| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file implements KASLR memory randomization for x86_64. It randomizes |
| * the virtual address space of kernel memory regions (physical memory |
| * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates |
| * exploits relying on predictable kernel addresses. |
| * |
| * Entropy is generated using the KASLR early boot functions now shared in |
| * the lib directory (originally written by Kees Cook). Randomization is |
| * done on PGD & P4D/PUD page table levels to increase possible addresses. |
| * The physical memory mapping code was adapted to support P4D/PUD level |
| * virtual addresses. This implementation on the best configuration provides |
| * 30,000 possible virtual addresses in average for each memory region. |
| * An additional low memory page is used to ensure each CPU can start with |
| * a PGD aligned virtual address (for realmode). |
| * |
| * The order of each memory region is not changed. The feature looks at |
| * the available space for the regions based on different configuration |
| * options and randomizes the base and space between each. The size of the |
| * physical memory mapping is the available physical memory. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/random.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/setup.h> |
| #include <asm/kaslr.h> |
| |
| #include "mm_internal.h" |
| |
| #define TB_SHIFT 40 |
| |
| /* |
| * The end address could depend on more configuration options to make the |
| * highest amount of space for randomization available, but that's too hard |
| * to keep straight and caused issues already. |
| */ |
| static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; |
| |
| /* |
| * Memory regions randomized by KASLR (except modules that use a separate logic |
| * earlier during boot). The list is ordered based on virtual addresses. This |
| * order is kept after randomization. |
| */ |
| static __initdata struct kaslr_memory_region { |
| unsigned long *base; |
| unsigned long size_tb; |
| } kaslr_regions[] = { |
| { &page_offset_base, 0 }, |
| { &vmalloc_base, 0 }, |
| { &vmemmap_base, 1 }, |
| }; |
| |
| /* Get size in bytes used by the memory region */ |
| static inline unsigned long get_padding(struct kaslr_memory_region *region) |
| { |
| return (region->size_tb << TB_SHIFT); |
| } |
| |
| /* |
| * Apply no randomization if KASLR was disabled at boot or if KASAN |
| * is enabled. KASAN shadow mappings rely on regions being PGD aligned. |
| */ |
| static inline bool kaslr_memory_enabled(void) |
| { |
| return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN); |
| } |
| |
| /* Initialize base and padding for each memory region randomized with KASLR */ |
| void __init kernel_randomize_memory(void) |
| { |
| size_t i; |
| unsigned long vaddr_start, vaddr; |
| unsigned long rand, memory_tb; |
| struct rnd_state rand_state; |
| unsigned long remain_entropy; |
| |
| vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; |
| vaddr = vaddr_start; |
| |
| /* |
| * These BUILD_BUG_ON checks ensure the memory layout is consistent |
| * with the vaddr_start/vaddr_end variables. These checks are very |
| * limited.... |
| */ |
| BUILD_BUG_ON(vaddr_start >= vaddr_end); |
| BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); |
| BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); |
| |
| if (!kaslr_memory_enabled()) |
| return; |
| |
| kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT); |
| kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; |
| |
| /* |
| * Update Physical memory mapping to available and |
| * add padding if needed (especially for memory hotplug support). |
| */ |
| BUG_ON(kaslr_regions[0].base != &page_offset_base); |
| memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + |
| CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; |
| |
| /* Adapt phyiscal memory region size based on available memory */ |
| if (memory_tb < kaslr_regions[0].size_tb) |
| kaslr_regions[0].size_tb = memory_tb; |
| |
| /* Calculate entropy available between regions */ |
| remain_entropy = vaddr_end - vaddr_start; |
| for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) |
| remain_entropy -= get_padding(&kaslr_regions[i]); |
| |
| prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); |
| |
| for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { |
| unsigned long entropy; |
| |
| /* |
| * Select a random virtual address using the extra entropy |
| * available. |
| */ |
| entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); |
| prandom_bytes_state(&rand_state, &rand, sizeof(rand)); |
| if (pgtable_l5_enabled()) |
| entropy = (rand % (entropy + 1)) & P4D_MASK; |
| else |
| entropy = (rand % (entropy + 1)) & PUD_MASK; |
| vaddr += entropy; |
| *kaslr_regions[i].base = vaddr; |
| |
| /* |
| * Jump the region and add a minimum padding based on |
| * randomization alignment. |
| */ |
| vaddr += get_padding(&kaslr_regions[i]); |
| if (pgtable_l5_enabled()) |
| vaddr = round_up(vaddr + 1, P4D_SIZE); |
| else |
| vaddr = round_up(vaddr + 1, PUD_SIZE); |
| remain_entropy -= entropy; |
| } |
| } |
| |
| static void __meminit init_trampoline_pud(void) |
| { |
| unsigned long paddr, paddr_next; |
| pgd_t *pgd; |
| pud_t *pud_page, *pud_page_tramp; |
| int i; |
| |
| pud_page_tramp = alloc_low_page(); |
| |
| paddr = 0; |
| pgd = pgd_offset_k((unsigned long)__va(paddr)); |
| pud_page = (pud_t *) pgd_page_vaddr(*pgd); |
| |
| for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) { |
| pud_t *pud, *pud_tramp; |
| unsigned long vaddr = (unsigned long)__va(paddr); |
| |
| pud_tramp = pud_page_tramp + pud_index(paddr); |
| pud = pud_page + pud_index(vaddr); |
| paddr_next = (paddr & PUD_MASK) + PUD_SIZE; |
| |
| *pud_tramp = *pud; |
| } |
| |
| set_pgd(&trampoline_pgd_entry, |
| __pgd(_KERNPG_TABLE | __pa(pud_page_tramp))); |
| } |
| |
| static void __meminit init_trampoline_p4d(void) |
| { |
| unsigned long paddr, paddr_next; |
| pgd_t *pgd; |
| p4d_t *p4d_page, *p4d_page_tramp; |
| int i; |
| |
| p4d_page_tramp = alloc_low_page(); |
| |
| paddr = 0; |
| pgd = pgd_offset_k((unsigned long)__va(paddr)); |
| p4d_page = (p4d_t *) pgd_page_vaddr(*pgd); |
| |
| for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) { |
| p4d_t *p4d, *p4d_tramp; |
| unsigned long vaddr = (unsigned long)__va(paddr); |
| |
| p4d_tramp = p4d_page_tramp + p4d_index(paddr); |
| p4d = p4d_page + p4d_index(vaddr); |
| paddr_next = (paddr & P4D_MASK) + P4D_SIZE; |
| |
| *p4d_tramp = *p4d; |
| } |
| |
| set_pgd(&trampoline_pgd_entry, |
| __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp))); |
| } |
| |
| /* |
| * Create PGD aligned trampoline table to allow real mode initialization |
| * of additional CPUs. Consume only 1 low memory page. |
| */ |
| void __meminit init_trampoline(void) |
| { |
| |
| if (!kaslr_memory_enabled()) { |
| init_trampoline_default(); |
| return; |
| } |
| |
| if (pgtable_l5_enabled()) |
| init_trampoline_p4d(); |
| else |
| init_trampoline_pud(); |
| } |