|  | /* | 
|  | * EFI stub implementation that is shared by arm and arm64 architectures. | 
|  | * This should be #included by the EFI stub implementation files. | 
|  | * | 
|  | * Copyright (C) 2013,2014 Linaro Limited | 
|  | *     Roy Franz <roy.franz@linaro.org | 
|  | * Copyright (C) 2013 Red Hat, Inc. | 
|  | *     Mark Salter <msalter@redhat.com> | 
|  | * | 
|  | * This file is part of the Linux kernel, and is made available under the | 
|  | * terms of the GNU General Public License version 2. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/efi.h> | 
|  | #include <linux/sort.h> | 
|  | #include <asm/efi.h> | 
|  |  | 
|  | #include "efistub.h" | 
|  |  | 
|  | static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg) | 
|  | { | 
|  | static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID; | 
|  | static efi_char16_t const var_name[] = { | 
|  | 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 }; | 
|  |  | 
|  | efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable; | 
|  | unsigned long size = sizeof(u8); | 
|  | efi_status_t status; | 
|  | u8 val; | 
|  |  | 
|  | status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid, | 
|  | NULL, &size, &val); | 
|  |  | 
|  | switch (status) { | 
|  | case EFI_SUCCESS: | 
|  | return val; | 
|  | case EFI_NOT_FOUND: | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, | 
|  | void *__image, void **__fh) | 
|  | { | 
|  | efi_file_io_interface_t *io; | 
|  | efi_loaded_image_t *image = __image; | 
|  | efi_file_handle_t *fh; | 
|  | efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; | 
|  | efi_status_t status; | 
|  | void *handle = (void *)(unsigned long)image->device_handle; | 
|  |  | 
|  | status = sys_table_arg->boottime->handle_protocol(handle, | 
|  | &fs_proto, (void **)&io); | 
|  | if (status != EFI_SUCCESS) { | 
|  | efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status = io->open_volume(io, &fh); | 
|  | if (status != EFI_SUCCESS) | 
|  | efi_printk(sys_table_arg, "Failed to open volume\n"); | 
|  |  | 
|  | *__fh = fh; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | efi_status_t efi_file_close(void *handle) | 
|  | { | 
|  | efi_file_handle_t *fh = handle; | 
|  |  | 
|  | return fh->close(handle); | 
|  | } | 
|  |  | 
|  | efi_status_t | 
|  | efi_file_read(void *handle, unsigned long *size, void *addr) | 
|  | { | 
|  | efi_file_handle_t *fh = handle; | 
|  |  | 
|  | return fh->read(handle, size, addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | efi_status_t | 
|  | efi_file_size(efi_system_table_t *sys_table_arg, void *__fh, | 
|  | efi_char16_t *filename_16, void **handle, u64 *file_sz) | 
|  | { | 
|  | efi_file_handle_t *h, *fh = __fh; | 
|  | efi_file_info_t *info; | 
|  | efi_status_t status; | 
|  | efi_guid_t info_guid = EFI_FILE_INFO_ID; | 
|  | unsigned long info_sz; | 
|  |  | 
|  | status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0); | 
|  | if (status != EFI_SUCCESS) { | 
|  | efi_printk(sys_table_arg, "Failed to open file: "); | 
|  | efi_char16_printk(sys_table_arg, filename_16); | 
|  | efi_printk(sys_table_arg, "\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | *handle = h; | 
|  |  | 
|  | info_sz = 0; | 
|  | status = h->get_info(h, &info_guid, &info_sz, NULL); | 
|  | if (status != EFI_BUFFER_TOO_SMALL) { | 
|  | efi_printk(sys_table_arg, "Failed to get file info size\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | grow: | 
|  | status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA, | 
|  | info_sz, (void **)&info); | 
|  | if (status != EFI_SUCCESS) { | 
|  | efi_printk(sys_table_arg, "Failed to alloc mem for file info\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status = h->get_info(h, &info_guid, &info_sz, | 
|  | info); | 
|  | if (status == EFI_BUFFER_TOO_SMALL) { | 
|  | sys_table_arg->boottime->free_pool(info); | 
|  | goto grow; | 
|  | } | 
|  |  | 
|  | *file_sz = info->file_size; | 
|  | sys_table_arg->boottime->free_pool(info); | 
|  |  | 
|  | if (status != EFI_SUCCESS) | 
|  | efi_printk(sys_table_arg, "Failed to get initrd info\n"); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void efi_char16_printk(efi_system_table_t *sys_table_arg, | 
|  | efi_char16_t *str) | 
|  | { | 
|  | struct efi_simple_text_output_protocol *out; | 
|  |  | 
|  | out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out; | 
|  | out->output_string(out, str); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This function handles the architcture specific differences between arm and | 
|  | * arm64 regarding where the kernel image must be loaded and any memory that | 
|  | * must be reserved. On failure it is required to free all | 
|  | * all allocations it has made. | 
|  | */ | 
|  | efi_status_t handle_kernel_image(efi_system_table_t *sys_table, | 
|  | unsigned long *image_addr, | 
|  | unsigned long *image_size, | 
|  | unsigned long *reserve_addr, | 
|  | unsigned long *reserve_size, | 
|  | unsigned long dram_base, | 
|  | efi_loaded_image_t *image); | 
|  | /* | 
|  | * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint | 
|  | * that is described in the PE/COFF header.  Most of the code is the same | 
|  | * for both archictectures, with the arch-specific code provided in the | 
|  | * handle_kernel_image() function. | 
|  | */ | 
|  | unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, | 
|  | unsigned long *image_addr) | 
|  | { | 
|  | efi_loaded_image_t *image; | 
|  | efi_status_t status; | 
|  | unsigned long image_size = 0; | 
|  | unsigned long dram_base; | 
|  | /* addr/point and size pairs for memory management*/ | 
|  | unsigned long initrd_addr; | 
|  | u64 initrd_size = 0; | 
|  | unsigned long fdt_addr = 0;  /* Original DTB */ | 
|  | unsigned long fdt_size = 0; | 
|  | char *cmdline_ptr = NULL; | 
|  | int cmdline_size = 0; | 
|  | unsigned long new_fdt_addr; | 
|  | efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; | 
|  | unsigned long reserve_addr = 0; | 
|  | unsigned long reserve_size = 0; | 
|  |  | 
|  | /* Check if we were booted by the EFI firmware */ | 
|  | if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
|  | goto fail; | 
|  |  | 
|  | pr_efi(sys_table, "Booting Linux Kernel...\n"); | 
|  |  | 
|  | /* | 
|  | * Get a handle to the loaded image protocol.  This is used to get | 
|  | * information about the running image, such as size and the command | 
|  | * line. | 
|  | */ | 
|  | status = sys_table->boottime->handle_protocol(handle, | 
|  | &loaded_image_proto, (void *)&image); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table, "Failed to get loaded image protocol\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | dram_base = get_dram_base(sys_table); | 
|  | if (dram_base == EFI_ERROR) { | 
|  | pr_efi_err(sys_table, "Failed to find DRAM base\n"); | 
|  | goto fail; | 
|  | } | 
|  | status = handle_kernel_image(sys_table, image_addr, &image_size, | 
|  | &reserve_addr, | 
|  | &reserve_size, | 
|  | dram_base, image); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table, "Failed to relocate kernel\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the command line from EFI, using the LOADED_IMAGE | 
|  | * protocol. We are going to copy the command line into the | 
|  | * device tree, so this can be allocated anywhere. | 
|  | */ | 
|  | cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size); | 
|  | if (!cmdline_ptr) { | 
|  | pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n"); | 
|  | goto fail_free_image; | 
|  | } | 
|  |  | 
|  | status = efi_parse_options(cmdline_ptr); | 
|  | if (status != EFI_SUCCESS) | 
|  | pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n"); | 
|  |  | 
|  | /* | 
|  | * Unauthenticated device tree data is a security hazard, so | 
|  | * ignore 'dtb=' unless UEFI Secure Boot is disabled. | 
|  | */ | 
|  | if (efi_secureboot_enabled(sys_table)) { | 
|  | pr_efi(sys_table, "UEFI Secure Boot is enabled.\n"); | 
|  | } else { | 
|  | status = handle_cmdline_files(sys_table, image, cmdline_ptr, | 
|  | "dtb=", | 
|  | ~0UL, &fdt_addr, &fdt_size); | 
|  |  | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table, "Failed to load device tree!\n"); | 
|  | goto fail_free_cmdline; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fdt_addr) { | 
|  | pr_efi(sys_table, "Using DTB from command line\n"); | 
|  | } else { | 
|  | /* Look for a device tree configuration table entry. */ | 
|  | fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size); | 
|  | if (fdt_addr) | 
|  | pr_efi(sys_table, "Using DTB from configuration table\n"); | 
|  | } | 
|  |  | 
|  | if (!fdt_addr) | 
|  | pr_efi(sys_table, "Generating empty DTB\n"); | 
|  |  | 
|  | status = handle_cmdline_files(sys_table, image, cmdline_ptr, | 
|  | "initrd=", dram_base + SZ_512M, | 
|  | (unsigned long *)&initrd_addr, | 
|  | (unsigned long *)&initrd_size); | 
|  | if (status != EFI_SUCCESS) | 
|  | pr_efi_err(sys_table, "Failed initrd from command line!\n"); | 
|  |  | 
|  | new_fdt_addr = fdt_addr; | 
|  | status = allocate_new_fdt_and_exit_boot(sys_table, handle, | 
|  | &new_fdt_addr, dram_base + MAX_FDT_OFFSET, | 
|  | initrd_addr, initrd_size, cmdline_ptr, | 
|  | fdt_addr, fdt_size); | 
|  |  | 
|  | /* | 
|  | * If all went well, we need to return the FDT address to the | 
|  | * calling function so it can be passed to kernel as part of | 
|  | * the kernel boot protocol. | 
|  | */ | 
|  | if (status == EFI_SUCCESS) | 
|  | return new_fdt_addr; | 
|  |  | 
|  | pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n"); | 
|  |  | 
|  | efi_free(sys_table, initrd_size, initrd_addr); | 
|  | efi_free(sys_table, fdt_size, fdt_addr); | 
|  |  | 
|  | fail_free_cmdline: | 
|  | efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); | 
|  |  | 
|  | fail_free_image: | 
|  | efi_free(sys_table, image_size, *image_addr); | 
|  | efi_free(sys_table, reserve_size, reserve_addr); | 
|  | fail: | 
|  | return EFI_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the base address at which to start allocating virtual memory ranges | 
|  | * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use | 
|  | * any allocation we choose, and eliminate the risk of a conflict after kexec. | 
|  | * The value chosen is the largest non-zero power of 2 suitable for this purpose | 
|  | * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can | 
|  | * be mapped efficiently. | 
|  | * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, | 
|  | * map everything below 1 GB. | 
|  | */ | 
|  | #define EFI_RT_VIRTUAL_BASE	SZ_512M | 
|  |  | 
|  | static int cmp_mem_desc(const void *l, const void *r) | 
|  | { | 
|  | const efi_memory_desc_t *left = l, *right = r; | 
|  |  | 
|  | return (left->phys_addr > right->phys_addr) ? 1 : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether region @left ends exactly where region @right starts, | 
|  | * or false if either argument is NULL. | 
|  | */ | 
|  | static bool regions_are_adjacent(efi_memory_desc_t *left, | 
|  | efi_memory_desc_t *right) | 
|  | { | 
|  | u64 left_end; | 
|  |  | 
|  | if (left == NULL || right == NULL) | 
|  | return false; | 
|  |  | 
|  | left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE; | 
|  |  | 
|  | return left_end == right->phys_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether region @left and region @right have compatible memory type | 
|  | * mapping attributes, and are both EFI_MEMORY_RUNTIME regions. | 
|  | */ | 
|  | static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left, | 
|  | efi_memory_desc_t *right) | 
|  | { | 
|  | static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT | | 
|  | EFI_MEMORY_WC | EFI_MEMORY_UC | | 
|  | EFI_MEMORY_RUNTIME; | 
|  |  | 
|  | return ((left->attribute ^ right->attribute) & mem_type_mask) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * efi_get_virtmap() - create a virtual mapping for the EFI memory map | 
|  | * | 
|  | * This function populates the virt_addr fields of all memory region descriptors | 
|  | * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors | 
|  | * are also copied to @runtime_map, and their total count is returned in @count. | 
|  | */ | 
|  | void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, | 
|  | unsigned long desc_size, efi_memory_desc_t *runtime_map, | 
|  | int *count) | 
|  | { | 
|  | u64 efi_virt_base = EFI_RT_VIRTUAL_BASE; | 
|  | efi_memory_desc_t *in, *prev = NULL, *out = runtime_map; | 
|  | int l; | 
|  |  | 
|  | /* | 
|  | * To work around potential issues with the Properties Table feature | 
|  | * introduced in UEFI 2.5, which may split PE/COFF executable images | 
|  | * in memory into several RuntimeServicesCode and RuntimeServicesData | 
|  | * regions, we need to preserve the relative offsets between adjacent | 
|  | * EFI_MEMORY_RUNTIME regions with the same memory type attributes. | 
|  | * The easiest way to find adjacent regions is to sort the memory map | 
|  | * before traversing it. | 
|  | */ | 
|  | sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL); | 
|  |  | 
|  | for (l = 0; l < map_size; l += desc_size, prev = in) { | 
|  | u64 paddr, size; | 
|  |  | 
|  | in = (void *)memory_map + l; | 
|  | if (!(in->attribute & EFI_MEMORY_RUNTIME)) | 
|  | continue; | 
|  |  | 
|  | paddr = in->phys_addr; | 
|  | size = in->num_pages * EFI_PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Make the mapping compatible with 64k pages: this allows | 
|  | * a 4k page size kernel to kexec a 64k page size kernel and | 
|  | * vice versa. | 
|  | */ | 
|  | if (!regions_are_adjacent(prev, in) || | 
|  | !regions_have_compatible_memory_type_attrs(prev, in)) { | 
|  |  | 
|  | paddr = round_down(in->phys_addr, SZ_64K); | 
|  | size += in->phys_addr - paddr; | 
|  |  | 
|  | /* | 
|  | * Avoid wasting memory on PTEs by choosing a virtual | 
|  | * base that is compatible with section mappings if this | 
|  | * region has the appropriate size and physical | 
|  | * alignment. (Sections are 2 MB on 4k granule kernels) | 
|  | */ | 
|  | if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) | 
|  | efi_virt_base = round_up(efi_virt_base, SZ_2M); | 
|  | else | 
|  | efi_virt_base = round_up(efi_virt_base, SZ_64K); | 
|  | } | 
|  |  | 
|  | in->virt_addr = efi_virt_base + in->phys_addr - paddr; | 
|  | efi_virt_base += size; | 
|  |  | 
|  | memcpy(out, in, desc_size); | 
|  | out = (void *)out + desc_size; | 
|  | ++*count; | 
|  | } | 
|  | } |