| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net |
| * |
| * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and |
| * Grant Likely. |
| */ |
| |
| #define pr_fmt(fmt) "OF: " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/console.h> |
| #include <linux/ctype.h> |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_graph.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/proc_fs.h> |
| |
| #include "of_private.h" |
| |
| LIST_HEAD(aliases_lookup); |
| |
| struct device_node *of_root; |
| EXPORT_SYMBOL(of_root); |
| struct device_node *of_chosen; |
| struct device_node *of_aliases; |
| struct device_node *of_stdout; |
| static const char *of_stdout_options; |
| |
| struct kset *of_kset; |
| |
| /* |
| * Used to protect the of_aliases, to hold off addition of nodes to sysfs. |
| * This mutex must be held whenever modifications are being made to the |
| * device tree. The of_{attach,detach}_node() and |
| * of_{add,remove,update}_property() helpers make sure this happens. |
| */ |
| DEFINE_MUTEX(of_mutex); |
| |
| /* use when traversing tree through the child, sibling, |
| * or parent members of struct device_node. |
| */ |
| DEFINE_RAW_SPINLOCK(devtree_lock); |
| |
| bool of_node_name_eq(const struct device_node *np, const char *name) |
| { |
| const char *node_name; |
| size_t len; |
| |
| if (!np) |
| return false; |
| |
| node_name = kbasename(np->full_name); |
| len = strchrnul(node_name, '@') - node_name; |
| |
| return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); |
| } |
| EXPORT_SYMBOL(of_node_name_eq); |
| |
| bool of_node_name_prefix(const struct device_node *np, const char *prefix) |
| { |
| if (!np) |
| return false; |
| |
| return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; |
| } |
| EXPORT_SYMBOL(of_node_name_prefix); |
| |
| static bool __of_node_is_type(const struct device_node *np, const char *type) |
| { |
| const char *match = __of_get_property(np, "device_type", NULL); |
| |
| return np && match && type && !strcmp(match, type); |
| } |
| |
| int of_bus_n_addr_cells(struct device_node *np) |
| { |
| u32 cells; |
| |
| for (; np; np = np->parent) |
| if (!of_property_read_u32(np, "#address-cells", &cells)) |
| return cells; |
| |
| /* No #address-cells property for the root node */ |
| return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| } |
| |
| int of_n_addr_cells(struct device_node *np) |
| { |
| if (np->parent) |
| np = np->parent; |
| |
| return of_bus_n_addr_cells(np); |
| } |
| EXPORT_SYMBOL(of_n_addr_cells); |
| |
| int of_bus_n_size_cells(struct device_node *np) |
| { |
| u32 cells; |
| |
| for (; np; np = np->parent) |
| if (!of_property_read_u32(np, "#size-cells", &cells)) |
| return cells; |
| |
| /* No #size-cells property for the root node */ |
| return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| } |
| |
| int of_n_size_cells(struct device_node *np) |
| { |
| if (np->parent) |
| np = np->parent; |
| |
| return of_bus_n_size_cells(np); |
| } |
| EXPORT_SYMBOL(of_n_size_cells); |
| |
| #ifdef CONFIG_NUMA |
| int __weak of_node_to_nid(struct device_node *np) |
| { |
| return NUMA_NO_NODE; |
| } |
| #endif |
| |
| /* |
| * Assumptions behind phandle_cache implementation: |
| * - phandle property values are in a contiguous range of 1..n |
| * |
| * If the assumptions do not hold, then |
| * - the phandle lookup overhead reduction provided by the cache |
| * will likely be less |
| */ |
| |
| static struct device_node **phandle_cache; |
| static u32 phandle_cache_mask; |
| |
| /* |
| * Caller must hold devtree_lock. |
| */ |
| static void __of_free_phandle_cache(void) |
| { |
| u32 cache_entries = phandle_cache_mask + 1; |
| u32 k; |
| |
| if (!phandle_cache) |
| return; |
| |
| for (k = 0; k < cache_entries; k++) |
| of_node_put(phandle_cache[k]); |
| |
| kfree(phandle_cache); |
| phandle_cache = NULL; |
| } |
| |
| int of_free_phandle_cache(void) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| |
| __of_free_phandle_cache(); |
| |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| return 0; |
| } |
| #if !defined(CONFIG_MODULES) |
| late_initcall_sync(of_free_phandle_cache); |
| #endif |
| |
| /* |
| * Caller must hold devtree_lock. |
| */ |
| void __of_free_phandle_cache_entry(phandle handle) |
| { |
| phandle masked_handle; |
| struct device_node *np; |
| |
| if (!handle) |
| return; |
| |
| masked_handle = handle & phandle_cache_mask; |
| |
| if (phandle_cache) { |
| np = phandle_cache[masked_handle]; |
| if (np && handle == np->phandle) { |
| of_node_put(np); |
| phandle_cache[masked_handle] = NULL; |
| } |
| } |
| } |
| |
| void of_populate_phandle_cache(void) |
| { |
| unsigned long flags; |
| u32 cache_entries; |
| struct device_node *np; |
| u32 phandles = 0; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| |
| __of_free_phandle_cache(); |
| |
| for_each_of_allnodes(np) |
| if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) |
| phandles++; |
| |
| if (!phandles) |
| goto out; |
| |
| cache_entries = roundup_pow_of_two(phandles); |
| phandle_cache_mask = cache_entries - 1; |
| |
| phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), |
| GFP_ATOMIC); |
| if (!phandle_cache) |
| goto out; |
| |
| for_each_of_allnodes(np) |
| if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) { |
| of_node_get(np); |
| phandle_cache[np->phandle & phandle_cache_mask] = np; |
| } |
| |
| out: |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| } |
| |
| void __init of_core_init(void) |
| { |
| struct device_node *np; |
| |
| of_populate_phandle_cache(); |
| |
| /* Create the kset, and register existing nodes */ |
| mutex_lock(&of_mutex); |
| of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); |
| if (!of_kset) { |
| mutex_unlock(&of_mutex); |
| pr_err("failed to register existing nodes\n"); |
| return; |
| } |
| for_each_of_allnodes(np) |
| __of_attach_node_sysfs(np); |
| mutex_unlock(&of_mutex); |
| |
| /* Symlink in /proc as required by userspace ABI */ |
| if (of_root) |
| proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); |
| } |
| |
| static struct property *__of_find_property(const struct device_node *np, |
| const char *name, int *lenp) |
| { |
| struct property *pp; |
| |
| if (!np) |
| return NULL; |
| |
| for (pp = np->properties; pp; pp = pp->next) { |
| if (of_prop_cmp(pp->name, name) == 0) { |
| if (lenp) |
| *lenp = pp->length; |
| break; |
| } |
| } |
| |
| return pp; |
| } |
| |
| struct property *of_find_property(const struct device_node *np, |
| const char *name, |
| int *lenp) |
| { |
| struct property *pp; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| pp = __of_find_property(np, name, lenp); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| return pp; |
| } |
| EXPORT_SYMBOL(of_find_property); |
| |
| struct device_node *__of_find_all_nodes(struct device_node *prev) |
| { |
| struct device_node *np; |
| if (!prev) { |
| np = of_root; |
| } else if (prev->child) { |
| np = prev->child; |
| } else { |
| /* Walk back up looking for a sibling, or the end of the structure */ |
| np = prev; |
| while (np->parent && !np->sibling) |
| np = np->parent; |
| np = np->sibling; /* Might be null at the end of the tree */ |
| } |
| return np; |
| } |
| |
| /** |
| * of_find_all_nodes - Get next node in global list |
| * @prev: Previous node or NULL to start iteration |
| * of_node_put() will be called on it |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_all_nodes(struct device_node *prev) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = __of_find_all_nodes(prev); |
| of_node_get(np); |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_all_nodes); |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| const void *__of_get_property(const struct device_node *np, |
| const char *name, int *lenp) |
| { |
| struct property *pp = __of_find_property(np, name, lenp); |
| |
| return pp ? pp->value : NULL; |
| } |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| const void *of_get_property(const struct device_node *np, const char *name, |
| int *lenp) |
| { |
| struct property *pp = of_find_property(np, name, lenp); |
| |
| return pp ? pp->value : NULL; |
| } |
| EXPORT_SYMBOL(of_get_property); |
| |
| /* |
| * arch_match_cpu_phys_id - Match the given logical CPU and physical id |
| * |
| * @cpu: logical cpu index of a core/thread |
| * @phys_id: physical identifier of a core/thread |
| * |
| * CPU logical to physical index mapping is architecture specific. |
| * However this __weak function provides a default match of physical |
| * id to logical cpu index. phys_id provided here is usually values read |
| * from the device tree which must match the hardware internal registers. |
| * |
| * Returns true if the physical identifier and the logical cpu index |
| * correspond to the same core/thread, false otherwise. |
| */ |
| bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return (u32)phys_id == cpu; |
| } |
| |
| /* |
| * Checks if the given "prop_name" property holds the physical id of the |
| * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not |
| * NULL, local thread number within the core is returned in it. |
| */ |
| static bool __of_find_n_match_cpu_property(struct device_node *cpun, |
| const char *prop_name, int cpu, unsigned int *thread) |
| { |
| const __be32 *cell; |
| int ac, prop_len, tid; |
| u64 hwid; |
| |
| ac = of_n_addr_cells(cpun); |
| cell = of_get_property(cpun, prop_name, &prop_len); |
| if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) |
| return true; |
| if (!cell || !ac) |
| return false; |
| prop_len /= sizeof(*cell) * ac; |
| for (tid = 0; tid < prop_len; tid++) { |
| hwid = of_read_number(cell, ac); |
| if (arch_match_cpu_phys_id(cpu, hwid)) { |
| if (thread) |
| *thread = tid; |
| return true; |
| } |
| cell += ac; |
| } |
| return false; |
| } |
| |
| /* |
| * arch_find_n_match_cpu_physical_id - See if the given device node is |
| * for the cpu corresponding to logical cpu 'cpu'. Return true if so, |
| * else false. If 'thread' is non-NULL, the local thread number within the |
| * core is returned in it. |
| */ |
| bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, |
| int cpu, unsigned int *thread) |
| { |
| /* Check for non-standard "ibm,ppc-interrupt-server#s" property |
| * for thread ids on PowerPC. If it doesn't exist fallback to |
| * standard "reg" property. |
| */ |
| if (IS_ENABLED(CONFIG_PPC) && |
| __of_find_n_match_cpu_property(cpun, |
| "ibm,ppc-interrupt-server#s", |
| cpu, thread)) |
| return true; |
| |
| return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); |
| } |
| |
| /** |
| * of_get_cpu_node - Get device node associated with the given logical CPU |
| * |
| * @cpu: CPU number(logical index) for which device node is required |
| * @thread: if not NULL, local thread number within the physical core is |
| * returned |
| * |
| * The main purpose of this function is to retrieve the device node for the |
| * given logical CPU index. It should be used to initialize the of_node in |
| * cpu device. Once of_node in cpu device is populated, all the further |
| * references can use that instead. |
| * |
| * CPU logical to physical index mapping is architecture specific and is built |
| * before booting secondary cores. This function uses arch_match_cpu_phys_id |
| * which can be overridden by architecture specific implementation. |
| * |
| * Return: A node pointer for the logical cpu with refcount incremented, use |
| * of_node_put() on it when done. Returns NULL if not found. |
| */ |
| struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) |
| { |
| struct device_node *cpun; |
| |
| for_each_of_cpu_node(cpun) { |
| if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) |
| return cpun; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_get_cpu_node); |
| |
| /** |
| * of_cpu_node_to_id: Get the logical CPU number for a given device_node |
| * |
| * @cpu_node: Pointer to the device_node for CPU. |
| * |
| * Return: The logical CPU number of the given CPU device_node or -ENODEV if the |
| * CPU is not found. |
| */ |
| int of_cpu_node_to_id(struct device_node *cpu_node) |
| { |
| int cpu; |
| bool found = false; |
| struct device_node *np; |
| |
| for_each_possible_cpu(cpu) { |
| np = of_cpu_device_node_get(cpu); |
| found = (cpu_node == np); |
| of_node_put(np); |
| if (found) |
| return cpu; |
| } |
| |
| return -ENODEV; |
| } |
| EXPORT_SYMBOL(of_cpu_node_to_id); |
| |
| /** |
| * of_get_cpu_state_node - Get CPU's idle state node at the given index |
| * |
| * @cpu_node: The device node for the CPU |
| * @index: The index in the list of the idle states |
| * |
| * Two generic methods can be used to describe a CPU's idle states, either via |
| * a flattened description through the "cpu-idle-states" binding or via the |
| * hierarchical layout, using the "power-domains" and the "domain-idle-states" |
| * bindings. This function check for both and returns the idle state node for |
| * the requested index. |
| * |
| * Return: An idle state node if found at @index. The refcount is incremented |
| * for it, so call of_node_put() on it when done. Returns NULL if not found. |
| */ |
| struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, |
| int index) |
| { |
| struct of_phandle_args args; |
| int err; |
| |
| err = of_parse_phandle_with_args(cpu_node, "power-domains", |
| "#power-domain-cells", 0, &args); |
| if (!err) { |
| struct device_node *state_node = |
| of_parse_phandle(args.np, "domain-idle-states", index); |
| |
| of_node_put(args.np); |
| if (state_node) |
| return state_node; |
| } |
| |
| return of_parse_phandle(cpu_node, "cpu-idle-states", index); |
| } |
| EXPORT_SYMBOL(of_get_cpu_state_node); |
| |
| /** |
| * __of_device_is_compatible() - Check if the node matches given constraints |
| * @device: pointer to node |
| * @compat: required compatible string, NULL or "" for any match |
| * @type: required device_type value, NULL or "" for any match |
| * @name: required node name, NULL or "" for any match |
| * |
| * Checks if the given @compat, @type and @name strings match the |
| * properties of the given @device. A constraints can be skipped by |
| * passing NULL or an empty string as the constraint. |
| * |
| * Returns 0 for no match, and a positive integer on match. The return |
| * value is a relative score with larger values indicating better |
| * matches. The score is weighted for the most specific compatible value |
| * to get the highest score. Matching type is next, followed by matching |
| * name. Practically speaking, this results in the following priority |
| * order for matches: |
| * |
| * 1. specific compatible && type && name |
| * 2. specific compatible && type |
| * 3. specific compatible && name |
| * 4. specific compatible |
| * 5. general compatible && type && name |
| * 6. general compatible && type |
| * 7. general compatible && name |
| * 8. general compatible |
| * 9. type && name |
| * 10. type |
| * 11. name |
| */ |
| static int __of_device_is_compatible(const struct device_node *device, |
| const char *compat, const char *type, const char *name) |
| { |
| struct property *prop; |
| const char *cp; |
| int index = 0, score = 0; |
| |
| /* Compatible match has highest priority */ |
| if (compat && compat[0]) { |
| prop = __of_find_property(device, "compatible", NULL); |
| for (cp = of_prop_next_string(prop, NULL); cp; |
| cp = of_prop_next_string(prop, cp), index++) { |
| if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { |
| score = INT_MAX/2 - (index << 2); |
| break; |
| } |
| } |
| if (!score) |
| return 0; |
| } |
| |
| /* Matching type is better than matching name */ |
| if (type && type[0]) { |
| if (!__of_node_is_type(device, type)) |
| return 0; |
| score += 2; |
| } |
| |
| /* Matching name is a bit better than not */ |
| if (name && name[0]) { |
| if (!of_node_name_eq(device, name)) |
| return 0; |
| score++; |
| } |
| |
| return score; |
| } |
| |
| /** Checks if the given "compat" string matches one of the strings in |
| * the device's "compatible" property |
| */ |
| int of_device_is_compatible(const struct device_node *device, |
| const char *compat) |
| { |
| unsigned long flags; |
| int res; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| res = __of_device_is_compatible(device, compat, NULL, NULL); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return res; |
| } |
| EXPORT_SYMBOL(of_device_is_compatible); |
| |
| /** Checks if the device is compatible with any of the entries in |
| * a NULL terminated array of strings. Returns the best match |
| * score or 0. |
| */ |
| int of_device_compatible_match(struct device_node *device, |
| const char *const *compat) |
| { |
| unsigned int tmp, score = 0; |
| |
| if (!compat) |
| return 0; |
| |
| while (*compat) { |
| tmp = of_device_is_compatible(device, *compat); |
| if (tmp > score) |
| score = tmp; |
| compat++; |
| } |
| |
| return score; |
| } |
| |
| /** |
| * of_machine_is_compatible - Test root of device tree for a given compatible value |
| * @compat: compatible string to look for in root node's compatible property. |
| * |
| * Return: A positive integer if the root node has the given value in its |
| * compatible property. |
| */ |
| int of_machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| int rc = 0; |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| rc = of_device_is_compatible(root, compat); |
| of_node_put(root); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(of_machine_is_compatible); |
| |
| /** |
| * __of_device_is_available - check if a device is available for use |
| * |
| * @device: Node to check for availability, with locks already held |
| * |
| * Return: True if the status property is absent or set to "okay" or "ok", |
| * false otherwise |
| */ |
| static bool __of_device_is_available(const struct device_node *device) |
| { |
| const char *status; |
| int statlen; |
| |
| if (!device) |
| return false; |
| |
| status = __of_get_property(device, "status", &statlen); |
| if (status == NULL) |
| return true; |
| |
| if (statlen > 0) { |
| if (!strcmp(status, "okay") || !strcmp(status, "ok")) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * of_device_is_available - check if a device is available for use |
| * |
| * @device: Node to check for availability |
| * |
| * Return: True if the status property is absent or set to "okay" or "ok", |
| * false otherwise |
| */ |
| bool of_device_is_available(const struct device_node *device) |
| { |
| unsigned long flags; |
| bool res; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| res = __of_device_is_available(device); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return res; |
| |
| } |
| EXPORT_SYMBOL(of_device_is_available); |
| |
| /** |
| * of_device_is_big_endian - check if a device has BE registers |
| * |
| * @device: Node to check for endianness |
| * |
| * Return: True if the device has a "big-endian" property, or if the kernel |
| * was compiled for BE *and* the device has a "native-endian" property. |
| * Returns false otherwise. |
| * |
| * Callers would nominally use ioread32be/iowrite32be if |
| * of_device_is_big_endian() == true, or readl/writel otherwise. |
| */ |
| bool of_device_is_big_endian(const struct device_node *device) |
| { |
| if (of_property_read_bool(device, "big-endian")) |
| return true; |
| if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && |
| of_property_read_bool(device, "native-endian")) |
| return true; |
| return false; |
| } |
| EXPORT_SYMBOL(of_device_is_big_endian); |
| |
| /** |
| * of_get_parent - Get a node's parent if any |
| * @node: Node to get parent |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_parent(const struct device_node *node) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| if (!node) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = of_node_get(node->parent); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_get_parent); |
| |
| /** |
| * of_get_next_parent - Iterate to a node's parent |
| * @node: Node to get parent of |
| * |
| * This is like of_get_parent() except that it drops the |
| * refcount on the passed node, making it suitable for iterating |
| * through a node's parents. |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_next_parent(struct device_node *node) |
| { |
| struct device_node *parent; |
| unsigned long flags; |
| |
| if (!node) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| parent = of_node_get(node->parent); |
| of_node_put(node); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return parent; |
| } |
| EXPORT_SYMBOL(of_get_next_parent); |
| |
| static struct device_node *__of_get_next_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| |
| if (!node) |
| return NULL; |
| |
| next = prev ? prev->sibling : node->child; |
| for (; next; next = next->sibling) |
| if (of_node_get(next)) |
| break; |
| of_node_put(prev); |
| return next; |
| } |
| #define __for_each_child_of_node(parent, child) \ |
| for (child = __of_get_next_child(parent, NULL); child != NULL; \ |
| child = __of_get_next_child(parent, child)) |
| |
| /** |
| * of_get_next_child - Iterate a node childs |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * Return: A node pointer with refcount incremented, use of_node_put() on |
| * it when done. Returns NULL when prev is the last child. Decrements the |
| * refcount of prev. |
| */ |
| struct device_node *of_get_next_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = __of_get_next_child(node, prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_child); |
| |
| /** |
| * of_get_next_available_child - Find the next available child node |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * This function is like of_get_next_child(), except that it |
| * automatically skips any disabled nodes (i.e. status = "disabled"). |
| */ |
| struct device_node *of_get_next_available_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| unsigned long flags; |
| |
| if (!node) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = prev ? prev->sibling : node->child; |
| for (; next; next = next->sibling) { |
| if (!__of_device_is_available(next)) |
| continue; |
| if (of_node_get(next)) |
| break; |
| } |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_available_child); |
| |
| /** |
| * of_get_next_cpu_node - Iterate on cpu nodes |
| * @prev: previous child of the /cpus node, or NULL to get first |
| * |
| * Return: A cpu node pointer with refcount incremented, use of_node_put() |
| * on it when done. Returns NULL when prev is the last child. Decrements |
| * the refcount of prev. |
| */ |
| struct device_node *of_get_next_cpu_node(struct device_node *prev) |
| { |
| struct device_node *next = NULL; |
| unsigned long flags; |
| struct device_node *node; |
| |
| if (!prev) |
| node = of_find_node_by_path("/cpus"); |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| if (prev) |
| next = prev->sibling; |
| else if (node) { |
| next = node->child; |
| of_node_put(node); |
| } |
| for (; next; next = next->sibling) { |
| if (!(of_node_name_eq(next, "cpu") || |
| __of_node_is_type(next, "cpu"))) |
| continue; |
| if (of_node_get(next)) |
| break; |
| } |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_cpu_node); |
| |
| /** |
| * of_get_compatible_child - Find compatible child node |
| * @parent: parent node |
| * @compatible: compatible string |
| * |
| * Lookup child node whose compatible property contains the given compatible |
| * string. |
| * |
| * Return: a node pointer with refcount incremented, use of_node_put() on it |
| * when done; or NULL if not found. |
| */ |
| struct device_node *of_get_compatible_child(const struct device_node *parent, |
| const char *compatible) |
| { |
| struct device_node *child; |
| |
| for_each_child_of_node(parent, child) { |
| if (of_device_is_compatible(child, compatible)) |
| break; |
| } |
| |
| return child; |
| } |
| EXPORT_SYMBOL(of_get_compatible_child); |
| |
| /** |
| * of_get_child_by_name - Find the child node by name for a given parent |
| * @node: parent node |
| * @name: child name to look for. |
| * |
| * This function looks for child node for given matching name |
| * |
| * Return: A node pointer if found, with refcount incremented, use |
| * of_node_put() on it when done. |
| * Returns NULL if node is not found. |
| */ |
| struct device_node *of_get_child_by_name(const struct device_node *node, |
| const char *name) |
| { |
| struct device_node *child; |
| |
| for_each_child_of_node(node, child) |
| if (of_node_name_eq(child, name)) |
| break; |
| return child; |
| } |
| EXPORT_SYMBOL(of_get_child_by_name); |
| |
| struct device_node *__of_find_node_by_path(struct device_node *parent, |
| const char *path) |
| { |
| struct device_node *child; |
| int len; |
| |
| len = strcspn(path, "/:"); |
| if (!len) |
| return NULL; |
| |
| __for_each_child_of_node(parent, child) { |
| const char *name = kbasename(child->full_name); |
| if (strncmp(path, name, len) == 0 && (strlen(name) == len)) |
| return child; |
| } |
| return NULL; |
| } |
| |
| struct device_node *__of_find_node_by_full_path(struct device_node *node, |
| const char *path) |
| { |
| const char *separator = strchr(path, ':'); |
| |
| while (node && *path == '/') { |
| struct device_node *tmp = node; |
| |
| path++; /* Increment past '/' delimiter */ |
| node = __of_find_node_by_path(node, path); |
| of_node_put(tmp); |
| path = strchrnul(path, '/'); |
| if (separator && separator < path) |
| break; |
| } |
| return node; |
| } |
| |
| /** |
| * of_find_node_opts_by_path - Find a node matching a full OF path |
| * @path: Either the full path to match, or if the path does not |
| * start with '/', the name of a property of the /aliases |
| * node (an alias). In the case of an alias, the node |
| * matching the alias' value will be returned. |
| * @opts: Address of a pointer into which to store the start of |
| * an options string appended to the end of the path with |
| * a ':' separator. |
| * |
| * Valid paths: |
| * * /foo/bar Full path |
| * * foo Valid alias |
| * * foo/bar Valid alias + relative path |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) |
| { |
| struct device_node *np = NULL; |
| struct property *pp; |
| unsigned long flags; |
| const char *separator = strchr(path, ':'); |
| |
| if (opts) |
| *opts = separator ? separator + 1 : NULL; |
| |
| if (strcmp(path, "/") == 0) |
| return of_node_get(of_root); |
| |
| /* The path could begin with an alias */ |
| if (*path != '/') { |
| int len; |
| const char *p = separator; |
| |
| if (!p) |
| p = strchrnul(path, '/'); |
| len = p - path; |
| |
| /* of_aliases must not be NULL */ |
| if (!of_aliases) |
| return NULL; |
| |
| for_each_property_of_node(of_aliases, pp) { |
| if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { |
| np = of_find_node_by_path(pp->value); |
| break; |
| } |
| } |
| if (!np) |
| return NULL; |
| path = p; |
| } |
| |
| /* Step down the tree matching path components */ |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| if (!np) |
| np = of_node_get(of_root); |
| np = __of_find_node_by_full_path(np, path); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_opts_by_path); |
| |
| /** |
| * of_find_node_by_name - Find a node by its "name" property |
| * @from: The node to start searching from or NULL; the node |
| * you pass will not be searched, only the next one |
| * will. Typically, you pass what the previous call |
| * returned. of_node_put() will be called on @from. |
| * @name: The name string to match against |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_name(struct device_node *from, |
| const char *name) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for_each_of_allnodes_from(from, np) |
| if (of_node_name_eq(np, name) && of_node_get(np)) |
| break; |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_name); |
| |
| /** |
| * of_find_node_by_type - Find a node by its "device_type" property |
| * @from: The node to start searching from, or NULL to start searching |
| * the entire device tree. The node you pass will not be |
| * searched, only the next one will; typically, you pass |
| * what the previous call returned. of_node_put() will be |
| * called on from for you. |
| * @type: The type string to match against |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_type(struct device_node *from, |
| const char *type) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for_each_of_allnodes_from(from, np) |
| if (__of_node_is_type(np, type) && of_node_get(np)) |
| break; |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_type); |
| |
| /** |
| * of_find_compatible_node - Find a node based on type and one of the |
| * tokens in its "compatible" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @type: The type string to match "device_type" or NULL to ignore |
| * @compatible: The string to match to one of the tokens in the device |
| * "compatible" list. |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_compatible_node(struct device_node *from, |
| const char *type, const char *compatible) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for_each_of_allnodes_from(from, np) |
| if (__of_device_is_compatible(np, compatible, type, NULL) && |
| of_node_get(np)) |
| break; |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_compatible_node); |
| |
| /** |
| * of_find_node_with_property - Find a node which has a property with |
| * the given name. |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @prop_name: The name of the property to look for. |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_with_property(struct device_node *from, |
| const char *prop_name) |
| { |
| struct device_node *np; |
| struct property *pp; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for_each_of_allnodes_from(from, np) { |
| for (pp = np->properties; pp; pp = pp->next) { |
| if (of_prop_cmp(pp->name, prop_name) == 0) { |
| of_node_get(np); |
| goto out; |
| } |
| } |
| } |
| out: |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_with_property); |
| |
| static |
| const struct of_device_id *__of_match_node(const struct of_device_id *matches, |
| const struct device_node *node) |
| { |
| const struct of_device_id *best_match = NULL; |
| int score, best_score = 0; |
| |
| if (!matches) |
| return NULL; |
| |
| for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { |
| score = __of_device_is_compatible(node, matches->compatible, |
| matches->type, matches->name); |
| if (score > best_score) { |
| best_match = matches; |
| best_score = score; |
| } |
| } |
| |
| return best_match; |
| } |
| |
| /** |
| * of_match_node - Tell if a device_node has a matching of_match structure |
| * @matches: array of of device match structures to search in |
| * @node: the of device structure to match against |
| * |
| * Low level utility function used by device matching. |
| */ |
| const struct of_device_id *of_match_node(const struct of_device_id *matches, |
| const struct device_node *node) |
| { |
| const struct of_device_id *match; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| match = __of_match_node(matches, node); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return match; |
| } |
| EXPORT_SYMBOL(of_match_node); |
| |
| /** |
| * of_find_matching_node_and_match - Find a node based on an of_device_id |
| * match table. |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @matches: array of of device match structures to search in |
| * @match: Updated to point at the matches entry which matched |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_matching_node_and_match(struct device_node *from, |
| const struct of_device_id *matches, |
| const struct of_device_id **match) |
| { |
| struct device_node *np; |
| const struct of_device_id *m; |
| unsigned long flags; |
| |
| if (match) |
| *match = NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for_each_of_allnodes_from(from, np) { |
| m = __of_match_node(matches, np); |
| if (m && of_node_get(np)) { |
| if (match) |
| *match = m; |
| break; |
| } |
| } |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_matching_node_and_match); |
| |
| /** |
| * of_modalias_node - Lookup appropriate modalias for a device node |
| * @node: pointer to a device tree node |
| * @modalias: Pointer to buffer that modalias value will be copied into |
| * @len: Length of modalias value |
| * |
| * Based on the value of the compatible property, this routine will attempt |
| * to choose an appropriate modalias value for a particular device tree node. |
| * It does this by stripping the manufacturer prefix (as delimited by a ',') |
| * from the first entry in the compatible list property. |
| * |
| * Return: This routine returns 0 on success, <0 on failure. |
| */ |
| int of_modalias_node(struct device_node *node, char *modalias, int len) |
| { |
| const char *compatible, *p; |
| int cplen; |
| |
| compatible = of_get_property(node, "compatible", &cplen); |
| if (!compatible || strlen(compatible) > cplen) |
| return -ENODEV; |
| p = strchr(compatible, ','); |
| strlcpy(modalias, p ? p + 1 : compatible, len); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_modalias_node); |
| |
| /** |
| * of_find_node_by_phandle - Find a node given a phandle |
| * @handle: phandle of the node to find |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_phandle(phandle handle) |
| { |
| struct device_node *np = NULL; |
| unsigned long flags; |
| phandle masked_handle; |
| |
| if (!handle) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| |
| masked_handle = handle & phandle_cache_mask; |
| |
| if (phandle_cache) { |
| if (phandle_cache[masked_handle] && |
| handle == phandle_cache[masked_handle]->phandle) |
| np = phandle_cache[masked_handle]; |
| if (np && of_node_check_flag(np, OF_DETACHED)) { |
| WARN_ON(1); /* did not uncache np on node removal */ |
| of_node_put(np); |
| phandle_cache[masked_handle] = NULL; |
| np = NULL; |
| } |
| } |
| |
| if (!np) { |
| for_each_of_allnodes(np) |
| if (np->phandle == handle && |
| !of_node_check_flag(np, OF_DETACHED)) { |
| if (phandle_cache) { |
| /* will put when removed from cache */ |
| of_node_get(np); |
| phandle_cache[masked_handle] = np; |
| } |
| break; |
| } |
| } |
| |
| of_node_get(np); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_phandle); |
| |
| void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) |
| { |
| int i; |
| printk("%s %pOF", msg, args->np); |
| for (i = 0; i < args->args_count; i++) { |
| const char delim = i ? ',' : ':'; |
| |
| pr_cont("%c%08x", delim, args->args[i]); |
| } |
| pr_cont("\n"); |
| } |
| |
| int of_phandle_iterator_init(struct of_phandle_iterator *it, |
| const struct device_node *np, |
| const char *list_name, |
| const char *cells_name, |
| int cell_count) |
| { |
| const __be32 *list; |
| int size; |
| |
| memset(it, 0, sizeof(*it)); |
| |
| /* |
| * one of cell_count or cells_name must be provided to determine the |
| * argument length. |
| */ |
| if (cell_count < 0 && !cells_name) |
| return -EINVAL; |
| |
| list = of_get_property(np, list_name, &size); |
| if (!list) |
| return -ENOENT; |
| |
| it->cells_name = cells_name; |
| it->cell_count = cell_count; |
| it->parent = np; |
| it->list_end = list + size / sizeof(*list); |
| it->phandle_end = list; |
| it->cur = list; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_phandle_iterator_init); |
| |
| int of_phandle_iterator_next(struct of_phandle_iterator *it) |
| { |
| uint32_t count = 0; |
| |
| if (it->node) { |
| of_node_put(it->node); |
| it->node = NULL; |
| } |
| |
| if (!it->cur || it->phandle_end >= it->list_end) |
| return -ENOENT; |
| |
| it->cur = it->phandle_end; |
| |
| /* If phandle is 0, then it is an empty entry with no arguments. */ |
| it->phandle = be32_to_cpup(it->cur++); |
| |
| if (it->phandle) { |
| |
| /* |
| * Find the provider node and parse the #*-cells property to |
| * determine the argument length. |
| */ |
| it->node = of_find_node_by_phandle(it->phandle); |
| |
| if (it->cells_name) { |
| if (!it->node) { |
| pr_err("%pOF: could not find phandle\n", |
| it->parent); |
| goto err; |
| } |
| |
| if (of_property_read_u32(it->node, it->cells_name, |
| &count)) { |
| /* |
| * If both cell_count and cells_name is given, |
| * fall back to cell_count in absence |
| * of the cells_name property |
| */ |
| if (it->cell_count >= 0) { |
| count = it->cell_count; |
| } else { |
| pr_err("%pOF: could not get %s for %pOF\n", |
| it->parent, |
| it->cells_name, |
| it->node); |
| goto err; |
| } |
| } |
| } else { |
| count = it->cell_count; |
| } |
| |
| /* |
| * Make sure that the arguments actually fit in the remaining |
| * property data length |
| */ |
| if (it->cur + count > it->list_end) { |
| if (it->cells_name) |
| pr_err("%pOF: %s = %d found %td\n", |
| it->parent, it->cells_name, |
| count, it->list_end - it->cur); |
| else |
| pr_err("%pOF: phandle %s needs %d, found %td\n", |
| it->parent, of_node_full_name(it->node), |
| count, it->list_end - it->cur); |
| goto err; |
| } |
| } |
| |
| it->phandle_end = it->cur + count; |
| it->cur_count = count; |
| |
| return 0; |
| |
| err: |
| if (it->node) { |
| of_node_put(it->node); |
| it->node = NULL; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(of_phandle_iterator_next); |
| |
| int of_phandle_iterator_args(struct of_phandle_iterator *it, |
| uint32_t *args, |
| int size) |
| { |
| int i, count; |
| |
| count = it->cur_count; |
| |
| if (WARN_ON(size < count)) |
| count = size; |
| |
| for (i = 0; i < count; i++) |
| args[i] = be32_to_cpup(it->cur++); |
| |
| return count; |
| } |
| EXPORT_SYMBOL_GPL(of_phandle_iterator_args); |
| |
| static int __of_parse_phandle_with_args(const struct device_node *np, |
| const char *list_name, |
| const char *cells_name, |
| int cell_count, int index, |
| struct of_phandle_args *out_args) |
| { |
| struct of_phandle_iterator it; |
| int rc, cur_index = 0; |
| |
| /* Loop over the phandles until all the requested entry is found */ |
| of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { |
| /* |
| * All of the error cases bail out of the loop, so at |
| * this point, the parsing is successful. If the requested |
| * index matches, then fill the out_args structure and return, |
| * or return -ENOENT for an empty entry. |
| */ |
| rc = -ENOENT; |
| if (cur_index == index) { |
| if (!it.phandle) |
| goto err; |
| |
| if (out_args) { |
| int c; |
| |
| c = of_phandle_iterator_args(&it, |
| out_args->args, |
| MAX_PHANDLE_ARGS); |
| out_args->np = it.node; |
| out_args->args_count = c; |
| } else { |
| of_node_put(it.node); |
| } |
| |
| /* Found it! return success */ |
| return 0; |
| } |
| |
| cur_index++; |
| } |
| |
| /* |
| * Unlock node before returning result; will be one of: |
| * -ENOENT : index is for empty phandle |
| * -EINVAL : parsing error on data |
| */ |
| |
| err: |
| of_node_put(it.node); |
| return rc; |
| } |
| |
| /** |
| * of_parse_phandle - Resolve a phandle property to a device_node pointer |
| * @np: Pointer to device node holding phandle property |
| * @phandle_name: Name of property holding a phandle value |
| * @index: For properties holding a table of phandles, this is the index into |
| * the table |
| * |
| * Return: The device_node pointer with refcount incremented. Use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_parse_phandle(const struct device_node *np, |
| const char *phandle_name, int index) |
| { |
| struct of_phandle_args args; |
| |
| if (index < 0) |
| return NULL; |
| |
| if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, |
| index, &args)) |
| return NULL; |
| |
| return args.np; |
| } |
| EXPORT_SYMBOL(of_parse_phandle); |
| |
| /** |
| * of_parse_phandle_with_args() - Find a node pointed by phandle in a list |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate |
| * errno value. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->np |
| * pointer. |
| * |
| * Example:: |
| * |
| * phandle1: node1 { |
| * #list-cells = <2>; |
| * }; |
| * |
| * phandle2: node2 { |
| * #list-cells = <1>; |
| * }; |
| * |
| * node3 { |
| * list = <&phandle1 1 2 &phandle2 3>; |
| * }; |
| * |
| * To get a device_node of the ``node2`` node you may call this: |
| * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); |
| */ |
| int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, |
| const char *cells_name, int index, |
| struct of_phandle_args *out_args) |
| { |
| int cell_count = -1; |
| |
| if (index < 0) |
| return -EINVAL; |
| |
| /* If cells_name is NULL we assume a cell count of 0 */ |
| if (!cells_name) |
| cell_count = 0; |
| |
| return __of_parse_phandle_with_args(np, list_name, cells_name, |
| cell_count, index, out_args); |
| } |
| EXPORT_SYMBOL(of_parse_phandle_with_args); |
| |
| /** |
| * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @stem_name: stem of property names that specify phandles' arguments count |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate errno |
| * value. The difference between this function and of_parse_phandle_with_args() |
| * is that this API remaps a phandle if the node the phandle points to has |
| * a <@stem_name>-map property. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->np |
| * pointer. |
| * |
| * Example:: |
| * |
| * phandle1: node1 { |
| * #list-cells = <2>; |
| * }; |
| * |
| * phandle2: node2 { |
| * #list-cells = <1>; |
| * }; |
| * |
| * phandle3: node3 { |
| * #list-cells = <1>; |
| * list-map = <0 &phandle2 3>, |
| * <1 &phandle2 2>, |
| * <2 &phandle1 5 1>; |
| * list-map-mask = <0x3>; |
| * }; |
| * |
| * node4 { |
| * list = <&phandle1 1 2 &phandle3 0>; |
| * }; |
| * |
| * To get a device_node of the ``node2`` node you may call this: |
| * of_parse_phandle_with_args(node4, "list", "list", 1, &args); |
| */ |
| int of_parse_phandle_with_args_map(const struct device_node *np, |
| const char *list_name, |
| const char *stem_name, |
| int index, struct of_phandle_args *out_args) |
| { |
| char *cells_name, *map_name = NULL, *mask_name = NULL; |
| char *pass_name = NULL; |
| struct device_node *cur, *new = NULL; |
| const __be32 *map, *mask, *pass; |
| static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; |
| static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; |
| __be32 initial_match_array[MAX_PHANDLE_ARGS]; |
| const __be32 *match_array = initial_match_array; |
| int i, ret, map_len, match; |
| u32 list_size, new_size; |
| |
| if (index < 0) |
| return -EINVAL; |
| |
| cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); |
| if (!cells_name) |
| return -ENOMEM; |
| |
| ret = -ENOMEM; |
| map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); |
| if (!map_name) |
| goto free; |
| |
| mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); |
| if (!mask_name) |
| goto free; |
| |
| pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); |
| if (!pass_name) |
| goto free; |
| |
| ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, |
| out_args); |
| if (ret) |
| goto free; |
| |
| /* Get the #<list>-cells property */ |
| cur = out_args->np; |
| ret = of_property_read_u32(cur, cells_name, &list_size); |
| if (ret < 0) |
| goto put; |
| |
| /* Precalculate the match array - this simplifies match loop */ |
| for (i = 0; i < list_size; i++) |
| initial_match_array[i] = cpu_to_be32(out_args->args[i]); |
| |
| ret = -EINVAL; |
| while (cur) { |
| /* Get the <list>-map property */ |
| map = of_get_property(cur, map_name, &map_len); |
| if (!map) { |
| ret = 0; |
| goto free; |
| } |
| map_len /= sizeof(u32); |
| |
| /* Get the <list>-map-mask property (optional) */ |
| mask = of_get_property(cur, mask_name, NULL); |
| if (!mask) |
| mask = dummy_mask; |
| /* Iterate through <list>-map property */ |
| match = 0; |
| while (map_len > (list_size + 1) && !match) { |
| /* Compare specifiers */ |
| match = 1; |
| for (i = 0; i < list_size; i++, map_len--) |
| match &= !((match_array[i] ^ *map++) & mask[i]); |
| |
| of_node_put(new); |
| new = of_find_node_by_phandle(be32_to_cpup(map)); |
| map++; |
| map_len--; |
| |
| /* Check if not found */ |
| if (!new) |
| goto put; |
| |
| if (!of_device_is_available(new)) |
| match = 0; |
| |
| ret = of_property_read_u32(new, cells_name, &new_size); |
| if (ret) |
| goto put; |
| |
| /* Check for malformed properties */ |
| if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) |
| goto put; |
| if (map_len < new_size) |
| goto put; |
| |
| /* Move forward by new node's #<list>-cells amount */ |
| map += new_size; |
| map_len -= new_size; |
| } |
| if (!match) |
| goto put; |
| |
| /* Get the <list>-map-pass-thru property (optional) */ |
| pass = of_get_property(cur, pass_name, NULL); |
| if (!pass) |
| pass = dummy_pass; |
| |
| /* |
| * Successfully parsed a <list>-map translation; copy new |
| * specifier into the out_args structure, keeping the |
| * bits specified in <list>-map-pass-thru. |
| */ |
| match_array = map - new_size; |
| for (i = 0; i < new_size; i++) { |
| __be32 val = *(map - new_size + i); |
| |
| if (i < list_size) { |
| val &= ~pass[i]; |
| val |= cpu_to_be32(out_args->args[i]) & pass[i]; |
| } |
| |
| out_args->args[i] = be32_to_cpu(val); |
| } |
| out_args->args_count = list_size = new_size; |
| /* Iterate again with new provider */ |
| out_args->np = new; |
| of_node_put(cur); |
| cur = new; |
| new = NULL; |
| } |
| put: |
| of_node_put(cur); |
| of_node_put(new); |
| free: |
| kfree(mask_name); |
| kfree(map_name); |
| kfree(cells_name); |
| kfree(pass_name); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(of_parse_phandle_with_args_map); |
| |
| /** |
| * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cell_count: number of argument cells following the phandle |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate |
| * errno value. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->np |
| * pointer. |
| * |
| * Example:: |
| * |
| * phandle1: node1 { |
| * }; |
| * |
| * phandle2: node2 { |
| * }; |
| * |
| * node3 { |
| * list = <&phandle1 0 2 &phandle2 2 3>; |
| * }; |
| * |
| * To get a device_node of the ``node2`` node you may call this: |
| * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); |
| */ |
| int of_parse_phandle_with_fixed_args(const struct device_node *np, |
| const char *list_name, int cell_count, |
| int index, struct of_phandle_args *out_args) |
| { |
| if (index < 0) |
| return -EINVAL; |
| return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, |
| index, out_args); |
| } |
| EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); |
| |
| /** |
| * of_count_phandle_with_args() - Find the number of phandles references in a property |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * |
| * Return: The number of phandle + argument tuples within a property. It |
| * is a typical pattern to encode a list of phandle and variable |
| * arguments into a single property. The number of arguments is encoded |
| * by a property in the phandle-target node. For example, a gpios |
| * property would contain a list of GPIO specifies consisting of a |
| * phandle and 1 or more arguments. The number of arguments are |
| * determined by the #gpio-cells property in the node pointed to by the |
| * phandle. |
| */ |
| int of_count_phandle_with_args(const struct device_node *np, const char *list_name, |
| const char *cells_name) |
| { |
| struct of_phandle_iterator it; |
| int rc, cur_index = 0; |
| |
| /* |
| * If cells_name is NULL we assume a cell count of 0. This makes |
| * counting the phandles trivial as each 32bit word in the list is a |
| * phandle and no arguments are to consider. So we don't iterate through |
| * the list but just use the length to determine the phandle count. |
| */ |
| if (!cells_name) { |
| const __be32 *list; |
| int size; |
| |
| list = of_get_property(np, list_name, &size); |
| if (!list) |
| return -ENOENT; |
| |
| return size / sizeof(*list); |
| } |
| |
| rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); |
| if (rc) |
| return rc; |
| |
| while ((rc = of_phandle_iterator_next(&it)) == 0) |
| cur_index += 1; |
| |
| if (rc != -ENOENT) |
| return rc; |
| |
| return cur_index; |
| } |
| EXPORT_SYMBOL(of_count_phandle_with_args); |
| |
| /** |
| * __of_add_property - Add a property to a node without lock operations |
| * @np: Caller's Device Node |
| * @prob: Property to add |
| */ |
| int __of_add_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| |
| prop->next = NULL; |
| next = &np->properties; |
| while (*next) { |
| if (strcmp(prop->name, (*next)->name) == 0) |
| /* duplicate ! don't insert it */ |
| return -EEXIST; |
| |
| next = &(*next)->next; |
| } |
| *next = prop; |
| |
| return 0; |
| } |
| |
| /** |
| * of_add_property - Add a property to a node |
| * @np: Caller's Device Node |
| * @prob: Property to add |
| */ |
| int of_add_property(struct device_node *np, struct property *prop) |
| { |
| unsigned long flags; |
| int rc; |
| |
| mutex_lock(&of_mutex); |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| rc = __of_add_property(np, prop); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!rc) |
| __of_add_property_sysfs(np, prop); |
| |
| mutex_unlock(&of_mutex); |
| |
| if (!rc) |
| of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); |
| |
| return rc; |
| } |
| |
| int __of_remove_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| |
| for (next = &np->properties; *next; next = &(*next)->next) { |
| if (*next == prop) |
| break; |
| } |
| if (*next == NULL) |
| return -ENODEV; |
| |
| /* found the node */ |
| *next = prop->next; |
| prop->next = np->deadprops; |
| np->deadprops = prop; |
| |
| return 0; |
| } |
| |
| /** |
| * of_remove_property - Remove a property from a node. |
| * @np: Caller's Device Node |
| * @prob: Property to remove |
| * |
| * Note that we don't actually remove it, since we have given out |
| * who-knows-how-many pointers to the data using get-property. |
| * Instead we just move the property to the "dead properties" |
| * list, so it won't be found any more. |
| */ |
| int of_remove_property(struct device_node *np, struct property *prop) |
| { |
| unsigned long flags; |
| int rc; |
| |
| if (!prop) |
| return -ENODEV; |
| |
| mutex_lock(&of_mutex); |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| rc = __of_remove_property(np, prop); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!rc) |
| __of_remove_property_sysfs(np, prop); |
| |
| mutex_unlock(&of_mutex); |
| |
| if (!rc) |
| of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); |
| |
| return rc; |
| } |
| |
| int __of_update_property(struct device_node *np, struct property *newprop, |
| struct property **oldpropp) |
| { |
| struct property **next, *oldprop; |
| |
| for (next = &np->properties; *next; next = &(*next)->next) { |
| if (of_prop_cmp((*next)->name, newprop->name) == 0) |
| break; |
| } |
| *oldpropp = oldprop = *next; |
| |
| if (oldprop) { |
| /* replace the node */ |
| newprop->next = oldprop->next; |
| *next = newprop; |
| oldprop->next = np->deadprops; |
| np->deadprops = oldprop; |
| } else { |
| /* new node */ |
| newprop->next = NULL; |
| *next = newprop; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * of_update_property - Update a property in a node, if the property does |
| * not exist, add it. |
| * |
| * Note that we don't actually remove it, since we have given out |
| * who-knows-how-many pointers to the data using get-property. |
| * Instead we just move the property to the "dead properties" list, |
| * and add the new property to the property list |
| */ |
| int of_update_property(struct device_node *np, struct property *newprop) |
| { |
| struct property *oldprop; |
| unsigned long flags; |
| int rc; |
| |
| if (!newprop->name) |
| return -EINVAL; |
| |
| mutex_lock(&of_mutex); |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| rc = __of_update_property(np, newprop, &oldprop); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!rc) |
| __of_update_property_sysfs(np, newprop, oldprop); |
| |
| mutex_unlock(&of_mutex); |
| |
| if (!rc) |
| of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); |
| |
| return rc; |
| } |
| |
| static void of_alias_add(struct alias_prop *ap, struct device_node *np, |
| int id, const char *stem, int stem_len) |
| { |
| ap->np = np; |
| ap->id = id; |
| strncpy(ap->stem, stem, stem_len); |
| ap->stem[stem_len] = 0; |
| list_add_tail(&ap->link, &aliases_lookup); |
| pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", |
| ap->alias, ap->stem, ap->id, np); |
| } |
| |
| /** |
| * of_alias_scan - Scan all properties of the 'aliases' node |
| * @dt_alloc: An allocator that provides a virtual address to memory |
| * for storing the resulting tree |
| * |
| * The function scans all the properties of the 'aliases' node and populates |
| * the global lookup table with the properties. It returns the |
| * number of alias properties found, or an error code in case of failure. |
| */ |
| void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) |
| { |
| struct property *pp; |
| |
| of_aliases = of_find_node_by_path("/aliases"); |
| of_chosen = of_find_node_by_path("/chosen"); |
| if (of_chosen == NULL) |
| of_chosen = of_find_node_by_path("/chosen@0"); |
| |
| if (of_chosen) { |
| /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ |
| const char *name = NULL; |
| |
| if (of_property_read_string(of_chosen, "stdout-path", &name)) |
| of_property_read_string(of_chosen, "linux,stdout-path", |
| &name); |
| if (IS_ENABLED(CONFIG_PPC) && !name) |
| of_property_read_string(of_aliases, "stdout", &name); |
| if (name) |
| of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); |
| } |
| |
| if (!of_aliases) |
| return; |
| |
| for_each_property_of_node(of_aliases, pp) { |
| const char *start = pp->name; |
| const char *end = start + strlen(start); |
| struct device_node *np; |
| struct alias_prop *ap; |
| int id, len; |
| |
| /* Skip those we do not want to proceed */ |
| if (!strcmp(pp->name, "name") || |
| !strcmp(pp->name, "phandle") || |
| !strcmp(pp->name, "linux,phandle")) |
| continue; |
| |
| np = of_find_node_by_path(pp->value); |
| if (!np) |
| continue; |
| |
| /* walk the alias backwards to extract the id and work out |
| * the 'stem' string */ |
| while (isdigit(*(end-1)) && end > start) |
| end--; |
| len = end - start; |
| |
| if (kstrtoint(end, 10, &id) < 0) |
| continue; |
| |
| /* Allocate an alias_prop with enough space for the stem */ |
| ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); |
| if (!ap) |
| continue; |
| memset(ap, 0, sizeof(*ap) + len + 1); |
| ap->alias = start; |
| of_alias_add(ap, np, id, start, len); |
| } |
| } |
| |
| /** |
| * of_alias_get_id - Get alias id for the given device_node |
| * @np: Pointer to the given device_node |
| * @stem: Alias stem of the given device_node |
| * |
| * The function travels the lookup table to get the alias id for the given |
| * device_node and alias stem. |
| * |
| * Return: The alias id if found. |
| */ |
| int of_alias_get_id(struct device_node *np, const char *stem) |
| { |
| struct alias_prop *app; |
| int id = -ENODEV; |
| |
| mutex_lock(&of_mutex); |
| list_for_each_entry(app, &aliases_lookup, link) { |
| if (strcmp(app->stem, stem) != 0) |
| continue; |
| |
| if (np == app->np) { |
| id = app->id; |
| break; |
| } |
| } |
| mutex_unlock(&of_mutex); |
| |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(of_alias_get_id); |
| |
| /** |
| * of_alias_get_alias_list - Get alias list for the given device driver |
| * @matches: Array of OF device match structures to search in |
| * @stem: Alias stem of the given device_node |
| * @bitmap: Bitmap field pointer |
| * @nbits: Maximum number of alias IDs which can be recorded in bitmap |
| * |
| * The function travels the lookup table to record alias ids for the given |
| * device match structures and alias stem. |
| * |
| * Return: 0 or -ENOSYS when !CONFIG_OF or |
| * -EOVERFLOW if alias ID is greater then allocated nbits |
| */ |
| int of_alias_get_alias_list(const struct of_device_id *matches, |
| const char *stem, unsigned long *bitmap, |
| unsigned int nbits) |
| { |
| struct alias_prop *app; |
| int ret = 0; |
| |
| /* Zero bitmap field to make sure that all the time it is clean */ |
| bitmap_zero(bitmap, nbits); |
| |
| mutex_lock(&of_mutex); |
| pr_debug("%s: Looking for stem: %s\n", __func__, stem); |
| list_for_each_entry(app, &aliases_lookup, link) { |
| pr_debug("%s: stem: %s, id: %d\n", |
| __func__, app->stem, app->id); |
| |
| if (strcmp(app->stem, stem) != 0) { |
| pr_debug("%s: stem comparison didn't pass %s\n", |
| __func__, app->stem); |
| continue; |
| } |
| |
| if (of_match_node(matches, app->np)) { |
| pr_debug("%s: Allocated ID %d\n", __func__, app->id); |
| |
| if (app->id >= nbits) { |
| pr_warn("%s: ID %d >= than bitmap field %d\n", |
| __func__, app->id, nbits); |
| ret = -EOVERFLOW; |
| } else { |
| set_bit(app->id, bitmap); |
| } |
| } |
| } |
| mutex_unlock(&of_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(of_alias_get_alias_list); |
| |
| /** |
| * of_alias_get_highest_id - Get highest alias id for the given stem |
| * @stem: Alias stem to be examined |
| * |
| * The function travels the lookup table to get the highest alias id for the |
| * given alias stem. It returns the alias id if found. |
| */ |
| int of_alias_get_highest_id(const char *stem) |
| { |
| struct alias_prop *app; |
| int id = -ENODEV; |
| |
| mutex_lock(&of_mutex); |
| list_for_each_entry(app, &aliases_lookup, link) { |
| if (strcmp(app->stem, stem) != 0) |
| continue; |
| |
| if (app->id > id) |
| id = app->id; |
| } |
| mutex_unlock(&of_mutex); |
| |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(of_alias_get_highest_id); |
| |
| /** |
| * of_console_check() - Test and setup console for DT setup |
| * @dn: Pointer to device node |
| * @name: Name to use for preferred console without index. ex. "ttyS" |
| * @index: Index to use for preferred console. |
| * |
| * Check if the given device node matches the stdout-path property in the |
| * /chosen node. If it does then register it as the preferred console. |
| * |
| * Return: TRUE if console successfully setup. Otherwise return FALSE. |
| */ |
| bool of_console_check(struct device_node *dn, char *name, int index) |
| { |
| if (!dn || dn != of_stdout || console_set_on_cmdline) |
| return false; |
| |
| /* |
| * XXX: cast `options' to char pointer to suppress complication |
| * warnings: printk, UART and console drivers expect char pointer. |
| */ |
| return !add_preferred_console(name, index, (char *)of_stdout_options); |
| } |
| EXPORT_SYMBOL_GPL(of_console_check); |
| |
| /** |
| * of_find_next_cache_node - Find a node's subsidiary cache |
| * @np: node of type "cpu" or "cache" |
| * |
| * Return: A node pointer with refcount incremented, use |
| * of_node_put() on it when done. Caller should hold a reference |
| * to np. |
| */ |
| struct device_node *of_find_next_cache_node(const struct device_node *np) |
| { |
| struct device_node *child, *cache_node; |
| |
| cache_node = of_parse_phandle(np, "l2-cache", 0); |
| if (!cache_node) |
| cache_node = of_parse_phandle(np, "next-level-cache", 0); |
| |
| if (cache_node) |
| return cache_node; |
| |
| /* OF on pmac has nodes instead of properties named "l2-cache" |
| * beneath CPU nodes. |
| */ |
| if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) |
| for_each_child_of_node(np, child) |
| if (of_node_is_type(child, "cache")) |
| return child; |
| |
| return NULL; |
| } |
| |
| /** |
| * of_find_last_cache_level - Find the level at which the last cache is |
| * present for the given logical cpu |
| * |
| * @cpu: cpu number(logical index) for which the last cache level is needed |
| * |
| * Return: The the level at which the last cache is present. It is exactly |
| * same as the total number of cache levels for the given logical cpu. |
| */ |
| int of_find_last_cache_level(unsigned int cpu) |
| { |
| u32 cache_level = 0; |
| struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); |
| |
| while (np) { |
| prev = np; |
| of_node_put(np); |
| np = of_find_next_cache_node(np); |
| } |
| |
| of_property_read_u32(prev, "cache-level", &cache_level); |
| |
| return cache_level; |
| } |
| |
| /** |
| * of_map_id - Translate an ID through a downstream mapping. |
| * @np: root complex device node. |
| * @id: device ID to map. |
| * @map_name: property name of the map to use. |
| * @map_mask_name: optional property name of the mask to use. |
| * @target: optional pointer to a target device node. |
| * @id_out: optional pointer to receive the translated ID. |
| * |
| * Given a device ID, look up the appropriate implementation-defined |
| * platform ID and/or the target device which receives transactions on that |
| * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or |
| * @id_out may be NULL if only the other is required. If @target points to |
| * a non-NULL device node pointer, only entries targeting that node will be |
| * matched; if it points to a NULL value, it will receive the device node of |
| * the first matching target phandle, with a reference held. |
| * |
| * Return: 0 on success or a standard error code on failure. |
| */ |
| int of_map_id(struct device_node *np, u32 id, |
| const char *map_name, const char *map_mask_name, |
| struct device_node **target, u32 *id_out) |
| { |
| u32 map_mask, masked_id; |
| int map_len; |
| const __be32 *map = NULL; |
| |
| if (!np || !map_name || (!target && !id_out)) |
| return -EINVAL; |
| |
| map = of_get_property(np, map_name, &map_len); |
| if (!map) { |
| if (target) |
| return -ENODEV; |
| /* Otherwise, no map implies no translation */ |
| *id_out = id; |
| return 0; |
| } |
| |
| if (!map_len || map_len % (4 * sizeof(*map))) { |
| pr_err("%pOF: Error: Bad %s length: %d\n", np, |
| map_name, map_len); |
| return -EINVAL; |
| } |
| |
| /* The default is to select all bits. */ |
| map_mask = 0xffffffff; |
| |
| /* |
| * Can be overridden by "{iommu,msi}-map-mask" property. |
| * If of_property_read_u32() fails, the default is used. |
| */ |
| if (map_mask_name) |
| of_property_read_u32(np, map_mask_name, &map_mask); |
| |
| masked_id = map_mask & id; |
| for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { |
| struct device_node *phandle_node; |
| u32 id_base = be32_to_cpup(map + 0); |
| u32 phandle = be32_to_cpup(map + 1); |
| u32 out_base = be32_to_cpup(map + 2); |
| u32 id_len = be32_to_cpup(map + 3); |
| |
| if (id_base & ~map_mask) { |
| pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", |
| np, map_name, map_name, |
| map_mask, id_base); |
| return -EFAULT; |
| } |
| |
| if (masked_id < id_base || masked_id >= id_base + id_len) |
| continue; |
| |
| phandle_node = of_find_node_by_phandle(phandle); |
| if (!phandle_node) |
| return -ENODEV; |
| |
| if (target) { |
| if (*target) |
| of_node_put(phandle_node); |
| else |
| *target = phandle_node; |
| |
| if (*target != phandle_node) |
| continue; |
| } |
| |
| if (id_out) |
| *id_out = masked_id - id_base + out_base; |
| |
| pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", |
| np, map_name, map_mask, id_base, out_base, |
| id_len, id, masked_id - id_base + out_base); |
| return 0; |
| } |
| |
| pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, |
| id, target && *target ? *target : NULL); |
| |
| /* Bypasses translation */ |
| if (id_out) |
| *id_out = id; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_map_id); |