|  | /* | 
|  | * Core of Xen paravirt_ops implementation. | 
|  | * | 
|  | * This file contains the xen_paravirt_ops structure itself, and the | 
|  | * implementations for: | 
|  | * - privileged instructions | 
|  | * - interrupt flags | 
|  | * - segment operations | 
|  | * - booting and setup | 
|  | * | 
|  | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/start_kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/edd.h> | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | #include <linux/kexec.h> | 
|  | #endif | 
|  |  | 
|  | #include <xen/xen.h> | 
|  | #include <xen/events.h> | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/version.h> | 
|  | #include <xen/interface/physdev.h> | 
|  | #include <xen/interface/vcpu.h> | 
|  | #include <xen/interface/memory.h> | 
|  | #include <xen/interface/nmi.h> | 
|  | #include <xen/interface/xen-mca.h> | 
|  | #include <xen/features.h> | 
|  | #include <xen/page.h> | 
|  | #include <xen/hvm.h> | 
|  | #include <xen/hvc-console.h> | 
|  | #include <xen/acpi.h> | 
|  |  | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/xen/pci.h> | 
|  | #include <asm/xen/hypercall.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/msr-index.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/reboot.h> | 
|  | #include <asm/stackprotector.h> | 
|  | #include <asm/hypervisor.h> | 
|  | #include <asm/mach_traps.h> | 
|  | #include <asm/mwait.h> | 
|  | #include <asm/pci_x86.h> | 
|  | #include <asm/pat.h> | 
|  | #include <asm/cpu.h> | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | #include <linux/acpi.h> | 
|  | #include <asm/acpi.h> | 
|  | #include <acpi/pdc_intel.h> | 
|  | #include <acpi/processor.h> | 
|  | #include <xen/interface/platform.h> | 
|  | #endif | 
|  |  | 
|  | #include "xen-ops.h" | 
|  | #include "mmu.h" | 
|  | #include "smp.h" | 
|  | #include "multicalls.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(hypercall_page); | 
|  |  | 
|  | /* | 
|  | * Pointer to the xen_vcpu_info structure or | 
|  | * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info | 
|  | * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info | 
|  | * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point | 
|  | * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to | 
|  | * acknowledge pending events. | 
|  | * Also more subtly it is used by the patched version of irq enable/disable | 
|  | * e.g. xen_irq_enable_direct and xen_iret in PV mode. | 
|  | * | 
|  | * The desire to be able to do those mask/unmask operations as a single | 
|  | * instruction by using the per-cpu offset held in %gs is the real reason | 
|  | * vcpu info is in a per-cpu pointer and the original reason for this | 
|  | * hypercall. | 
|  | * | 
|  | */ | 
|  | DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); | 
|  |  | 
|  | /* | 
|  | * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info | 
|  | * hypercall. This can be used both in PV and PVHVM mode. The structure | 
|  | * overrides the default per_cpu(xen_vcpu, cpu) value. | 
|  | */ | 
|  | DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | 
|  |  | 
|  | enum xen_domain_type xen_domain_type = XEN_NATIVE; | 
|  | EXPORT_SYMBOL_GPL(xen_domain_type); | 
|  |  | 
|  | unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; | 
|  | EXPORT_SYMBOL(machine_to_phys_mapping); | 
|  | unsigned long  machine_to_phys_nr; | 
|  | EXPORT_SYMBOL(machine_to_phys_nr); | 
|  |  | 
|  | struct start_info *xen_start_info; | 
|  | EXPORT_SYMBOL_GPL(xen_start_info); | 
|  |  | 
|  | struct shared_info xen_dummy_shared_info; | 
|  |  | 
|  | void *xen_initial_gdt; | 
|  |  | 
|  | RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); | 
|  | __read_mostly int xen_have_vector_callback; | 
|  | EXPORT_SYMBOL_GPL(xen_have_vector_callback); | 
|  |  | 
|  | /* | 
|  | * Point at some empty memory to start with. We map the real shared_info | 
|  | * page as soon as fixmap is up and running. | 
|  | */ | 
|  | struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; | 
|  |  | 
|  | /* | 
|  | * Flag to determine whether vcpu info placement is available on all | 
|  | * VCPUs.  We assume it is to start with, and then set it to zero on | 
|  | * the first failure.  This is because it can succeed on some VCPUs | 
|  | * and not others, since it can involve hypervisor memory allocation, | 
|  | * or because the guest failed to guarantee all the appropriate | 
|  | * constraints on all VCPUs (ie buffer can't cross a page boundary). | 
|  | * | 
|  | * Note that any particular CPU may be using a placed vcpu structure, | 
|  | * but we can only optimise if the all are. | 
|  | * | 
|  | * 0: not available, 1: available | 
|  | */ | 
|  | static int have_vcpu_info_placement = 1; | 
|  |  | 
|  | struct tls_descs { | 
|  | struct desc_struct desc[3]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Updating the 3 TLS descriptors in the GDT on every task switch is | 
|  | * surprisingly expensive so we avoid updating them if they haven't | 
|  | * changed.  Since Xen writes different descriptors than the one | 
|  | * passed in the update_descriptor hypercall we keep shadow copies to | 
|  | * compare against. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); | 
|  |  | 
|  | static void clamp_max_cpus(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (setup_max_cpus > MAX_VIRT_CPUS) | 
|  | setup_max_cpus = MAX_VIRT_CPUS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void xen_vcpu_setup(int cpu) | 
|  | { | 
|  | struct vcpu_register_vcpu_info info; | 
|  | int err; | 
|  | struct vcpu_info *vcpup; | 
|  |  | 
|  | BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); | 
|  |  | 
|  | /* | 
|  | * This path is called twice on PVHVM - first during bootup via | 
|  | * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being | 
|  | * hotplugged: cpu_up -> xen_hvm_cpu_notify. | 
|  | * As we can only do the VCPUOP_register_vcpu_info once lets | 
|  | * not over-write its result. | 
|  | * | 
|  | * For PV it is called during restore (xen_vcpu_restore) and bootup | 
|  | * (xen_setup_vcpu_info_placement). The hotplug mechanism does not | 
|  | * use this function. | 
|  | */ | 
|  | if (xen_hvm_domain()) { | 
|  | if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu)) | 
|  | return; | 
|  | } | 
|  | if (cpu < MAX_VIRT_CPUS) | 
|  | per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; | 
|  |  | 
|  | if (!have_vcpu_info_placement) { | 
|  | if (cpu >= MAX_VIRT_CPUS) | 
|  | clamp_max_cpus(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vcpup = &per_cpu(xen_vcpu_info, cpu); | 
|  | info.mfn = arbitrary_virt_to_mfn(vcpup); | 
|  | info.offset = offset_in_page(vcpup); | 
|  |  | 
|  | /* Check to see if the hypervisor will put the vcpu_info | 
|  | structure where we want it, which allows direct access via | 
|  | a percpu-variable. | 
|  | N.B. This hypercall can _only_ be called once per CPU. Subsequent | 
|  | calls will error out with -EINVAL. This is due to the fact that | 
|  | hypervisor has no unregister variant and this hypercall does not | 
|  | allow to over-write info.mfn and info.offset. | 
|  | */ | 
|  | err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); | 
|  |  | 
|  | if (err) { | 
|  | printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); | 
|  | have_vcpu_info_placement = 0; | 
|  | clamp_max_cpus(); | 
|  | } else { | 
|  | /* This cpu is using the registered vcpu info, even if | 
|  | later ones fail to. */ | 
|  | per_cpu(xen_vcpu, cpu) = vcpup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On restore, set the vcpu placement up again. | 
|  | * If it fails, then we're in a bad state, since | 
|  | * we can't back out from using it... | 
|  | */ | 
|  | void xen_vcpu_restore(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | bool other_cpu = (cpu != smp_processor_id()); | 
|  | bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL); | 
|  |  | 
|  | if (other_cpu && is_up && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) | 
|  | BUG(); | 
|  |  | 
|  | xen_setup_runstate_info(cpu); | 
|  |  | 
|  | if (have_vcpu_info_placement) | 
|  | xen_vcpu_setup(cpu); | 
|  |  | 
|  | if (other_cpu && is_up && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init xen_banner(void) | 
|  | { | 
|  | unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); | 
|  | struct xen_extraversion extra; | 
|  | HYPERVISOR_xen_version(XENVER_extraversion, &extra); | 
|  |  | 
|  | pr_info("Booting paravirtualized kernel %son %s\n", | 
|  | xen_feature(XENFEAT_auto_translated_physmap) ? | 
|  | "with PVH extensions " : "", pv_info.name); | 
|  | printk(KERN_INFO "Xen version: %d.%d%s%s\n", | 
|  | version >> 16, version & 0xffff, extra.extraversion, | 
|  | xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); | 
|  | } | 
|  | /* Check if running on Xen version (major, minor) or later */ | 
|  | bool | 
|  | xen_running_on_version_or_later(unsigned int major, unsigned int minor) | 
|  | { | 
|  | unsigned int version; | 
|  |  | 
|  | if (!xen_domain()) | 
|  | return false; | 
|  |  | 
|  | version = HYPERVISOR_xen_version(XENVER_version, NULL); | 
|  | if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || | 
|  | ((version >> 16) > major)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define CPUID_THERM_POWER_LEAF 6 | 
|  | #define APERFMPERF_PRESENT 0 | 
|  |  | 
|  | static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; | 
|  | static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; | 
|  |  | 
|  | static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; | 
|  | static __read_mostly unsigned int cpuid_leaf5_ecx_val; | 
|  | static __read_mostly unsigned int cpuid_leaf5_edx_val; | 
|  |  | 
|  | static void xen_cpuid(unsigned int *ax, unsigned int *bx, | 
|  | unsigned int *cx, unsigned int *dx) | 
|  | { | 
|  | unsigned maskebx = ~0; | 
|  | unsigned maskecx = ~0; | 
|  | unsigned maskedx = ~0; | 
|  | unsigned setecx = 0; | 
|  | /* | 
|  | * Mask out inconvenient features, to try and disable as many | 
|  | * unsupported kernel subsystems as possible. | 
|  | */ | 
|  | switch (*ax) { | 
|  | case 1: | 
|  | maskecx = cpuid_leaf1_ecx_mask; | 
|  | setecx = cpuid_leaf1_ecx_set_mask; | 
|  | maskedx = cpuid_leaf1_edx_mask; | 
|  | break; | 
|  |  | 
|  | case CPUID_MWAIT_LEAF: | 
|  | /* Synthesize the values.. */ | 
|  | *ax = 0; | 
|  | *bx = 0; | 
|  | *cx = cpuid_leaf5_ecx_val; | 
|  | *dx = cpuid_leaf5_edx_val; | 
|  | return; | 
|  |  | 
|  | case CPUID_THERM_POWER_LEAF: | 
|  | /* Disabling APERFMPERF for kernel usage */ | 
|  | maskecx = ~(1 << APERFMPERF_PRESENT); | 
|  | break; | 
|  |  | 
|  | case 0xb: | 
|  | /* Suppress extended topology stuff */ | 
|  | maskebx = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | asm(XEN_EMULATE_PREFIX "cpuid" | 
|  | : "=a" (*ax), | 
|  | "=b" (*bx), | 
|  | "=c" (*cx), | 
|  | "=d" (*dx) | 
|  | : "0" (*ax), "2" (*cx)); | 
|  |  | 
|  | *bx &= maskebx; | 
|  | *cx &= maskecx; | 
|  | *cx |= setecx; | 
|  | *dx &= maskedx; | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool __init xen_check_mwait(void) | 
|  | { | 
|  | #ifdef CONFIG_ACPI | 
|  | struct xen_platform_op op = { | 
|  | .cmd			= XENPF_set_processor_pminfo, | 
|  | .u.set_pminfo.id	= -1, | 
|  | .u.set_pminfo.type	= XEN_PM_PDC, | 
|  | }; | 
|  | uint32_t buf[3]; | 
|  | unsigned int ax, bx, cx, dx; | 
|  | unsigned int mwait_mask; | 
|  |  | 
|  | /* We need to determine whether it is OK to expose the MWAIT | 
|  | * capability to the kernel to harvest deeper than C3 states from ACPI | 
|  | * _CST using the processor_harvest_xen.c module. For this to work, we | 
|  | * need to gather the MWAIT_LEAF values (which the cstate.c code | 
|  | * checks against). The hypervisor won't expose the MWAIT flag because | 
|  | * it would break backwards compatibility; so we will find out directly | 
|  | * from the hardware and hypercall. | 
|  | */ | 
|  | if (!xen_initial_domain()) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * When running under platform earlier than Xen4.2, do not expose | 
|  | * mwait, to avoid the risk of loading native acpi pad driver | 
|  | */ | 
|  | if (!xen_running_on_version_or_later(4, 2)) | 
|  | return false; | 
|  |  | 
|  | ax = 1; | 
|  | cx = 0; | 
|  |  | 
|  | native_cpuid(&ax, &bx, &cx, &dx); | 
|  |  | 
|  | mwait_mask = (1 << (X86_FEATURE_EST % 32)) | | 
|  | (1 << (X86_FEATURE_MWAIT % 32)); | 
|  |  | 
|  | if ((cx & mwait_mask) != mwait_mask) | 
|  | return false; | 
|  |  | 
|  | /* We need to emulate the MWAIT_LEAF and for that we need both | 
|  | * ecx and edx. The hypercall provides only partial information. | 
|  | */ | 
|  |  | 
|  | ax = CPUID_MWAIT_LEAF; | 
|  | bx = 0; | 
|  | cx = 0; | 
|  | dx = 0; | 
|  |  | 
|  | native_cpuid(&ax, &bx, &cx, &dx); | 
|  |  | 
|  | /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, | 
|  | * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. | 
|  | */ | 
|  | buf[0] = ACPI_PDC_REVISION_ID; | 
|  | buf[1] = 1; | 
|  | buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); | 
|  |  | 
|  | set_xen_guest_handle(op.u.set_pminfo.pdc, buf); | 
|  |  | 
|  | if ((HYPERVISOR_platform_op(&op) == 0) && | 
|  | (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { | 
|  | cpuid_leaf5_ecx_val = cx; | 
|  | cpuid_leaf5_edx_val = dx; | 
|  | } | 
|  | return true; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  | static void __init xen_init_cpuid_mask(void) | 
|  | { | 
|  | unsigned int ax, bx, cx, dx; | 
|  | unsigned int xsave_mask; | 
|  |  | 
|  | cpuid_leaf1_edx_mask = | 
|  | ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */ | 
|  | (1 << X86_FEATURE_ACC));   /* thermal monitoring */ | 
|  |  | 
|  | if (!xen_initial_domain()) | 
|  | cpuid_leaf1_edx_mask &= | 
|  | ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */ | 
|  |  | 
|  | cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32)); | 
|  |  | 
|  | ax = 1; | 
|  | cx = 0; | 
|  | cpuid(1, &ax, &bx, &cx, &dx); | 
|  |  | 
|  | xsave_mask = | 
|  | (1 << (X86_FEATURE_XSAVE % 32)) | | 
|  | (1 << (X86_FEATURE_OSXSAVE % 32)); | 
|  |  | 
|  | /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ | 
|  | if ((cx & xsave_mask) != xsave_mask) | 
|  | cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ | 
|  | if (xen_check_mwait()) | 
|  | cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); | 
|  | } | 
|  |  | 
|  | static void xen_set_debugreg(int reg, unsigned long val) | 
|  | { | 
|  | HYPERVISOR_set_debugreg(reg, val); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_get_debugreg(int reg) | 
|  | { | 
|  | return HYPERVISOR_get_debugreg(reg); | 
|  | } | 
|  |  | 
|  | static void xen_end_context_switch(struct task_struct *next) | 
|  | { | 
|  | xen_mc_flush(); | 
|  | paravirt_end_context_switch(next); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_store_tr(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the page permissions for a particular virtual address.  If the | 
|  | * address is a vmalloc mapping (or other non-linear mapping), then | 
|  | * find the linear mapping of the page and also set its protections to | 
|  | * match. | 
|  | */ | 
|  | static void set_aliased_prot(void *v, pgprot_t prot) | 
|  | { | 
|  | int level; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | unsigned long pfn; | 
|  | struct page *page; | 
|  | unsigned char dummy; | 
|  |  | 
|  | ptep = lookup_address((unsigned long)v, &level); | 
|  | BUG_ON(ptep == NULL); | 
|  |  | 
|  | pfn = pte_pfn(*ptep); | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | pte = pfn_pte(pfn, prot); | 
|  |  | 
|  | /* | 
|  | * Careful: update_va_mapping() will fail if the virtual address | 
|  | * we're poking isn't populated in the page tables.  We don't | 
|  | * need to worry about the direct map (that's always in the page | 
|  | * tables), but we need to be careful about vmap space.  In | 
|  | * particular, the top level page table can lazily propagate | 
|  | * entries between processes, so if we've switched mms since we | 
|  | * vmapped the target in the first place, we might not have the | 
|  | * top-level page table entry populated. | 
|  | * | 
|  | * We disable preemption because we want the same mm active when | 
|  | * we probe the target and when we issue the hypercall.  We'll | 
|  | * have the same nominal mm, but if we're a kernel thread, lazy | 
|  | * mm dropping could change our pgd. | 
|  | * | 
|  | * Out of an abundance of caution, this uses __get_user() to fault | 
|  | * in the target address just in case there's some obscure case | 
|  | * in which the target address isn't readable. | 
|  | */ | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | pagefault_disable();	/* Avoid warnings due to being atomic. */ | 
|  | __get_user(dummy, (unsigned char __user __force *)v); | 
|  | pagefault_enable(); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) | 
|  | BUG(); | 
|  |  | 
|  | if (!PageHighMem(page)) { | 
|  | void *av = __va(PFN_PHYS(pfn)); | 
|  |  | 
|  | if (av != v) | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) | 
|  | BUG(); | 
|  | } else | 
|  | kmap_flush_unused(); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) | 
|  | { | 
|  | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We need to mark the all aliases of the LDT pages RO.  We | 
|  | * don't need to call vm_flush_aliases(), though, since that's | 
|  | * only responsible for flushing aliases out the TLBs, not the | 
|  | * page tables, and Xen will flush the TLB for us if needed. | 
|  | * | 
|  | * To avoid confusing future readers: none of this is necessary | 
|  | * to load the LDT.  The hypervisor only checks this when the | 
|  | * LDT is faulted in due to subsequent descriptor access. | 
|  | */ | 
|  |  | 
|  | for(i = 0; i < entries; i += entries_per_page) | 
|  | set_aliased_prot(ldt + i, PAGE_KERNEL_RO); | 
|  | } | 
|  |  | 
|  | static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) | 
|  | { | 
|  | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < entries; i += entries_per_page) | 
|  | set_aliased_prot(ldt + i, PAGE_KERNEL); | 
|  | } | 
|  |  | 
|  | static void xen_set_ldt(const void *addr, unsigned entries) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | trace_xen_cpu_set_ldt(addr, entries); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_SET_LDT; | 
|  | op->arg1.linear_addr = (unsigned long)addr; | 
|  | op->arg2.nr_ents = entries; | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_load_gdt(const struct desc_ptr *dtr) | 
|  | { | 
|  | unsigned long va = dtr->address; | 
|  | unsigned int size = dtr->size + 1; | 
|  | unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; | 
|  | unsigned long frames[pages]; | 
|  | int f; | 
|  |  | 
|  | /* | 
|  | * A GDT can be up to 64k in size, which corresponds to 8192 | 
|  | * 8-byte entries, or 16 4k pages.. | 
|  | */ | 
|  |  | 
|  | BUG_ON(size > 65536); | 
|  | BUG_ON(va & ~PAGE_MASK); | 
|  |  | 
|  | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { | 
|  | int level; | 
|  | pte_t *ptep; | 
|  | unsigned long pfn, mfn; | 
|  | void *virt; | 
|  |  | 
|  | /* | 
|  | * The GDT is per-cpu and is in the percpu data area. | 
|  | * That can be virtually mapped, so we need to do a | 
|  | * page-walk to get the underlying MFN for the | 
|  | * hypercall.  The page can also be in the kernel's | 
|  | * linear range, so we need to RO that mapping too. | 
|  | */ | 
|  | ptep = lookup_address(va, &level); | 
|  | BUG_ON(ptep == NULL); | 
|  |  | 
|  | pfn = pte_pfn(*ptep); | 
|  | mfn = pfn_to_mfn(pfn); | 
|  | virt = __va(PFN_PHYS(pfn)); | 
|  |  | 
|  | frames[f] = mfn; | 
|  |  | 
|  | make_lowmem_page_readonly((void *)va); | 
|  | make_lowmem_page_readonly(virt); | 
|  | } | 
|  |  | 
|  | if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * load_gdt for early boot, when the gdt is only mapped once | 
|  | */ | 
|  | static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) | 
|  | { | 
|  | unsigned long va = dtr->address; | 
|  | unsigned int size = dtr->size + 1; | 
|  | unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; | 
|  | unsigned long frames[pages]; | 
|  | int f; | 
|  |  | 
|  | /* | 
|  | * A GDT can be up to 64k in size, which corresponds to 8192 | 
|  | * 8-byte entries, or 16 4k pages.. | 
|  | */ | 
|  |  | 
|  | BUG_ON(size > 65536); | 
|  | BUG_ON(va & ~PAGE_MASK); | 
|  |  | 
|  | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { | 
|  | pte_t pte; | 
|  | unsigned long pfn, mfn; | 
|  |  | 
|  | pfn = virt_to_pfn(va); | 
|  | mfn = pfn_to_mfn(pfn); | 
|  |  | 
|  | pte = pfn_pte(pfn, PAGE_KERNEL_RO); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) | 
|  | BUG(); | 
|  |  | 
|  | frames[f] = mfn; | 
|  | } | 
|  |  | 
|  | if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static inline bool desc_equal(const struct desc_struct *d1, | 
|  | const struct desc_struct *d2) | 
|  | { | 
|  | return d1->a == d2->a && d1->b == d2->b; | 
|  | } | 
|  |  | 
|  | static void load_TLS_descriptor(struct thread_struct *t, | 
|  | unsigned int cpu, unsigned int i) | 
|  | { | 
|  | struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; | 
|  | struct desc_struct *gdt; | 
|  | xmaddr_t maddr; | 
|  | struct multicall_space mc; | 
|  |  | 
|  | if (desc_equal(shadow, &t->tls_array[i])) | 
|  | return; | 
|  |  | 
|  | *shadow = t->tls_array[i]; | 
|  |  | 
|  | gdt = get_cpu_gdt_table(cpu); | 
|  | maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); | 
|  | mc = __xen_mc_entry(0); | 
|  |  | 
|  | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); | 
|  | } | 
|  |  | 
|  | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * XXX sleazy hack: If we're being called in a lazy-cpu zone | 
|  | * and lazy gs handling is enabled, it means we're in a | 
|  | * context switch, and %gs has just been saved.  This means we | 
|  | * can zero it out to prevent faults on exit from the | 
|  | * hypervisor if the next process has no %gs.  Either way, it | 
|  | * has been saved, and the new value will get loaded properly. | 
|  | * This will go away as soon as Xen has been modified to not | 
|  | * save/restore %gs for normal hypercalls. | 
|  | * | 
|  | * On x86_64, this hack is not used for %gs, because gs points | 
|  | * to KERNEL_GS_BASE (and uses it for PDA references), so we | 
|  | * must not zero %gs on x86_64 | 
|  | * | 
|  | * For x86_64, we need to zero %fs, otherwise we may get an | 
|  | * exception between the new %fs descriptor being loaded and | 
|  | * %fs being effectively cleared at __switch_to(). | 
|  | */ | 
|  | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { | 
|  | #ifdef CONFIG_X86_32 | 
|  | lazy_load_gs(0); | 
|  | #else | 
|  | loadsegment(fs, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | load_TLS_descriptor(t, cpu, 0); | 
|  | load_TLS_descriptor(t, cpu, 1); | 
|  | load_TLS_descriptor(t, cpu, 2); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void xen_load_gs_index(unsigned int idx) | 
|  | { | 
|  | if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, | 
|  | const void *ptr) | 
|  | { | 
|  | xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); | 
|  | u64 entry = *(u64 *)ptr; | 
|  |  | 
|  | trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) | 
|  | BUG(); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int cvt_gate_to_trap(int vector, const gate_desc *val, | 
|  | struct trap_info *info) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) | 
|  | return 0; | 
|  |  | 
|  | info->vector = vector; | 
|  |  | 
|  | addr = gate_offset(*val); | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Look for known traps using IST, and substitute them | 
|  | * appropriately.  The debugger ones are the only ones we care | 
|  | * about.  Xen will handle faults like double_fault, | 
|  | * so we should never see them.  Warn if | 
|  | * there's an unexpected IST-using fault handler. | 
|  | */ | 
|  | if (addr == (unsigned long)debug) | 
|  | addr = (unsigned long)xen_debug; | 
|  | else if (addr == (unsigned long)int3) | 
|  | addr = (unsigned long)xen_int3; | 
|  | else if (addr == (unsigned long)stack_segment) | 
|  | addr = (unsigned long)xen_stack_segment; | 
|  | else if (addr == (unsigned long)double_fault) { | 
|  | /* Don't need to handle these */ | 
|  | return 0; | 
|  | #ifdef CONFIG_X86_MCE | 
|  | } else if (addr == (unsigned long)machine_check) { | 
|  | /* | 
|  | * when xen hypervisor inject vMCE to guest, | 
|  | * use native mce handler to handle it | 
|  | */ | 
|  | ; | 
|  | #endif | 
|  | } else if (addr == (unsigned long)nmi) | 
|  | /* | 
|  | * Use the native version as well. | 
|  | */ | 
|  | ; | 
|  | else { | 
|  | /* Some other trap using IST? */ | 
|  | if (WARN_ON(val->ist != 0)) | 
|  | return 0; | 
|  | } | 
|  | #endif	/* CONFIG_X86_64 */ | 
|  | info->address = addr; | 
|  |  | 
|  | info->cs = gate_segment(*val); | 
|  | info->flags = val->dpl; | 
|  | /* interrupt gates clear IF */ | 
|  | if (val->type == GATE_INTERRUPT) | 
|  | info->flags |= 1 << 2; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Locations of each CPU's IDT */ | 
|  | static DEFINE_PER_CPU(struct desc_ptr, idt_desc); | 
|  |  | 
|  | /* Set an IDT entry.  If the entry is part of the current IDT, then | 
|  | also update Xen. */ | 
|  | static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) | 
|  | { | 
|  | unsigned long p = (unsigned long)&dt[entrynum]; | 
|  | unsigned long start, end; | 
|  |  | 
|  | trace_xen_cpu_write_idt_entry(dt, entrynum, g); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | start = __this_cpu_read(idt_desc.address); | 
|  | end = start + __this_cpu_read(idt_desc.size) + 1; | 
|  |  | 
|  | xen_mc_flush(); | 
|  |  | 
|  | native_write_idt_entry(dt, entrynum, g); | 
|  |  | 
|  | if (p >= start && (p + 8) <= end) { | 
|  | struct trap_info info[2]; | 
|  |  | 
|  | info[1].address = 0; | 
|  |  | 
|  | if (cvt_gate_to_trap(entrynum, g, &info[0])) | 
|  | if (HYPERVISOR_set_trap_table(info)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_convert_trap_info(const struct desc_ptr *desc, | 
|  | struct trap_info *traps) | 
|  | { | 
|  | unsigned in, out, count; | 
|  |  | 
|  | count = (desc->size+1) / sizeof(gate_desc); | 
|  | BUG_ON(count > 256); | 
|  |  | 
|  | for (in = out = 0; in < count; in++) { | 
|  | gate_desc *entry = (gate_desc*)(desc->address) + in; | 
|  |  | 
|  | if (cvt_gate_to_trap(in, entry, &traps[out])) | 
|  | out++; | 
|  | } | 
|  | traps[out].address = 0; | 
|  | } | 
|  |  | 
|  | void xen_copy_trap_info(struct trap_info *traps) | 
|  | { | 
|  | const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); | 
|  |  | 
|  | xen_convert_trap_info(desc, traps); | 
|  | } | 
|  |  | 
|  | /* Load a new IDT into Xen.  In principle this can be per-CPU, so we | 
|  | hold a spinlock to protect the static traps[] array (static because | 
|  | it avoids allocation, and saves stack space). */ | 
|  | static void xen_load_idt(const struct desc_ptr *desc) | 
|  | { | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | static struct trap_info traps[257]; | 
|  |  | 
|  | trace_xen_cpu_load_idt(desc); | 
|  |  | 
|  | spin_lock(&lock); | 
|  |  | 
|  | memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); | 
|  |  | 
|  | xen_convert_trap_info(desc, traps); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_set_trap_table(traps)) | 
|  | BUG(); | 
|  |  | 
|  | spin_unlock(&lock); | 
|  | } | 
|  |  | 
|  | /* Write a GDT descriptor entry.  Ignore LDT descriptors, since | 
|  | they're handled differently. */ | 
|  | static void xen_write_gdt_entry(struct desc_struct *dt, int entry, | 
|  | const void *desc, int type) | 
|  | { | 
|  | trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | switch (type) { | 
|  | case DESC_LDT: | 
|  | case DESC_TSS: | 
|  | /* ignore */ | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Version of write_gdt_entry for use at early boot-time needed to | 
|  | * update an entry as simply as possible. | 
|  | */ | 
|  | static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, | 
|  | const void *desc, int type) | 
|  | { | 
|  | trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); | 
|  |  | 
|  | switch (type) { | 
|  | case DESC_LDT: | 
|  | case DESC_TSS: | 
|  | /* ignore */ | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | xmaddr_t maddr = virt_to_machine(&dt[entry]); | 
|  |  | 
|  | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) | 
|  | dt[entry] = *(struct desc_struct *)desc; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_load_sp0(struct tss_struct *tss, | 
|  | struct thread_struct *thread) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | mcs = xen_mc_entry(0); | 
|  | MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | tss->x86_tss.sp0 = thread->sp0; | 
|  | } | 
|  |  | 
|  | static void xen_set_iopl_mask(unsigned mask) | 
|  | { | 
|  | struct physdev_set_iopl set_iopl; | 
|  |  | 
|  | /* Force the change at ring 0. */ | 
|  | set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; | 
|  | HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); | 
|  | } | 
|  |  | 
|  | static void xen_io_delay(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void xen_clts(void) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | mcs = xen_mc_entry(0); | 
|  |  | 
|  | MULTI_fpu_taskswitch(mcs.mc, 0); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, xen_cr0_value); | 
|  |  | 
|  | static unsigned long xen_read_cr0(void) | 
|  | { | 
|  | unsigned long cr0 = this_cpu_read(xen_cr0_value); | 
|  |  | 
|  | if (unlikely(cr0 == 0)) { | 
|  | cr0 = native_read_cr0(); | 
|  | this_cpu_write(xen_cr0_value, cr0); | 
|  | } | 
|  |  | 
|  | return cr0; | 
|  | } | 
|  |  | 
|  | static void xen_write_cr0(unsigned long cr0) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | this_cpu_write(xen_cr0_value, cr0); | 
|  |  | 
|  | /* Only pay attention to cr0.TS; everything else is | 
|  | ignored. */ | 
|  | mcs = xen_mc_entry(0); | 
|  |  | 
|  | MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_write_cr4(unsigned long cr4) | 
|  | { | 
|  | cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); | 
|  |  | 
|  | native_write_cr4(cr4); | 
|  | } | 
|  | #ifdef CONFIG_X86_64 | 
|  | static inline unsigned long xen_read_cr8(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void xen_write_cr8(unsigned long val) | 
|  | { | 
|  | BUG_ON(val); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static u64 xen_read_msr_safe(unsigned int msr, int *err) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | if (pmu_msr_read(msr, &val, err)) | 
|  | return val; | 
|  |  | 
|  | val = native_read_msr_safe(msr, err); | 
|  | switch (msr) { | 
|  | case MSR_IA32_APICBASE: | 
|  | #ifdef CONFIG_X86_X2APIC | 
|  | if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) | 
|  | #endif | 
|  | val &= ~X2APIC_ENABLE; | 
|  | break; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | switch (msr) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned which; | 
|  | u64 base; | 
|  |  | 
|  | case MSR_FS_BASE:		which = SEGBASE_FS; goto set; | 
|  | case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set; | 
|  | case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set; | 
|  |  | 
|  | set: | 
|  | base = ((u64)high << 32) | low; | 
|  | if (HYPERVISOR_set_segment_base(which, base) != 0) | 
|  | ret = -EIO; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case MSR_STAR: | 
|  | case MSR_CSTAR: | 
|  | case MSR_LSTAR: | 
|  | case MSR_SYSCALL_MASK: | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | /* Fast syscall setup is all done in hypercalls, so | 
|  | these are all ignored.  Stub them out here to stop | 
|  | Xen console noise. */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (!pmu_msr_write(msr, low, high, &ret)) | 
|  | ret = native_write_msr_safe(msr, low, high); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void xen_setup_shared_info(void) | 
|  | { | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | 
|  | set_fixmap(FIX_PARAVIRT_BOOTMAP, | 
|  | xen_start_info->shared_info); | 
|  |  | 
|  | HYPERVISOR_shared_info = | 
|  | (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); | 
|  | } else | 
|  | HYPERVISOR_shared_info = | 
|  | (struct shared_info *)__va(xen_start_info->shared_info); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* In UP this is as good a place as any to set up shared info */ | 
|  | xen_setup_vcpu_info_placement(); | 
|  | #endif | 
|  |  | 
|  | xen_setup_mfn_list_list(); | 
|  | } | 
|  |  | 
|  | /* This is called once we have the cpu_possible_mask */ | 
|  | void xen_setup_vcpu_info_placement(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | xen_vcpu_setup(cpu); | 
|  |  | 
|  | /* xen_vcpu_setup managed to place the vcpu_info within the | 
|  | * percpu area for all cpus, so make use of it. Note that for | 
|  | * PVH we want to use native IRQ mechanism. */ | 
|  | if (have_vcpu_info_placement && !xen_pvh_domain()) { | 
|  | pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); | 
|  | pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); | 
|  | pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); | 
|  | pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); | 
|  | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, | 
|  | unsigned long addr, unsigned len) | 
|  | { | 
|  | char *start, *end, *reloc; | 
|  | unsigned ret; | 
|  |  | 
|  | start = end = reloc = NULL; | 
|  |  | 
|  | #define SITE(op, x)							\ | 
|  | case PARAVIRT_PATCH(op.x):					\ | 
|  | if (have_vcpu_info_placement) {					\ | 
|  | start = (char *)xen_##x##_direct;			\ | 
|  | end = xen_##x##_direct_end;				\ | 
|  | reloc = xen_##x##_direct_reloc;				\ | 
|  | }								\ | 
|  | goto patch_site | 
|  |  | 
|  | switch (type) { | 
|  | SITE(pv_irq_ops, irq_enable); | 
|  | SITE(pv_irq_ops, irq_disable); | 
|  | SITE(pv_irq_ops, save_fl); | 
|  | SITE(pv_irq_ops, restore_fl); | 
|  | #undef SITE | 
|  |  | 
|  | patch_site: | 
|  | if (start == NULL || (end-start) > len) | 
|  | goto default_patch; | 
|  |  | 
|  | ret = paravirt_patch_insns(insnbuf, len, start, end); | 
|  |  | 
|  | /* Note: because reloc is assigned from something that | 
|  | appears to be an array, gcc assumes it's non-null, | 
|  | but doesn't know its relationship with start and | 
|  | end. */ | 
|  | if (reloc > start && reloc < end) { | 
|  | int reloc_off = reloc - start; | 
|  | long *relocp = (long *)(insnbuf + reloc_off); | 
|  | long delta = start - (char *)addr; | 
|  |  | 
|  | *relocp += delta; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default_patch: | 
|  | default: | 
|  | ret = paravirt_patch_default(type, clobbers, insnbuf, | 
|  | addr, len); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct pv_info xen_info __initconst = { | 
|  | .paravirt_enabled = 1, | 
|  | .shared_kernel_pmd = 0, | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | .extra_user_64bit_cs = FLAT_USER_CS64, | 
|  | #endif | 
|  | .features = 0, | 
|  | .name = "Xen", | 
|  | }; | 
|  |  | 
|  | static const struct pv_init_ops xen_init_ops __initconst = { | 
|  | .patch = xen_patch, | 
|  | }; | 
|  |  | 
|  | static const struct pv_cpu_ops xen_cpu_ops __initconst = { | 
|  | .cpuid = xen_cpuid, | 
|  |  | 
|  | .set_debugreg = xen_set_debugreg, | 
|  | .get_debugreg = xen_get_debugreg, | 
|  |  | 
|  | .clts = xen_clts, | 
|  |  | 
|  | .read_cr0 = xen_read_cr0, | 
|  | .write_cr0 = xen_write_cr0, | 
|  |  | 
|  | .read_cr4 = native_read_cr4, | 
|  | .read_cr4_safe = native_read_cr4_safe, | 
|  | .write_cr4 = xen_write_cr4, | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | .read_cr8 = xen_read_cr8, | 
|  | .write_cr8 = xen_write_cr8, | 
|  | #endif | 
|  |  | 
|  | .wbinvd = native_wbinvd, | 
|  |  | 
|  | .read_msr = xen_read_msr_safe, | 
|  | .write_msr = xen_write_msr_safe, | 
|  |  | 
|  | .read_pmc = xen_read_pmc, | 
|  |  | 
|  | .iret = xen_iret, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .usergs_sysret64 = xen_sysret64, | 
|  | #endif | 
|  |  | 
|  | .load_tr_desc = paravirt_nop, | 
|  | .set_ldt = xen_set_ldt, | 
|  | .load_gdt = xen_load_gdt, | 
|  | .load_idt = xen_load_idt, | 
|  | .load_tls = xen_load_tls, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .load_gs_index = xen_load_gs_index, | 
|  | #endif | 
|  |  | 
|  | .alloc_ldt = xen_alloc_ldt, | 
|  | .free_ldt = xen_free_ldt, | 
|  |  | 
|  | .store_idt = native_store_idt, | 
|  | .store_tr = xen_store_tr, | 
|  |  | 
|  | .write_ldt_entry = xen_write_ldt_entry, | 
|  | .write_gdt_entry = xen_write_gdt_entry, | 
|  | .write_idt_entry = xen_write_idt_entry, | 
|  | .load_sp0 = xen_load_sp0, | 
|  |  | 
|  | .set_iopl_mask = xen_set_iopl_mask, | 
|  | .io_delay = xen_io_delay, | 
|  |  | 
|  | /* Xen takes care of %gs when switching to usermode for us */ | 
|  | .swapgs = paravirt_nop, | 
|  |  | 
|  | .start_context_switch = paravirt_start_context_switch, | 
|  | .end_context_switch = xen_end_context_switch, | 
|  | }; | 
|  |  | 
|  | static void xen_reboot(int reason) | 
|  | { | 
|  | struct sched_shutdown r = { .reason = reason }; | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | xen_pmu_finish(cpu); | 
|  |  | 
|  | if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void xen_restart(char *msg) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_reboot); | 
|  | } | 
|  |  | 
|  | static void xen_emergency_restart(void) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_reboot); | 
|  | } | 
|  |  | 
|  | static void xen_machine_halt(void) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_poweroff); | 
|  | } | 
|  |  | 
|  | static void xen_machine_power_off(void) | 
|  | { | 
|  | if (pm_power_off) | 
|  | pm_power_off(); | 
|  | xen_reboot(SHUTDOWN_poweroff); | 
|  | } | 
|  |  | 
|  | static void xen_crash_shutdown(struct pt_regs *regs) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_crash); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_crash); | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block xen_panic_block = { | 
|  | .notifier_call= xen_panic_event, | 
|  | .priority = INT_MIN | 
|  | }; | 
|  |  | 
|  | int xen_panic_handler_init(void) | 
|  | { | 
|  | atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct machine_ops xen_machine_ops __initconst = { | 
|  | .restart = xen_restart, | 
|  | .halt = xen_machine_halt, | 
|  | .power_off = xen_machine_power_off, | 
|  | .shutdown = xen_machine_halt, | 
|  | .crash_shutdown = xen_crash_shutdown, | 
|  | .emergency_restart = xen_emergency_restart, | 
|  | }; | 
|  |  | 
|  | static unsigned char xen_get_nmi_reason(void) | 
|  | { | 
|  | unsigned char reason = 0; | 
|  |  | 
|  | /* Construct a value which looks like it came from port 0x61. */ | 
|  | if (test_bit(_XEN_NMIREASON_io_error, | 
|  | &HYPERVISOR_shared_info->arch.nmi_reason)) | 
|  | reason |= NMI_REASON_IOCHK; | 
|  | if (test_bit(_XEN_NMIREASON_pci_serr, | 
|  | &HYPERVISOR_shared_info->arch.nmi_reason)) | 
|  | reason |= NMI_REASON_SERR; | 
|  |  | 
|  | return reason; | 
|  | } | 
|  |  | 
|  | static void __init xen_boot_params_init_edd(void) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_EDD) | 
|  | struct xen_platform_op op; | 
|  | struct edd_info *edd_info; | 
|  | u32 *mbr_signature; | 
|  | unsigned nr; | 
|  | int ret; | 
|  |  | 
|  | edd_info = boot_params.eddbuf; | 
|  | mbr_signature = boot_params.edd_mbr_sig_buffer; | 
|  |  | 
|  | op.cmd = XENPF_firmware_info; | 
|  |  | 
|  | op.u.firmware_info.type = XEN_FW_DISK_INFO; | 
|  | for (nr = 0; nr < EDDMAXNR; nr++) { | 
|  | struct edd_info *info = edd_info + nr; | 
|  |  | 
|  | op.u.firmware_info.index = nr; | 
|  | info->params.length = sizeof(info->params); | 
|  | set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, | 
|  | &info->params); | 
|  | ret = HYPERVISOR_platform_op(&op); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | #define C(x) info->x = op.u.firmware_info.u.disk_info.x | 
|  | C(device); | 
|  | C(version); | 
|  | C(interface_support); | 
|  | C(legacy_max_cylinder); | 
|  | C(legacy_max_head); | 
|  | C(legacy_sectors_per_track); | 
|  | #undef C | 
|  | } | 
|  | boot_params.eddbuf_entries = nr; | 
|  |  | 
|  | op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; | 
|  | for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { | 
|  | op.u.firmware_info.index = nr; | 
|  | ret = HYPERVISOR_platform_op(&op); | 
|  | if (ret) | 
|  | break; | 
|  | mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; | 
|  | } | 
|  | boot_params.edd_mbr_sig_buf_entries = nr; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the GDT and segment registers for -fstack-protector.  Until | 
|  | * we do this, we have to be careful not to call any stack-protected | 
|  | * function, which is most of the kernel. | 
|  | * | 
|  | * Note, that it is __ref because the only caller of this after init | 
|  | * is PVH which is not going to use xen_load_gdt_boot or other | 
|  | * __init functions. | 
|  | */ | 
|  | static void __ref xen_setup_gdt(int cpu) | 
|  | { | 
|  | if (xen_feature(XENFEAT_auto_translated_physmap)) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned long dummy; | 
|  |  | 
|  | load_percpu_segment(cpu); /* We need to access per-cpu area */ | 
|  | switch_to_new_gdt(cpu); /* GDT and GS set */ | 
|  |  | 
|  | /* We are switching of the Xen provided GDT to our HVM mode | 
|  | * GDT. The new GDT has  __KERNEL_CS with CS.L = 1 | 
|  | * and we are jumping to reload it. | 
|  | */ | 
|  | asm volatile ("pushq %0\n" | 
|  | "leaq 1f(%%rip),%0\n" | 
|  | "pushq %0\n" | 
|  | "lretq\n" | 
|  | "1:\n" | 
|  | : "=&r" (dummy) : "0" (__KERNEL_CS)); | 
|  |  | 
|  | /* | 
|  | * While not needed, we also set the %es, %ds, and %fs | 
|  | * to zero. We don't care about %ss as it is NULL. | 
|  | * Strictly speaking this is not needed as Xen zeros those | 
|  | * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE) | 
|  | * | 
|  | * Linux zeros them in cpu_init() and in secondary_startup_64 | 
|  | * (for BSP). | 
|  | */ | 
|  | loadsegment(es, 0); | 
|  | loadsegment(ds, 0); | 
|  | loadsegment(fs, 0); | 
|  | #else | 
|  | /* PVH: TODO Implement. */ | 
|  | BUG(); | 
|  | #endif | 
|  | return; /* PVH does not need any PV GDT ops. */ | 
|  | } | 
|  | pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; | 
|  | pv_cpu_ops.load_gdt = xen_load_gdt_boot; | 
|  |  | 
|  | setup_stack_canary_segment(0); | 
|  | switch_to_new_gdt(0); | 
|  |  | 
|  | pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; | 
|  | pv_cpu_ops.load_gdt = xen_load_gdt; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XEN_PVH | 
|  | /* | 
|  | * A PV guest starts with default flags that are not set for PVH, set them | 
|  | * here asap. | 
|  | */ | 
|  | static void xen_pvh_set_cr_flags(int cpu) | 
|  | { | 
|  |  | 
|  | /* Some of these are setup in 'secondary_startup_64'. The others: | 
|  | * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests | 
|  | * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */ | 
|  | write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM); | 
|  |  | 
|  | if (!cpu) | 
|  | return; | 
|  | /* | 
|  | * For BSP, PSE PGE are set in probe_page_size_mask(), for APs | 
|  | * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu(). | 
|  | */ | 
|  | if (cpu_has_pse) | 
|  | cr4_set_bits_and_update_boot(X86_CR4_PSE); | 
|  |  | 
|  | if (cpu_has_pge) | 
|  | cr4_set_bits_and_update_boot(X86_CR4_PGE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note, that it is ref - because the only caller of this after init | 
|  | * is PVH which is not going to use xen_load_gdt_boot or other | 
|  | * __init functions. | 
|  | */ | 
|  | void __ref xen_pvh_secondary_vcpu_init(int cpu) | 
|  | { | 
|  | xen_setup_gdt(cpu); | 
|  | xen_pvh_set_cr_flags(cpu); | 
|  | } | 
|  |  | 
|  | static void __init xen_pvh_early_guest_init(void) | 
|  | { | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | return; | 
|  |  | 
|  | if (!xen_feature(XENFEAT_hvm_callback_vector)) | 
|  | return; | 
|  |  | 
|  | xen_have_vector_callback = 1; | 
|  |  | 
|  | xen_pvh_early_cpu_init(0, false); | 
|  | xen_pvh_set_cr_flags(0); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | BUG(); /* PVH: Implement proper support. */ | 
|  | #endif | 
|  | } | 
|  | #endif    /* CONFIG_XEN_PVH */ | 
|  |  | 
|  | /* First C function to be called on Xen boot */ | 
|  | asmlinkage __visible void __init xen_start_kernel(void) | 
|  | { | 
|  | struct physdev_set_iopl set_iopl; | 
|  | unsigned long initrd_start = 0; | 
|  | u64 pat; | 
|  | int rc; | 
|  |  | 
|  | if (!xen_start_info) | 
|  | return; | 
|  |  | 
|  | xen_domain_type = XEN_PV_DOMAIN; | 
|  |  | 
|  | xen_setup_features(); | 
|  | #ifdef CONFIG_XEN_PVH | 
|  | xen_pvh_early_guest_init(); | 
|  | #endif | 
|  | xen_setup_machphys_mapping(); | 
|  |  | 
|  | /* Install Xen paravirt ops */ | 
|  | pv_info = xen_info; | 
|  | if (xen_initial_domain()) | 
|  | pv_info.features |= PV_SUPPORTED_RTC; | 
|  | pv_init_ops = xen_init_ops; | 
|  | if (!xen_pvh_domain()) { | 
|  | pv_cpu_ops = xen_cpu_ops; | 
|  |  | 
|  | x86_platform.get_nmi_reason = xen_get_nmi_reason; | 
|  | } | 
|  |  | 
|  | if (xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | x86_init.resources.memory_setup = xen_auto_xlated_memory_setup; | 
|  | else | 
|  | x86_init.resources.memory_setup = xen_memory_setup; | 
|  | x86_init.oem.arch_setup = xen_arch_setup; | 
|  | x86_init.oem.banner = xen_banner; | 
|  |  | 
|  | xen_init_time_ops(); | 
|  |  | 
|  | /* | 
|  | * Set up some pagetable state before starting to set any ptes. | 
|  | */ | 
|  |  | 
|  | xen_init_mmu_ops(); | 
|  |  | 
|  | /* Prevent unwanted bits from being set in PTEs. */ | 
|  | __supported_pte_mask &= ~_PAGE_GLOBAL; | 
|  |  | 
|  | /* | 
|  | * Prevent page tables from being allocated in highmem, even | 
|  | * if CONFIG_HIGHPTE is enabled. | 
|  | */ | 
|  | __userpte_alloc_gfp &= ~__GFP_HIGHMEM; | 
|  |  | 
|  | /* Work out if we support NX */ | 
|  | x86_configure_nx(); | 
|  |  | 
|  | /* Get mfn list */ | 
|  | xen_build_dynamic_phys_to_machine(); | 
|  |  | 
|  | /* | 
|  | * Set up kernel GDT and segment registers, mainly so that | 
|  | * -fstack-protector code can be executed. | 
|  | */ | 
|  | xen_setup_gdt(0); | 
|  |  | 
|  | xen_init_irq_ops(); | 
|  | xen_init_cpuid_mask(); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * set up the basic apic ops. | 
|  | */ | 
|  | xen_init_apic(); | 
|  | #endif | 
|  |  | 
|  | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { | 
|  | pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; | 
|  | pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; | 
|  | } | 
|  |  | 
|  | machine_ops = xen_machine_ops; | 
|  |  | 
|  | /* | 
|  | * The only reliable way to retain the initial address of the | 
|  | * percpu gdt_page is to remember it here, so we can go and | 
|  | * mark it RW later, when the initial percpu area is freed. | 
|  | */ | 
|  | xen_initial_gdt = &per_cpu(gdt_page, 0); | 
|  |  | 
|  | xen_smp_init(); | 
|  |  | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | /* | 
|  | * The pages we from Xen are not related to machine pages, so | 
|  | * any NUMA information the kernel tries to get from ACPI will | 
|  | * be meaningless.  Prevent it from trying. | 
|  | */ | 
|  | acpi_numa = -1; | 
|  | #endif | 
|  | /* Don't do the full vcpu_info placement stuff until we have a | 
|  | possible map and a non-dummy shared_info. */ | 
|  | per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; | 
|  |  | 
|  | local_irq_disable(); | 
|  | early_boot_irqs_disabled = true; | 
|  |  | 
|  | xen_raw_console_write("mapping kernel into physical memory\n"); | 
|  | xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, | 
|  | xen_start_info->nr_pages); | 
|  | xen_reserve_special_pages(); | 
|  |  | 
|  | /* | 
|  | * Modify the cache mode translation tables to match Xen's PAT | 
|  | * configuration. | 
|  | */ | 
|  | rdmsrl(MSR_IA32_CR_PAT, pat); | 
|  | pat_init_cache_modes(pat); | 
|  |  | 
|  | /* keep using Xen gdt for now; no urgent need to change it */ | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | pv_info.kernel_rpl = 1; | 
|  | if (xen_feature(XENFEAT_supervisor_mode_kernel)) | 
|  | pv_info.kernel_rpl = 0; | 
|  | #else | 
|  | pv_info.kernel_rpl = 0; | 
|  | #endif | 
|  | /* set the limit of our address space */ | 
|  | xen_reserve_top(); | 
|  |  | 
|  | /* PVH: runs at default kernel iopl of 0 */ | 
|  | if (!xen_pvh_domain()) { | 
|  | /* | 
|  | * We used to do this in xen_arch_setup, but that is too late | 
|  | * on AMD were early_cpu_init (run before ->arch_setup()) calls | 
|  | * early_amd_init which pokes 0xcf8 port. | 
|  | */ | 
|  | set_iopl.iopl = 1; | 
|  | rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); | 
|  | if (rc != 0) | 
|  | xen_raw_printk("physdev_op failed %d\n", rc); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* set up basic CPUID stuff */ | 
|  | cpu_detect(&new_cpu_data); | 
|  | set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); | 
|  | new_cpu_data.wp_works_ok = 1; | 
|  | new_cpu_data.x86_capability[0] = cpuid_edx(1); | 
|  | #endif | 
|  |  | 
|  | if (xen_start_info->mod_start) { | 
|  | if (xen_start_info->flags & SIF_MOD_START_PFN) | 
|  | initrd_start = PFN_PHYS(xen_start_info->mod_start); | 
|  | else | 
|  | initrd_start = __pa(xen_start_info->mod_start); | 
|  | } | 
|  |  | 
|  | /* Poke various useful things into boot_params */ | 
|  | boot_params.hdr.type_of_loader = (9 << 4) | 0; | 
|  | boot_params.hdr.ramdisk_image = initrd_start; | 
|  | boot_params.hdr.ramdisk_size = xen_start_info->mod_len; | 
|  | boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); | 
|  |  | 
|  | if (!xen_initial_domain()) { | 
|  | add_preferred_console("xenboot", 0, NULL); | 
|  | add_preferred_console("tty", 0, NULL); | 
|  | add_preferred_console("hvc", 0, NULL); | 
|  | if (pci_xen) | 
|  | x86_init.pci.arch_init = pci_xen_init; | 
|  | } else { | 
|  | const struct dom0_vga_console_info *info = | 
|  | (void *)((char *)xen_start_info + | 
|  | xen_start_info->console.dom0.info_off); | 
|  | struct xen_platform_op op = { | 
|  | .cmd = XENPF_firmware_info, | 
|  | .interface_version = XENPF_INTERFACE_VERSION, | 
|  | .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, | 
|  | }; | 
|  |  | 
|  | xen_init_vga(info, xen_start_info->console.dom0.info_size); | 
|  | xen_start_info->console.domU.mfn = 0; | 
|  | xen_start_info->console.domU.evtchn = 0; | 
|  |  | 
|  | if (HYPERVISOR_platform_op(&op) == 0) | 
|  | boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; | 
|  |  | 
|  | /* Make sure ACS will be enabled */ | 
|  | pci_request_acs(); | 
|  |  | 
|  | xen_acpi_sleep_register(); | 
|  |  | 
|  | /* Avoid searching for BIOS MP tables */ | 
|  | x86_init.mpparse.find_smp_config = x86_init_noop; | 
|  | x86_init.mpparse.get_smp_config = x86_init_uint_noop; | 
|  |  | 
|  | xen_boot_params_init_edd(); | 
|  | } | 
|  | #ifdef CONFIG_PCI | 
|  | /* PCI BIOS service won't work from a PV guest. */ | 
|  | pci_probe &= ~PCI_PROBE_BIOS; | 
|  | #endif | 
|  | xen_raw_console_write("about to get started...\n"); | 
|  |  | 
|  | xen_setup_runstate_info(0); | 
|  |  | 
|  | xen_efi_init(); | 
|  |  | 
|  | /* Start the world */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | i386_start_kernel(); | 
|  | #else | 
|  | cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ | 
|  | x86_64_start_reservations((char *)__pa_symbol(&boot_params)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __ref xen_hvm_init_shared_info(void) | 
|  | { | 
|  | int cpu; | 
|  | struct xen_add_to_physmap xatp; | 
|  | static struct shared_info *shared_info_page = 0; | 
|  |  | 
|  | if (!shared_info_page) | 
|  | shared_info_page = (struct shared_info *) | 
|  | extend_brk(PAGE_SIZE, PAGE_SIZE); | 
|  | xatp.domid = DOMID_SELF; | 
|  | xatp.idx = 0; | 
|  | xatp.space = XENMAPSPACE_shared_info; | 
|  | xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; | 
|  | if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) | 
|  | BUG(); | 
|  |  | 
|  | HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; | 
|  |  | 
|  | /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info | 
|  | * page, we use it in the event channel upcall and in some pvclock | 
|  | * related functions. We don't need the vcpu_info placement | 
|  | * optimizations because we don't use any pv_mmu or pv_irq op on | 
|  | * HVM. | 
|  | * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is | 
|  | * online but xen_hvm_init_shared_info is run at resume time too and | 
|  | * in that case multiple vcpus might be online. */ | 
|  | for_each_online_cpu(cpu) { | 
|  | /* Leave it to be NULL. */ | 
|  | if (cpu >= MAX_VIRT_CPUS) | 
|  | continue; | 
|  | per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XEN_PVHVM | 
|  | static void __init init_hvm_pv_info(void) | 
|  | { | 
|  | int major, minor; | 
|  | uint32_t eax, ebx, ecx, edx, pages, msr, base; | 
|  | u64 pfn; | 
|  |  | 
|  | base = xen_cpuid_base(); | 
|  | cpuid(base + 1, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | major = eax >> 16; | 
|  | minor = eax & 0xffff; | 
|  | printk(KERN_INFO "Xen version %d.%d.\n", major, minor); | 
|  |  | 
|  | cpuid(base + 2, &pages, &msr, &ecx, &edx); | 
|  |  | 
|  | pfn = __pa(hypercall_page); | 
|  | wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); | 
|  |  | 
|  | xen_setup_features(); | 
|  |  | 
|  | pv_info.name = "Xen HVM"; | 
|  |  | 
|  | xen_domain_type = XEN_HVM_DOMAIN; | 
|  | } | 
|  |  | 
|  | static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int cpu = (long)hcpu; | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | xen_vcpu_setup(cpu); | 
|  | if (xen_have_vector_callback) { | 
|  | if (xen_feature(XENFEAT_hvm_safe_pvclock)) | 
|  | xen_setup_timer(cpu); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block xen_hvm_cpu_notifier = { | 
|  | .notifier_call	= xen_hvm_cpu_notify, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | static void xen_hvm_shutdown(void) | 
|  | { | 
|  | native_machine_shutdown(); | 
|  | if (kexec_in_progress) | 
|  | xen_reboot(SHUTDOWN_soft_reset); | 
|  | } | 
|  |  | 
|  | static void xen_hvm_crash_shutdown(struct pt_regs *regs) | 
|  | { | 
|  | native_machine_crash_shutdown(regs); | 
|  | xen_reboot(SHUTDOWN_soft_reset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __init xen_hvm_guest_init(void) | 
|  | { | 
|  | if (xen_pv_domain()) | 
|  | return; | 
|  |  | 
|  | init_hvm_pv_info(); | 
|  |  | 
|  | xen_hvm_init_shared_info(); | 
|  |  | 
|  | xen_panic_handler_init(); | 
|  |  | 
|  | if (xen_feature(XENFEAT_hvm_callback_vector)) | 
|  | xen_have_vector_callback = 1; | 
|  | xen_hvm_smp_init(); | 
|  | register_cpu_notifier(&xen_hvm_cpu_notifier); | 
|  | xen_unplug_emulated_devices(); | 
|  | x86_init.irqs.intr_init = xen_init_IRQ; | 
|  | xen_hvm_init_time_ops(); | 
|  | xen_hvm_init_mmu_ops(); | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | machine_ops.shutdown = xen_hvm_shutdown; | 
|  | machine_ops.crash_shutdown = xen_hvm_crash_shutdown; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool xen_nopv = false; | 
|  | static __init int xen_parse_nopv(char *arg) | 
|  | { | 
|  | xen_nopv = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("xen_nopv", xen_parse_nopv); | 
|  |  | 
|  | static uint32_t __init xen_platform(void) | 
|  | { | 
|  | if (xen_nopv) | 
|  | return 0; | 
|  |  | 
|  | return xen_cpuid_base(); | 
|  | } | 
|  |  | 
|  | bool xen_hvm_need_lapic(void) | 
|  | { | 
|  | if (xen_nopv) | 
|  | return false; | 
|  | if (xen_pv_domain()) | 
|  | return false; | 
|  | if (!xen_hvm_domain()) | 
|  | return false; | 
|  | if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); | 
|  |  | 
|  | static void xen_set_cpu_features(struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (xen_pv_domain()) { | 
|  | clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); | 
|  | set_cpu_cap(c, X86_FEATURE_XENPV); | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct hypervisor_x86 x86_hyper_xen = { | 
|  | .name			= "Xen", | 
|  | .detect			= xen_platform, | 
|  | #ifdef CONFIG_XEN_PVHVM | 
|  | .init_platform		= xen_hvm_guest_init, | 
|  | #endif | 
|  | .x2apic_available	= xen_x2apic_para_available, | 
|  | .set_cpu_features       = xen_set_cpu_features, | 
|  | }; | 
|  | EXPORT_SYMBOL(x86_hyper_xen); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | void xen_arch_register_cpu(int num) | 
|  | { | 
|  | arch_register_cpu(num); | 
|  | } | 
|  | EXPORT_SYMBOL(xen_arch_register_cpu); | 
|  |  | 
|  | void xen_arch_unregister_cpu(int num) | 
|  | { | 
|  | arch_unregister_cpu(num); | 
|  | } | 
|  | EXPORT_SYMBOL(xen_arch_unregister_cpu); | 
|  | #endif |