| /* | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  * | 
 |  *  Pentium III FXSR, SSE support | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  * | 
 |  *  X86-64 port | 
 |  *	Andi Kleen. | 
 |  * | 
 |  *	CPU hotplug support - ashok.raj@intel.com | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the architecture-dependent parts of process handling.. | 
 |  */ | 
 |  | 
 | #include <linux/cpu.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/user.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/module.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/io.h> | 
 | #include <linux/ftrace.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/fpu/internal.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/prctl.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/ia32.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/syscalls.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/switch_to.h> | 
 |  | 
 | asmlinkage extern void ret_from_fork(void); | 
 |  | 
 | __visible DEFINE_PER_CPU(unsigned long, rsp_scratch); | 
 |  | 
 | /* Prints also some state that isn't saved in the pt_regs */ | 
 | void __show_regs(struct pt_regs *regs, int all) | 
 | { | 
 | 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; | 
 | 	unsigned long d0, d1, d2, d3, d6, d7; | 
 | 	unsigned int fsindex, gsindex; | 
 | 	unsigned int ds, cs, es; | 
 |  | 
 | 	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip); | 
 | 	printk_address(regs->ip); | 
 | 	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss, | 
 | 			regs->sp, regs->flags); | 
 | 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", | 
 | 	       regs->ax, regs->bx, regs->cx); | 
 | 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", | 
 | 	       regs->dx, regs->si, regs->di); | 
 | 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", | 
 | 	       regs->bp, regs->r8, regs->r9); | 
 | 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", | 
 | 	       regs->r10, regs->r11, regs->r12); | 
 | 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", | 
 | 	       regs->r13, regs->r14, regs->r15); | 
 |  | 
 | 	asm("movl %%ds,%0" : "=r" (ds)); | 
 | 	asm("movl %%cs,%0" : "=r" (cs)); | 
 | 	asm("movl %%es,%0" : "=r" (es)); | 
 | 	asm("movl %%fs,%0" : "=r" (fsindex)); | 
 | 	asm("movl %%gs,%0" : "=r" (gsindex)); | 
 |  | 
 | 	rdmsrl(MSR_FS_BASE, fs); | 
 | 	rdmsrl(MSR_GS_BASE, gs); | 
 | 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); | 
 |  | 
 | 	if (!all) | 
 | 		return; | 
 |  | 
 | 	cr0 = read_cr0(); | 
 | 	cr2 = read_cr2(); | 
 | 	cr3 = read_cr3(); | 
 | 	cr4 = __read_cr4(); | 
 |  | 
 | 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", | 
 | 	       fs, fsindex, gs, gsindex, shadowgs); | 
 | 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, | 
 | 			es, cr0); | 
 | 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, | 
 | 			cr4); | 
 |  | 
 | 	get_debugreg(d0, 0); | 
 | 	get_debugreg(d1, 1); | 
 | 	get_debugreg(d2, 2); | 
 | 	get_debugreg(d3, 3); | 
 | 	get_debugreg(d6, 6); | 
 | 	get_debugreg(d7, 7); | 
 |  | 
 | 	/* Only print out debug registers if they are in their non-default state. */ | 
 | 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && | 
 | 	    (d6 == DR6_RESERVED) && (d7 == 0x400)) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2); | 
 | 	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7); | 
 |  | 
 | } | 
 |  | 
 | void release_thread(struct task_struct *dead_task) | 
 | { | 
 | 	if (dead_task->mm) { | 
 | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
 | 		if (dead_task->mm->context.ldt) { | 
 | 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n", | 
 | 				dead_task->comm, | 
 | 				dead_task->mm->context.ldt->entries, | 
 | 				dead_task->mm->context.ldt->size); | 
 | 			BUG(); | 
 | 		} | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr) | 
 | { | 
 | 	struct user_desc ud = { | 
 | 		.base_addr = addr, | 
 | 		.limit = 0xfffff, | 
 | 		.seg_32bit = 1, | 
 | 		.limit_in_pages = 1, | 
 | 		.useable = 1, | 
 | 	}; | 
 | 	struct desc_struct *desc = t->thread.tls_array; | 
 | 	desc += tls; | 
 | 	fill_ldt(desc, &ud); | 
 | } | 
 |  | 
 | static inline u32 read_32bit_tls(struct task_struct *t, int tls) | 
 | { | 
 | 	return get_desc_base(&t->thread.tls_array[tls]); | 
 | } | 
 |  | 
 | int copy_thread_tls(unsigned long clone_flags, unsigned long sp, | 
 | 		unsigned long arg, struct task_struct *p, unsigned long tls) | 
 | { | 
 | 	int err; | 
 | 	struct pt_regs *childregs; | 
 | 	struct task_struct *me = current; | 
 |  | 
 | 	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE; | 
 | 	childregs = task_pt_regs(p); | 
 | 	p->thread.sp = (unsigned long) childregs; | 
 | 	set_tsk_thread_flag(p, TIF_FORK); | 
 | 	p->thread.io_bitmap_ptr = NULL; | 
 |  | 
 | 	savesegment(gs, p->thread.gsindex); | 
 | 	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs; | 
 | 	savesegment(fs, p->thread.fsindex); | 
 | 	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs; | 
 | 	savesegment(es, p->thread.es); | 
 | 	savesegment(ds, p->thread.ds); | 
 | 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); | 
 |  | 
 | 	if (unlikely(p->flags & PF_KTHREAD)) { | 
 | 		/* kernel thread */ | 
 | 		memset(childregs, 0, sizeof(struct pt_regs)); | 
 | 		childregs->sp = (unsigned long)childregs; | 
 | 		childregs->ss = __KERNEL_DS; | 
 | 		childregs->bx = sp; /* function */ | 
 | 		childregs->bp = arg; | 
 | 		childregs->orig_ax = -1; | 
 | 		childregs->cs = __KERNEL_CS | get_kernel_rpl(); | 
 | 		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED; | 
 | 		return 0; | 
 | 	} | 
 | 	*childregs = *current_pt_regs(); | 
 |  | 
 | 	childregs->ax = 0; | 
 | 	if (sp) | 
 | 		childregs->sp = sp; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { | 
 | 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr, | 
 | 						  IO_BITMAP_BYTES, GFP_KERNEL); | 
 | 		if (!p->thread.io_bitmap_ptr) { | 
 | 			p->thread.io_bitmap_max = 0; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		set_tsk_thread_flag(p, TIF_IO_BITMAP); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set a new TLS for the child thread? | 
 | 	 */ | 
 | 	if (clone_flags & CLONE_SETTLS) { | 
 | #ifdef CONFIG_IA32_EMULATION | 
 | 		if (is_ia32_task()) | 
 | 			err = do_set_thread_area(p, -1, | 
 | 				(struct user_desc __user *)tls, 0); | 
 | 		else | 
 | #endif | 
 | 			err = do_arch_prctl(p, ARCH_SET_FS, tls); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 | 	err = 0; | 
 | out: | 
 | 	if (err && p->thread.io_bitmap_ptr) { | 
 | 		kfree(p->thread.io_bitmap_ptr); | 
 | 		p->thread.io_bitmap_max = 0; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void | 
 | start_thread_common(struct pt_regs *regs, unsigned long new_ip, | 
 | 		    unsigned long new_sp, | 
 | 		    unsigned int _cs, unsigned int _ss, unsigned int _ds) | 
 | { | 
 | 	loadsegment(fs, 0); | 
 | 	loadsegment(es, _ds); | 
 | 	loadsegment(ds, _ds); | 
 | 	load_gs_index(0); | 
 | 	regs->ip		= new_ip; | 
 | 	regs->sp		= new_sp; | 
 | 	regs->cs		= _cs; | 
 | 	regs->ss		= _ss; | 
 | 	regs->flags		= X86_EFLAGS_IF; | 
 | 	force_iret(); | 
 | } | 
 |  | 
 | void | 
 | start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) | 
 | { | 
 | 	start_thread_common(regs, new_ip, new_sp, | 
 | 			    __USER_CS, __USER_DS, 0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) | 
 | { | 
 | 	start_thread_common(regs, new_ip, new_sp, | 
 | 			    test_thread_flag(TIF_X32) | 
 | 			    ? __USER_CS : __USER32_CS, | 
 | 			    __USER_DS, __USER_DS); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  *	switch_to(x,y) should switch tasks from x to y. | 
 |  * | 
 |  * This could still be optimized: | 
 |  * - fold all the options into a flag word and test it with a single test. | 
 |  * - could test fs/gs bitsliced | 
 |  * | 
 |  * Kprobes not supported here. Set the probe on schedule instead. | 
 |  * Function graph tracer not supported too. | 
 |  */ | 
 | __visible __notrace_funcgraph struct task_struct * | 
 | __switch_to(struct task_struct *prev_p, struct task_struct *next_p) | 
 | { | 
 | 	struct thread_struct *prev = &prev_p->thread; | 
 | 	struct thread_struct *next = &next_p->thread; | 
 | 	struct fpu *prev_fpu = &prev->fpu; | 
 | 	struct fpu *next_fpu = &next->fpu; | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu); | 
 | 	unsigned fsindex, gsindex; | 
 | 	fpu_switch_t fpu_switch; | 
 |  | 
 | 	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu); | 
 |  | 
 | 	/* We must save %fs and %gs before load_TLS() because | 
 | 	 * %fs and %gs may be cleared by load_TLS(). | 
 | 	 * | 
 | 	 * (e.g. xen_load_tls()) | 
 | 	 */ | 
 | 	savesegment(fs, fsindex); | 
 | 	savesegment(gs, gsindex); | 
 |  | 
 | 	/* | 
 | 	 * Load TLS before restoring any segments so that segment loads | 
 | 	 * reference the correct GDT entries. | 
 | 	 */ | 
 | 	load_TLS(next, cpu); | 
 |  | 
 | 	/* | 
 | 	 * Leave lazy mode, flushing any hypercalls made here.  This | 
 | 	 * must be done after loading TLS entries in the GDT but before | 
 | 	 * loading segments that might reference them, and and it must | 
 | 	 * be done before fpu__restore(), so the TS bit is up to | 
 | 	 * date. | 
 | 	 */ | 
 | 	arch_end_context_switch(next_p); | 
 |  | 
 | 	/* Switch DS and ES. | 
 | 	 * | 
 | 	 * Reading them only returns the selectors, but writing them (if | 
 | 	 * nonzero) loads the full descriptor from the GDT or LDT.  The | 
 | 	 * LDT for next is loaded in switch_mm, and the GDT is loaded | 
 | 	 * above. | 
 | 	 * | 
 | 	 * We therefore need to write new values to the segment | 
 | 	 * registers on every context switch unless both the new and old | 
 | 	 * values are zero. | 
 | 	 * | 
 | 	 * Note that we don't need to do anything for CS and SS, as | 
 | 	 * those are saved and restored as part of pt_regs. | 
 | 	 */ | 
 | 	savesegment(es, prev->es); | 
 | 	if (unlikely(next->es | prev->es)) | 
 | 		loadsegment(es, next->es); | 
 |  | 
 | 	savesegment(ds, prev->ds); | 
 | 	if (unlikely(next->ds | prev->ds)) | 
 | 		loadsegment(ds, next->ds); | 
 |  | 
 | 	/* | 
 | 	 * Switch FS and GS. | 
 | 	 * | 
 | 	 * These are even more complicated than DS and ES: they have | 
 | 	 * 64-bit bases are that controlled by arch_prctl.  Those bases | 
 | 	 * only differ from the values in the GDT or LDT if the selector | 
 | 	 * is 0. | 
 | 	 * | 
 | 	 * Loading the segment register resets the hidden base part of | 
 | 	 * the register to 0 or the value from the GDT / LDT.  If the | 
 | 	 * next base address zero, writing 0 to the segment register is | 
 | 	 * much faster than using wrmsr to explicitly zero the base. | 
 | 	 * | 
 | 	 * The thread_struct.fs and thread_struct.gs values are 0 | 
 | 	 * if the fs and gs bases respectively are not overridden | 
 | 	 * from the values implied by fsindex and gsindex.  They | 
 | 	 * are nonzero, and store the nonzero base addresses, if | 
 | 	 * the bases are overridden. | 
 | 	 * | 
 | 	 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should | 
 | 	 * be impossible. | 
 | 	 * | 
 | 	 * Therefore we need to reload the segment registers if either | 
 | 	 * the old or new selector is nonzero, and we need to override | 
 | 	 * the base address if next thread expects it to be overridden. | 
 | 	 * | 
 | 	 * This code is unnecessarily slow in the case where the old and | 
 | 	 * new indexes are zero and the new base is nonzero -- it will | 
 | 	 * unnecessarily write 0 to the selector before writing the new | 
 | 	 * base address. | 
 | 	 * | 
 | 	 * Note: This all depends on arch_prctl being the only way that | 
 | 	 * user code can override the segment base.  Once wrfsbase and | 
 | 	 * wrgsbase are enabled, most of this code will need to change. | 
 | 	 */ | 
 | 	if (unlikely(fsindex | next->fsindex | prev->fs)) { | 
 | 		loadsegment(fs, next->fsindex); | 
 |  | 
 | 		/* | 
 | 		 * If user code wrote a nonzero value to FS, then it also | 
 | 		 * cleared the overridden base address. | 
 | 		 * | 
 | 		 * XXX: if user code wrote 0 to FS and cleared the base | 
 | 		 * address itself, we won't notice and we'll incorrectly | 
 | 		 * restore the prior base address next time we reschdule | 
 | 		 * the process. | 
 | 		 */ | 
 | 		if (fsindex) | 
 | 			prev->fs = 0; | 
 | 	} | 
 | 	if (next->fs) | 
 | 		wrmsrl(MSR_FS_BASE, next->fs); | 
 | 	prev->fsindex = fsindex; | 
 |  | 
 | 	if (unlikely(gsindex | next->gsindex | prev->gs)) { | 
 | 		load_gs_index(next->gsindex); | 
 |  | 
 | 		/* This works (and fails) the same way as fsindex above. */ | 
 | 		if (gsindex) | 
 | 			prev->gs = 0; | 
 | 	} | 
 | 	if (next->gs) | 
 | 		wrmsrl(MSR_KERNEL_GS_BASE, next->gs); | 
 | 	prev->gsindex = gsindex; | 
 |  | 
 | 	switch_fpu_finish(next_fpu, fpu_switch); | 
 |  | 
 | 	/* | 
 | 	 * Switch the PDA and FPU contexts. | 
 | 	 */ | 
 | 	this_cpu_write(current_task, next_p); | 
 |  | 
 | 	/* Reload esp0 and ss1.  This changes current_thread_info(). */ | 
 | 	load_sp0(tss, next); | 
 |  | 
 | 	/* | 
 | 	 * Now maybe reload the debug registers and handle I/O bitmaps | 
 | 	 */ | 
 | 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || | 
 | 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) | 
 | 		__switch_to_xtra(prev_p, next_p, tss); | 
 |  | 
 | 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { | 
 | 		/* | 
 | 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but | 
 | 		 * does not update the cached descriptor.  As a result, if we | 
 | 		 * do SYSRET while SS is NULL, we'll end up in user mode with | 
 | 		 * SS apparently equal to __USER_DS but actually unusable. | 
 | 		 * | 
 | 		 * The straightforward workaround would be to fix it up just | 
 | 		 * before SYSRET, but that would slow down the system call | 
 | 		 * fast paths.  Instead, we ensure that SS is never NULL in | 
 | 		 * system call context.  We do this by replacing NULL SS | 
 | 		 * selectors at every context switch.  SYSCALL sets up a valid | 
 | 		 * SS, so the only way to get NULL is to re-enter the kernel | 
 | 		 * from CPL 3 through an interrupt.  Since that can't happen | 
 | 		 * in the same task as a running syscall, we are guaranteed to | 
 | 		 * context switch between every interrupt vector entry and a | 
 | 		 * subsequent SYSRET. | 
 | 		 * | 
 | 		 * We read SS first because SS reads are much faster than | 
 | 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if | 
 | 		 * it previously had a different non-NULL value. | 
 | 		 */ | 
 | 		unsigned short ss_sel; | 
 | 		savesegment(ss, ss_sel); | 
 | 		if (ss_sel != __KERNEL_DS) | 
 | 			loadsegment(ss, __KERNEL_DS); | 
 | 	} | 
 |  | 
 | 	return prev_p; | 
 | } | 
 |  | 
 | void set_personality_64bit(void) | 
 | { | 
 | 	/* inherit personality from parent */ | 
 |  | 
 | 	/* Make sure to be in 64bit mode */ | 
 | 	clear_thread_flag(TIF_IA32); | 
 | 	clear_thread_flag(TIF_ADDR32); | 
 | 	clear_thread_flag(TIF_X32); | 
 |  | 
 | 	/* Ensure the corresponding mm is not marked. */ | 
 | 	if (current->mm) | 
 | 		current->mm->context.ia32_compat = 0; | 
 |  | 
 | 	/* TBD: overwrites user setup. Should have two bits. | 
 | 	   But 64bit processes have always behaved this way, | 
 | 	   so it's not too bad. The main problem is just that | 
 | 	   32bit childs are affected again. */ | 
 | 	current->personality &= ~READ_IMPLIES_EXEC; | 
 | } | 
 |  | 
 | void set_personality_ia32(bool x32) | 
 | { | 
 | 	/* inherit personality from parent */ | 
 |  | 
 | 	/* Make sure to be in 32bit mode */ | 
 | 	set_thread_flag(TIF_ADDR32); | 
 |  | 
 | 	/* Mark the associated mm as containing 32-bit tasks. */ | 
 | 	if (x32) { | 
 | 		clear_thread_flag(TIF_IA32); | 
 | 		set_thread_flag(TIF_X32); | 
 | 		if (current->mm) | 
 | 			current->mm->context.ia32_compat = TIF_X32; | 
 | 		current->personality &= ~READ_IMPLIES_EXEC; | 
 | 		/* is_compat_task() uses the presence of the x32 | 
 | 		   syscall bit flag to determine compat status */ | 
 | 		current_thread_info()->status &= ~TS_COMPAT; | 
 | 	} else { | 
 | 		set_thread_flag(TIF_IA32); | 
 | 		clear_thread_flag(TIF_X32); | 
 | 		if (current->mm) | 
 | 			current->mm->context.ia32_compat = TIF_IA32; | 
 | 		current->personality |= force_personality32; | 
 | 		/* Prepare the first "return" to user space */ | 
 | 		current_thread_info()->status |= TS_COMPAT; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(set_personality_ia32); | 
 |  | 
 | long do_arch_prctl(struct task_struct *task, int code, unsigned long addr) | 
 | { | 
 | 	int ret = 0; | 
 | 	int doit = task == current; | 
 | 	int cpu; | 
 |  | 
 | 	switch (code) { | 
 | 	case ARCH_SET_GS: | 
 | 		if (addr >= TASK_SIZE_OF(task)) | 
 | 			return -EPERM; | 
 | 		cpu = get_cpu(); | 
 | 		/* handle small bases via the GDT because that's faster to | 
 | 		   switch. */ | 
 | 		if (addr <= 0xffffffff) { | 
 | 			set_32bit_tls(task, GS_TLS, addr); | 
 | 			if (doit) { | 
 | 				load_TLS(&task->thread, cpu); | 
 | 				load_gs_index(GS_TLS_SEL); | 
 | 			} | 
 | 			task->thread.gsindex = GS_TLS_SEL; | 
 | 			task->thread.gs = 0; | 
 | 		} else { | 
 | 			task->thread.gsindex = 0; | 
 | 			task->thread.gs = addr; | 
 | 			if (doit) { | 
 | 				load_gs_index(0); | 
 | 				ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr); | 
 | 			} | 
 | 		} | 
 | 		put_cpu(); | 
 | 		break; | 
 | 	case ARCH_SET_FS: | 
 | 		/* Not strictly needed for fs, but do it for symmetry | 
 | 		   with gs */ | 
 | 		if (addr >= TASK_SIZE_OF(task)) | 
 | 			return -EPERM; | 
 | 		cpu = get_cpu(); | 
 | 		/* handle small bases via the GDT because that's faster to | 
 | 		   switch. */ | 
 | 		if (addr <= 0xffffffff) { | 
 | 			set_32bit_tls(task, FS_TLS, addr); | 
 | 			if (doit) { | 
 | 				load_TLS(&task->thread, cpu); | 
 | 				loadsegment(fs, FS_TLS_SEL); | 
 | 			} | 
 | 			task->thread.fsindex = FS_TLS_SEL; | 
 | 			task->thread.fs = 0; | 
 | 		} else { | 
 | 			task->thread.fsindex = 0; | 
 | 			task->thread.fs = addr; | 
 | 			if (doit) { | 
 | 				/* set the selector to 0 to not confuse | 
 | 				   __switch_to */ | 
 | 				loadsegment(fs, 0); | 
 | 				ret = wrmsrl_safe(MSR_FS_BASE, addr); | 
 | 			} | 
 | 		} | 
 | 		put_cpu(); | 
 | 		break; | 
 | 	case ARCH_GET_FS: { | 
 | 		unsigned long base; | 
 | 		if (task->thread.fsindex == FS_TLS_SEL) | 
 | 			base = read_32bit_tls(task, FS_TLS); | 
 | 		else if (doit) | 
 | 			rdmsrl(MSR_FS_BASE, base); | 
 | 		else | 
 | 			base = task->thread.fs; | 
 | 		ret = put_user(base, (unsigned long __user *)addr); | 
 | 		break; | 
 | 	} | 
 | 	case ARCH_GET_GS: { | 
 | 		unsigned long base; | 
 | 		unsigned gsindex; | 
 | 		if (task->thread.gsindex == GS_TLS_SEL) | 
 | 			base = read_32bit_tls(task, GS_TLS); | 
 | 		else if (doit) { | 
 | 			savesegment(gs, gsindex); | 
 | 			if (gsindex) | 
 | 				rdmsrl(MSR_KERNEL_GS_BASE, base); | 
 | 			else | 
 | 				base = task->thread.gs; | 
 | 		} else | 
 | 			base = task->thread.gs; | 
 | 		ret = put_user(base, (unsigned long __user *)addr); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | long sys_arch_prctl(int code, unsigned long addr) | 
 | { | 
 | 	return do_arch_prctl(current, code, addr); | 
 | } | 
 |  | 
 | unsigned long KSTK_ESP(struct task_struct *task) | 
 | { | 
 | 	return task_pt_regs(task)->sp; | 
 | } |