ns_cachep, ns); | 
 | out: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void delayed_free_pidns(struct rcu_head *p) | 
 | { | 
 | 	kmem_cache_free(pid_ns_cachep, | 
 | 			container_of(p, struct pid_namespace, rcu)); | 
 | } | 
 |  | 
 | static void destroy_pid_namespace(struct pid_namespace *ns) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	proc_free_inum(ns->proc_inum); | 
 | 	for (i = 0; i < PIDMAP_ENTRIES; i++) | 
 | 		kfree(ns->pidmap[i].page); | 
 | 	put_user_ns(ns->user_ns); | 
 | 	call_rcu(&ns->rcu, delayed_free_pidns); | 
 | } | 
 |  | 
 | struct pid_namespace *copy_pid_ns(unsigned long flags, | 
 | 	struct user_namespace *user_ns, struct pid_namespace *old_ns) | 
 | { | 
 | 	if (!(flags & CLONE_NEWPID)) | 
 | 		return get_pid_ns(old_ns); | 
 | 	if (task_active_pid_ns(current) != old_ns) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	return create_pid_namespace(user_ns, old_ns); | 
 | } | 
 |  | 
 | static void free_pid_ns(struct kref *kref) | 
 | { | 
 | 	struct pid_namespace *ns; | 
 |  | 
 | 	ns = container_of(kref, struct pid_namespace, kref); | 
 | 	destroy_pid_namespace(ns); | 
 | } | 
 |  | 
 | void put_pid_ns(struct pid_namespace *ns) | 
 | { | 
 | 	struct pid_namespace *parent; | 
 |  | 
 | 	while (ns != &init_pid_ns) { | 
 | 		parent = ns->parent; | 
 | 		if (!kref_put(&ns->kref, free_pid_ns)) | 
 | 			break; | 
 | 		ns = parent; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(put_pid_ns); | 
 |  | 
 | void zap_pid_ns_processes(struct pid_namespace *pid_ns) | 
 | { | 
 | 	int nr; | 
 | 	int rc; | 
 | 	struct task_struct *task, *me = current; | 
 | 	int init_pids = thread_group_leader(me) ? 1 : 2; | 
 |  | 
 | 	/* Don't allow any more processes into the pid namespace */ | 
 | 	disable_pid_allocation(pid_ns); | 
 |  | 
 | 	/* Ignore SIGCHLD causing any terminated children to autoreap */ | 
 | 	spin_lock_irq(&me->sighand->siglock); | 
 | 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; | 
 | 	spin_unlock_irq(&me->sighand->siglock); | 
 |  | 
 | 	/* | 
 | 	 * The last thread in the cgroup-init thread group is terminating. | 
 | 	 * Find remaining pid_ts in the namespace, signal and wait for them | 
 | 	 * to exit. | 
 | 	 * | 
 | 	 * Note:  This signals each threads in the namespace - even those that | 
 | 	 * 	  belong to the same thread group, To avoid this, we would have | 
 | 	 * 	  to walk the entire tasklist looking a processes in this | 
 | 	 * 	  namespace, but that could be unnecessarily expensive if the | 
 | 	 * 	  pid namespace has just a few processes. Or we need to | 
 | 	 * 	  maintain a tasklist for each pid namespace. | 
 | 	 * | 
 | 	 */ | 
 | 	read_lock(&tasklist_lock); | 
 | 	nr = next_pidmap(pid_ns, 1); | 
 | 	while (nr > 0) { | 
 | 		rcu_read_lock(); | 
 |  | 
 | 		task = pid_task(find_vpid(nr), PIDTYPE_PID); | 
 | 		if (task && !__fatal_signal_pending(task)) | 
 | 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task); | 
 |  | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		nr = next_pidmap(pid_ns, nr); | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	/* Firstly reap the EXIT_ZOMBIE children we may have. */ | 
 | 	do { | 
 | 		clear_thread_flag(TIF_SIGPENDING); | 
 | 		rc = sys_wait4(-1, NULL, __WALL, NULL); | 
 | 	} while (rc != -ECHILD); | 
 |  | 
 | 	/* | 
 | 	 * sys_wait4() above can't reap the TASK_DEAD children. | 
 | 	 * Make sure they all go away, see free_pid(). | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (pid_ns->nr_hashed == init_pids) | 
 | 			break; | 
 | 		schedule(); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	if (pid_ns->reboot) | 
 | 		current->signal->group_exit_code = pid_ns->reboot; | 
 |  | 
 | 	acct_exit_ns(pid_ns); | 
 | 	return; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
 | static int pid_ns_ctl_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	struct pid_namespace *pid_ns = task_active_pid_ns(current); | 
 | 	struct ctl_table tmp = *table; | 
 |  | 
 | 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* | 
 | 	 * Writing directly to ns' last_pid field is OK, since this field | 
 | 	 * is volatile in a living namespace anyway and a code writing to | 
 | 	 * it should synchronize its usage with external means. | 
 | 	 */ | 
 |  | 
 | 	tmp.data = &pid_ns->last_pid; | 
 | 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); | 
 | } | 
 |  | 
 | extern int pid_max; | 
 | static int zero = 0; | 
 | static struct ctl_table pid_ns_ctl_table[] = { | 
 | 	{ | 
 | 		.procname = "ns_last_pid", | 
 | 		.maxlen = sizeof(int), | 
 | 		.mode = 0666, /* permissions are checked in the handler */ | 
 | 		.proc_handler = pid_ns_ctl_handler, | 
 | 		.extra1 = &zero, | 
 | 		.extra2 = &pid_max, | 
 | 	}, | 
 | 	{ } | 
 | }; | 
 | static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; | 
 | #endif	/* CONFIG_CHECKPOINT_RESTORE */ | 
 |  | 
 | int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) | 
 | { | 
 | 	if (pid_ns == &init_pid_ns) | 
 | 		return 0; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case LINUX_REBOOT_CMD_RESTART2: | 
 | 	case LINUX_REBOOT_CMD_RESTART: | 
 | 		pid_ns->reboot = SIGHUP; | 
 | 		break; | 
 |  | 
 | 	case LINUX_REBOOT_CMD_POWER_OFF: | 
 | 	case LINUX_REBOOT_CMD_HALT: | 
 | 		pid_ns->reboot = SIGINT; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	force_sig(SIGKILL, pid_ns->child_reaper); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	do_exit(0); | 
 |  | 
 | 	/* Not reached */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *pidns_get(struct task_struct *task) | 
 | { | 
 | 	struct pid_namespace *ns; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ns = task_active_pid_ns(task); | 
 | 	if (ns) | 
 | 		get_pid_ns(ns); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | static void pidns_put(void *ns) | 
 | { | 
 | 	put_pid_ns(ns); | 
 | } | 
 |  | 
 | static int pidns_install(struct nsproxy *nsproxy, void *ns) | 
 | { | 
 | 	struct pid_namespace *active = task_active_pid_ns(current); | 
 | 	struct pid_namespace *ancestor, *new = ns; | 
 |  | 
 | 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || | 
 | 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* | 
 | 	 * Only allow entering the current active pid namespace | 
 | 	 * or a child of the current active pid namespace. | 
 | 	 * | 
 | 	 * This is required for fork to return a usable pid value and | 
 | 	 * this maintains the property that processes and their | 
 | 	 * children can not escape their current pid namespace. | 
 | 	 */ | 
 | 	if (new->level < active->level) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ancestor = new; | 
 | 	while (ancestor->level > active->level) | 
 | 		ancestor = ancestor->parent; | 
 | 	if (ancestor != active) | 
 | 		return -EINVAL; | 
 |  | 
 | 	put_pid_ns(nsproxy->pid_ns_for_children); | 
 | 	nsproxy->pid_ns_for_children = get_pid_ns(new); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int pidns_inum(void *ns) | 
 | { | 
 | 	struct pid_namespace *pid_ns = ns; | 
 | 	return pid_ns->proc_inum; | 
 | } | 
 |  | 
 | const struct proc_ns_operations pidns_operations = { | 
 | 	.name		= "pid", | 
 | 	.type		= CLONE_NEWPID, | 
 | 	.get		= pidns_get, | 
 | 	.put		= pidns_put, | 
 | 	.install	= pidns_install, | 
 | 	.inum		= pidns_inum, | 
 | }; | 
 |  | 
 | static __init int pid_namespaces_init(void) | 
 | { | 
 | 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); | 
 |  | 
 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
 | 	register_sysctl_paths(kern_path, pid_ns_ctl_table); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(pid_namespaces_init); |