|  | /* | 
|  | * efi.c - EFI subsystem | 
|  | * | 
|  | * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> | 
|  | * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> | 
|  | * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> | 
|  | * | 
|  | * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, | 
|  | * allowing the efivarfs to be mounted or the efivars module to be loaded. | 
|  | * The existance of /sys/firmware/efi may also be used by userspace to | 
|  | * determine that the system supports EFI. | 
|  | * | 
|  | * This file is released under the GPLv2. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_fdt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/platform_device.h> | 
|  |  | 
|  | #include <asm/efi.h> | 
|  |  | 
|  | struct efi __read_mostly efi = { | 
|  | .mps			= EFI_INVALID_TABLE_ADDR, | 
|  | .acpi			= EFI_INVALID_TABLE_ADDR, | 
|  | .acpi20			= EFI_INVALID_TABLE_ADDR, | 
|  | .smbios			= EFI_INVALID_TABLE_ADDR, | 
|  | .smbios3		= EFI_INVALID_TABLE_ADDR, | 
|  | .sal_systab		= EFI_INVALID_TABLE_ADDR, | 
|  | .boot_info		= EFI_INVALID_TABLE_ADDR, | 
|  | .hcdp			= EFI_INVALID_TABLE_ADDR, | 
|  | .uga			= EFI_INVALID_TABLE_ADDR, | 
|  | .uv_systab		= EFI_INVALID_TABLE_ADDR, | 
|  | .fw_vendor		= EFI_INVALID_TABLE_ADDR, | 
|  | .runtime		= EFI_INVALID_TABLE_ADDR, | 
|  | .config_table		= EFI_INVALID_TABLE_ADDR, | 
|  | .esrt			= EFI_INVALID_TABLE_ADDR, | 
|  | .properties_table	= EFI_INVALID_TABLE_ADDR, | 
|  | }; | 
|  | EXPORT_SYMBOL(efi); | 
|  |  | 
|  | static bool disable_runtime; | 
|  | static int __init setup_noefi(char *arg) | 
|  | { | 
|  | disable_runtime = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("noefi", setup_noefi); | 
|  |  | 
|  | bool efi_runtime_disabled(void) | 
|  | { | 
|  | return disable_runtime; | 
|  | } | 
|  |  | 
|  | static int __init parse_efi_cmdline(char *str) | 
|  | { | 
|  | if (!str) { | 
|  | pr_warn("need at least one option\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (parse_option_str(str, "debug")) | 
|  | set_bit(EFI_DBG, &efi.flags); | 
|  |  | 
|  | if (parse_option_str(str, "noruntime")) | 
|  | disable_runtime = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("efi", parse_efi_cmdline); | 
|  |  | 
|  | struct kobject *efi_kobj; | 
|  |  | 
|  | /* | 
|  | * Let's not leave out systab information that snuck into | 
|  | * the efivars driver | 
|  | */ | 
|  | static ssize_t systab_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | char *str = buf; | 
|  |  | 
|  | if (!kobj || !buf) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (efi.mps != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "MPS=0x%lx\n", efi.mps); | 
|  | if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); | 
|  | if (efi.acpi != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); | 
|  | /* | 
|  | * If both SMBIOS and SMBIOS3 entry points are implemented, the | 
|  | * SMBIOS3 entry point shall be preferred, so we list it first to | 
|  | * let applications stop parsing after the first match. | 
|  | */ | 
|  | if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); | 
|  | if (efi.smbios != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); | 
|  | if (efi.hcdp != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp); | 
|  | if (efi.boot_info != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info); | 
|  | if (efi.uga != EFI_INVALID_TABLE_ADDR) | 
|  | str += sprintf(str, "UGA=0x%lx\n", efi.uga); | 
|  |  | 
|  | return str - buf; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute efi_attr_systab = | 
|  | __ATTR(systab, 0400, systab_show, NULL); | 
|  |  | 
|  | #define EFI_FIELD(var) efi.var | 
|  |  | 
|  | #define EFI_ATTR_SHOW(name) \ | 
|  | static ssize_t name##_show(struct kobject *kobj, \ | 
|  | struct kobj_attribute *attr, char *buf) \ | 
|  | { \ | 
|  | return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ | 
|  | } | 
|  |  | 
|  | EFI_ATTR_SHOW(fw_vendor); | 
|  | EFI_ATTR_SHOW(runtime); | 
|  | EFI_ATTR_SHOW(config_table); | 
|  |  | 
|  | static ssize_t fw_platform_size_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); | 
|  | static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); | 
|  | static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); | 
|  | static struct kobj_attribute efi_attr_fw_platform_size = | 
|  | __ATTR_RO(fw_platform_size); | 
|  |  | 
|  | static struct attribute *efi_subsys_attrs[] = { | 
|  | &efi_attr_systab.attr, | 
|  | &efi_attr_fw_vendor.attr, | 
|  | &efi_attr_runtime.attr, | 
|  | &efi_attr_config_table.attr, | 
|  | &efi_attr_fw_platform_size.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static umode_t efi_attr_is_visible(struct kobject *kobj, | 
|  | struct attribute *attr, int n) | 
|  | { | 
|  | if (attr == &efi_attr_fw_vendor.attr) { | 
|  | if (efi_enabled(EFI_PARAVIRT) || | 
|  | efi.fw_vendor == EFI_INVALID_TABLE_ADDR) | 
|  | return 0; | 
|  | } else if (attr == &efi_attr_runtime.attr) { | 
|  | if (efi.runtime == EFI_INVALID_TABLE_ADDR) | 
|  | return 0; | 
|  | } else if (attr == &efi_attr_config_table.attr) { | 
|  | if (efi.config_table == EFI_INVALID_TABLE_ADDR) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return attr->mode; | 
|  | } | 
|  |  | 
|  | static struct attribute_group efi_subsys_attr_group = { | 
|  | .attrs = efi_subsys_attrs, | 
|  | .is_visible = efi_attr_is_visible, | 
|  | }; | 
|  |  | 
|  | static struct efivars generic_efivars; | 
|  | static struct efivar_operations generic_ops; | 
|  |  | 
|  | static int generic_ops_register(void) | 
|  | { | 
|  | generic_ops.get_variable = efi.get_variable; | 
|  | generic_ops.set_variable = efi.set_variable; | 
|  | generic_ops.get_next_variable = efi.get_next_variable; | 
|  | generic_ops.query_variable_store = efi_query_variable_store; | 
|  |  | 
|  | return efivars_register(&generic_efivars, &generic_ops, efi_kobj); | 
|  | } | 
|  |  | 
|  | static void generic_ops_unregister(void) | 
|  | { | 
|  | efivars_unregister(&generic_efivars); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We register the efi subsystem with the firmware subsystem and the | 
|  | * efivars subsystem with the efi subsystem, if the system was booted with | 
|  | * EFI. | 
|  | */ | 
|  | static int __init efisubsys_init(void) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!efi_enabled(EFI_BOOT)) | 
|  | return 0; | 
|  |  | 
|  | /* We register the efi directory at /sys/firmware/efi */ | 
|  | efi_kobj = kobject_create_and_add("efi", firmware_kobj); | 
|  | if (!efi_kobj) { | 
|  | pr_err("efi: Firmware registration failed.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | error = generic_ops_register(); | 
|  | if (error) | 
|  | goto err_put; | 
|  |  | 
|  | error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); | 
|  | if (error) { | 
|  | pr_err("efi: Sysfs attribute export failed with error %d.\n", | 
|  | error); | 
|  | goto err_unregister; | 
|  | } | 
|  |  | 
|  | error = efi_runtime_map_init(efi_kobj); | 
|  | if (error) | 
|  | goto err_remove_group; | 
|  |  | 
|  | /* and the standard mountpoint for efivarfs */ | 
|  | error = sysfs_create_mount_point(efi_kobj, "efivars"); | 
|  | if (error) { | 
|  | pr_err("efivars: Subsystem registration failed.\n"); | 
|  | goto err_remove_group; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_remove_group: | 
|  | sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); | 
|  | err_unregister: | 
|  | generic_ops_unregister(); | 
|  | err_put: | 
|  | kobject_put(efi_kobj); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | subsys_initcall(efisubsys_init); | 
|  |  | 
|  | /* | 
|  | * Find the efi memory descriptor for a given physical address.  Given a | 
|  | * physicall address, determine if it exists within an EFI Memory Map entry, | 
|  | * and if so, populate the supplied memory descriptor with the appropriate | 
|  | * data. | 
|  | */ | 
|  | int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) | 
|  | { | 
|  | struct efi_memory_map *map = efi.memmap; | 
|  | phys_addr_t p, e; | 
|  |  | 
|  | if (!efi_enabled(EFI_MEMMAP)) { | 
|  | pr_err_once("EFI_MEMMAP is not enabled.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!map) { | 
|  | pr_err_once("efi.memmap is not set.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!out_md) { | 
|  | pr_err_once("out_md is null.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (WARN_ON_ONCE(!map->phys_map)) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(map->nr_map == 0) || WARN_ON_ONCE(map->desc_size == 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | e = map->phys_map + map->nr_map * map->desc_size; | 
|  | for (p = map->phys_map; p < e; p += map->desc_size) { | 
|  | efi_memory_desc_t *md; | 
|  | u64 size; | 
|  | u64 end; | 
|  |  | 
|  | /* | 
|  | * If a driver calls this after efi_free_boot_services, | 
|  | * ->map will be NULL, and the target may also not be mapped. | 
|  | * So just always get our own virtual map on the CPU. | 
|  | * | 
|  | */ | 
|  | md = early_memremap(p, sizeof (*md)); | 
|  | if (!md) { | 
|  | pr_err_once("early_memremap(%pa, %zu) failed.\n", | 
|  | &p, sizeof (*md)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) && | 
|  | md->type != EFI_BOOT_SERVICES_DATA && | 
|  | md->type != EFI_RUNTIME_SERVICES_DATA) { | 
|  | early_memunmap(md, sizeof (*md)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | end = md->phys_addr + size; | 
|  | if (phys_addr >= md->phys_addr && phys_addr < end) { | 
|  | memcpy(out_md, md, sizeof(*out_md)); | 
|  | early_memunmap(md, sizeof (*md)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | early_memunmap(md, sizeof (*md)); | 
|  | } | 
|  | pr_err_once("requested map not found.\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the highest address of an efi memory descriptor. | 
|  | */ | 
|  | u64 __init efi_mem_desc_end(efi_memory_desc_t *md) | 
|  | { | 
|  | u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | u64 end = md->phys_addr + size; | 
|  | return end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't ioremap data in EFI boot services RAM, because we've already mapped | 
|  | * it as RAM.  So, look it up in the existing EFI memory map instead.  Only | 
|  | * callable after efi_enter_virtual_mode and before efi_free_boot_services. | 
|  | */ | 
|  | void __iomem *efi_lookup_mapped_addr(u64 phys_addr) | 
|  | { | 
|  | struct efi_memory_map *map; | 
|  | void *p; | 
|  | map = efi.memmap; | 
|  | if (!map) | 
|  | return NULL; | 
|  | if (WARN_ON(!map->map)) | 
|  | return NULL; | 
|  | for (p = map->map; p < map->map_end; p += map->desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | u64 end = md->phys_addr + size; | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) && | 
|  | md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  | if (!md->virt_addr) | 
|  | continue; | 
|  | if (phys_addr >= md->phys_addr && phys_addr < end) { | 
|  | phys_addr += md->virt_addr - md->phys_addr; | 
|  | return (__force void __iomem *)(unsigned long)phys_addr; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static __initdata efi_config_table_type_t common_tables[] = { | 
|  | {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20}, | 
|  | {ACPI_TABLE_GUID, "ACPI", &efi.acpi}, | 
|  | {HCDP_TABLE_GUID, "HCDP", &efi.hcdp}, | 
|  | {MPS_TABLE_GUID, "MPS", &efi.mps}, | 
|  | {SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab}, | 
|  | {SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios}, | 
|  | {SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3}, | 
|  | {UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga}, | 
|  | {EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt}, | 
|  | {EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table}, | 
|  | {NULL_GUID, NULL, NULL}, | 
|  | }; | 
|  |  | 
|  | static __init int match_config_table(efi_guid_t *guid, | 
|  | unsigned long table, | 
|  | efi_config_table_type_t *table_types) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (table_types) { | 
|  | for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { | 
|  | if (!efi_guidcmp(*guid, table_types[i].guid)) { | 
|  | *(table_types[i].ptr) = table; | 
|  | pr_cont(" %s=0x%lx ", | 
|  | table_types[i].name, table); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init efi_config_parse_tables(void *config_tables, int count, int sz, | 
|  | efi_config_table_type_t *arch_tables) | 
|  | { | 
|  | void *tablep; | 
|  | int i; | 
|  |  | 
|  | tablep = config_tables; | 
|  | pr_info(""); | 
|  | for (i = 0; i < count; i++) { | 
|  | efi_guid_t guid; | 
|  | unsigned long table; | 
|  |  | 
|  | if (efi_enabled(EFI_64BIT)) { | 
|  | u64 table64; | 
|  | guid = ((efi_config_table_64_t *)tablep)->guid; | 
|  | table64 = ((efi_config_table_64_t *)tablep)->table; | 
|  | table = table64; | 
|  | #ifndef CONFIG_64BIT | 
|  | if (table64 >> 32) { | 
|  | pr_cont("\n"); | 
|  | pr_err("Table located above 4GB, disabling EFI.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | guid = ((efi_config_table_32_t *)tablep)->guid; | 
|  | table = ((efi_config_table_32_t *)tablep)->table; | 
|  | } | 
|  |  | 
|  | if (!match_config_table(&guid, table, common_tables)) | 
|  | match_config_table(&guid, table, arch_tables); | 
|  |  | 
|  | tablep += sz; | 
|  | } | 
|  | pr_cont("\n"); | 
|  | set_bit(EFI_CONFIG_TABLES, &efi.flags); | 
|  |  | 
|  | /* Parse the EFI Properties table if it exists */ | 
|  | if (efi.properties_table != EFI_INVALID_TABLE_ADDR) { | 
|  | efi_properties_table_t *tbl; | 
|  |  | 
|  | tbl = early_memremap(efi.properties_table, sizeof(*tbl)); | 
|  | if (tbl == NULL) { | 
|  | pr_err("Could not map Properties table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (tbl->memory_protection_attribute & | 
|  | EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) | 
|  | set_bit(EFI_NX_PE_DATA, &efi.flags); | 
|  |  | 
|  | early_memunmap(tbl, sizeof(*tbl)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init efi_config_init(efi_config_table_type_t *arch_tables) | 
|  | { | 
|  | void *config_tables; | 
|  | int sz, ret; | 
|  |  | 
|  | if (efi_enabled(EFI_64BIT)) | 
|  | sz = sizeof(efi_config_table_64_t); | 
|  | else | 
|  | sz = sizeof(efi_config_table_32_t); | 
|  |  | 
|  | /* | 
|  | * Let's see what config tables the firmware passed to us. | 
|  | */ | 
|  | config_tables = early_memremap(efi.systab->tables, | 
|  | efi.systab->nr_tables * sz); | 
|  | if (config_tables == NULL) { | 
|  | pr_err("Could not map Configuration table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz, | 
|  | arch_tables); | 
|  |  | 
|  | early_memunmap(config_tables, efi.systab->nr_tables * sz); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EFI_VARS_MODULE | 
|  | static int __init efi_load_efivars(void) | 
|  | { | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | if (!efi_enabled(EFI_RUNTIME_SERVICES)) | 
|  | return 0; | 
|  |  | 
|  | pdev = platform_device_register_simple("efivars", 0, NULL, 0); | 
|  | return IS_ERR(pdev) ? PTR_ERR(pdev) : 0; | 
|  | } | 
|  | device_initcall(efi_load_efivars); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_EFI_PARAMS_FROM_FDT | 
|  |  | 
|  | #define UEFI_PARAM(name, prop, field)			   \ | 
|  | {						   \ | 
|  | { name },				   \ | 
|  | { prop },				   \ | 
|  | offsetof(struct efi_fdt_params, field),    \ | 
|  | FIELD_SIZEOF(struct efi_fdt_params, field) \ | 
|  | } | 
|  |  | 
|  | static __initdata struct { | 
|  | const char name[32]; | 
|  | const char propname[32]; | 
|  | int offset; | 
|  | int size; | 
|  | } dt_params[] = { | 
|  | UEFI_PARAM("System Table", "linux,uefi-system-table", system_table), | 
|  | UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap), | 
|  | UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size), | 
|  | UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size), | 
|  | UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver) | 
|  | }; | 
|  |  | 
|  | struct param_info { | 
|  | int found; | 
|  | void *params; | 
|  | }; | 
|  |  | 
|  | static int __init fdt_find_uefi_params(unsigned long node, const char *uname, | 
|  | int depth, void *data) | 
|  | { | 
|  | struct param_info *info = data; | 
|  | const void *prop; | 
|  | void *dest; | 
|  | u64 val; | 
|  | int i, len; | 
|  |  | 
|  | if (depth != 1 || strcmp(uname, "chosen") != 0) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(dt_params); i++) { | 
|  | prop = of_get_flat_dt_prop(node, dt_params[i].propname, &len); | 
|  | if (!prop) | 
|  | return 0; | 
|  | dest = info->params + dt_params[i].offset; | 
|  | info->found++; | 
|  |  | 
|  | val = of_read_number(prop, len / sizeof(u32)); | 
|  |  | 
|  | if (dt_params[i].size == sizeof(u32)) | 
|  | *(u32 *)dest = val; | 
|  | else | 
|  | *(u64 *)dest = val; | 
|  |  | 
|  | if (efi_enabled(EFI_DBG)) | 
|  | pr_info("  %s: 0x%0*llx\n", dt_params[i].name, | 
|  | dt_params[i].size * 2, val); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int __init efi_get_fdt_params(struct efi_fdt_params *params) | 
|  | { | 
|  | struct param_info info; | 
|  | int ret; | 
|  |  | 
|  | pr_info("Getting EFI parameters from FDT:\n"); | 
|  |  | 
|  | info.found = 0; | 
|  | info.params = params; | 
|  |  | 
|  | ret = of_scan_flat_dt(fdt_find_uefi_params, &info); | 
|  | if (!info.found) | 
|  | pr_info("UEFI not found.\n"); | 
|  | else if (!ret) | 
|  | pr_err("Can't find '%s' in device tree!\n", | 
|  | dt_params[info.found].name); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* CONFIG_EFI_PARAMS_FROM_FDT */ | 
|  |  | 
|  | static __initdata char memory_type_name[][20] = { | 
|  | "Reserved", | 
|  | "Loader Code", | 
|  | "Loader Data", | 
|  | "Boot Code", | 
|  | "Boot Data", | 
|  | "Runtime Code", | 
|  | "Runtime Data", | 
|  | "Conventional Memory", | 
|  | "Unusable Memory", | 
|  | "ACPI Reclaim Memory", | 
|  | "ACPI Memory NVS", | 
|  | "Memory Mapped I/O", | 
|  | "MMIO Port Space", | 
|  | "PAL Code" | 
|  | }; | 
|  |  | 
|  | char * __init efi_md_typeattr_format(char *buf, size_t size, | 
|  | const efi_memory_desc_t *md) | 
|  | { | 
|  | char *pos; | 
|  | int type_len; | 
|  | u64 attr; | 
|  |  | 
|  | pos = buf; | 
|  | if (md->type >= ARRAY_SIZE(memory_type_name)) | 
|  | type_len = snprintf(pos, size, "[type=%u", md->type); | 
|  | else | 
|  | type_len = snprintf(pos, size, "[%-*s", | 
|  | (int)(sizeof(memory_type_name[0]) - 1), | 
|  | memory_type_name[md->type]); | 
|  | if (type_len >= size) | 
|  | return buf; | 
|  |  | 
|  | pos += type_len; | 
|  | size -= type_len; | 
|  |  | 
|  | attr = md->attribute; | 
|  | if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | | 
|  | EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | | 
|  | EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | | 
|  | EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE)) | 
|  | snprintf(pos, size, "|attr=0x%016llx]", | 
|  | (unsigned long long)attr); | 
|  | else | 
|  | snprintf(pos, size, "|%3s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", | 
|  | attr & EFI_MEMORY_RUNTIME ? "RUN" : "", | 
|  | attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", | 
|  | attr & EFI_MEMORY_XP      ? "XP"  : "", | 
|  | attr & EFI_MEMORY_RP      ? "RP"  : "", | 
|  | attr & EFI_MEMORY_WP      ? "WP"  : "", | 
|  | attr & EFI_MEMORY_RO      ? "RO"  : "", | 
|  | attr & EFI_MEMORY_UCE     ? "UCE" : "", | 
|  | attr & EFI_MEMORY_WB      ? "WB"  : "", | 
|  | attr & EFI_MEMORY_WT      ? "WT"  : "", | 
|  | attr & EFI_MEMORY_WC      ? "WC"  : "", | 
|  | attr & EFI_MEMORY_UC      ? "UC"  : ""); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * efi_mem_attributes - lookup memmap attributes for physical address | 
|  | * @phys_addr: the physical address to lookup | 
|  | * | 
|  | * Search in the EFI memory map for the region covering | 
|  | * @phys_addr. Returns the EFI memory attributes if the region | 
|  | * was found in the memory map, 0 otherwise. | 
|  | * | 
|  | * Despite being marked __weak, most architectures should *not* | 
|  | * override this function. It is __weak solely for the benefit | 
|  | * of ia64 which has a funky EFI memory map that doesn't work | 
|  | * the same way as other architectures. | 
|  | */ | 
|  | u64 __weak efi_mem_attributes(unsigned long phys_addr) | 
|  | { | 
|  | struct efi_memory_map *map; | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | if (!efi_enabled(EFI_MEMMAP)) | 
|  | return 0; | 
|  |  | 
|  | map = efi.memmap; | 
|  | for (p = map->map; p < map->map_end; p += map->desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->attribute; | 
|  | } | 
|  | return 0; | 
|  | } |