|  | /* | 
|  | * Copyright (C) 1994 Linus Torvalds | 
|  | * | 
|  | * Pentium III FXSR, SSE support | 
|  | * General FPU state handling cleanups | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | * x86-64 work by Andi Kleen 2002 | 
|  | */ | 
|  |  | 
|  | #ifndef _ASM_X86_FPU_INTERNAL_H | 
|  | #define _ASM_X86_FPU_INTERNAL_H | 
|  |  | 
|  | #include <linux/compat.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/user.h> | 
|  | #include <asm/fpu/api.h> | 
|  | #include <asm/fpu/xstate.h> | 
|  |  | 
|  | /* | 
|  | * High level FPU state handling functions: | 
|  | */ | 
|  | extern void fpu__activate_curr(struct fpu *fpu); | 
|  | extern void fpu__activate_fpstate_read(struct fpu *fpu); | 
|  | extern void fpu__activate_fpstate_write(struct fpu *fpu); | 
|  | extern void fpu__save(struct fpu *fpu); | 
|  | extern void fpu__restore(struct fpu *fpu); | 
|  | extern int  fpu__restore_sig(void __user *buf, int ia32_frame); | 
|  | extern void fpu__drop(struct fpu *fpu); | 
|  | extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); | 
|  | extern void fpu__clear(struct fpu *fpu); | 
|  | extern int  fpu__exception_code(struct fpu *fpu, int trap_nr); | 
|  | extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate); | 
|  |  | 
|  | /* | 
|  | * Boot time FPU initialization functions: | 
|  | */ | 
|  | extern void fpu__init_cpu(void); | 
|  | extern void fpu__init_system_xstate(void); | 
|  | extern void fpu__init_cpu_xstate(void); | 
|  | extern void fpu__init_system(struct cpuinfo_x86 *c); | 
|  | extern void fpu__init_check_bugs(void); | 
|  | extern void fpu__resume_cpu(void); | 
|  |  | 
|  | /* | 
|  | * Debugging facility: | 
|  | */ | 
|  | #ifdef CONFIG_X86_DEBUG_FPU | 
|  | # define WARN_ON_FPU(x) WARN_ON_ONCE(x) | 
|  | #else | 
|  | # define WARN_ON_FPU(x) ({ (void)(x); 0; }) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * FPU related CPU feature flag helper routines: | 
|  | */ | 
|  | static __always_inline __pure bool use_eager_fpu(void) | 
|  | { | 
|  | return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); | 
|  | } | 
|  |  | 
|  | static __always_inline __pure bool use_xsaveopt(void) | 
|  | { | 
|  | return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); | 
|  | } | 
|  |  | 
|  | static __always_inline __pure bool use_xsave(void) | 
|  | { | 
|  | return static_cpu_has_safe(X86_FEATURE_XSAVE); | 
|  | } | 
|  |  | 
|  | static __always_inline __pure bool use_fxsr(void) | 
|  | { | 
|  | return static_cpu_has_safe(X86_FEATURE_FXSR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fpstate handling functions: | 
|  | */ | 
|  |  | 
|  | extern union fpregs_state init_fpstate; | 
|  |  | 
|  | extern void fpstate_init(union fpregs_state *state); | 
|  | #ifdef CONFIG_MATH_EMULATION | 
|  | extern void fpstate_init_soft(struct swregs_state *soft); | 
|  | #else | 
|  | static inline void fpstate_init_soft(struct swregs_state *soft) {} | 
|  | #endif | 
|  | static inline void fpstate_init_fxstate(struct fxregs_state *fx) | 
|  | { | 
|  | fx->cwd = 0x37f; | 
|  | fx->mxcsr = MXCSR_DEFAULT; | 
|  | } | 
|  | extern void fpstate_sanitize_xstate(struct fpu *fpu); | 
|  |  | 
|  | #define user_insn(insn, output, input...)				\ | 
|  | ({									\ | 
|  | int err;							\ | 
|  | asm volatile(ASM_STAC "\n"					\ | 
|  | "1:" #insn "\n\t"					\ | 
|  | "2: " ASM_CLAC "\n"				\ | 
|  | ".section .fixup,\"ax\"\n"				\ | 
|  | "3:  movl $-1,%[err]\n"				\ | 
|  | "    jmp  2b\n"					\ | 
|  | ".previous\n"					\ | 
|  | _ASM_EXTABLE(1b, 3b)				\ | 
|  | : [err] "=r" (err), output				\ | 
|  | : "0"(0), input);					\ | 
|  | err;								\ | 
|  | }) | 
|  |  | 
|  | #define check_insn(insn, output, input...)				\ | 
|  | ({									\ | 
|  | int err;							\ | 
|  | asm volatile("1:" #insn "\n\t"					\ | 
|  | "2:\n"						\ | 
|  | ".section .fixup,\"ax\"\n"				\ | 
|  | "3:  movl $-1,%[err]\n"				\ | 
|  | "    jmp  2b\n"					\ | 
|  | ".previous\n"					\ | 
|  | _ASM_EXTABLE(1b, 3b)				\ | 
|  | : [err] "=r" (err), output				\ | 
|  | : "0"(0), input);					\ | 
|  | err;								\ | 
|  | }) | 
|  |  | 
|  | static inline int copy_fregs_to_user(struct fregs_state __user *fx) | 
|  | { | 
|  | return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx)); | 
|  | } | 
|  |  | 
|  | static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) | 
|  | { | 
|  | if (config_enabled(CONFIG_X86_32)) | 
|  | return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); | 
|  | else if (config_enabled(CONFIG_AS_FXSAVEQ)) | 
|  | return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); | 
|  |  | 
|  | /* See comment in copy_fxregs_to_kernel() below. */ | 
|  | return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); | 
|  | } | 
|  |  | 
|  | static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (config_enabled(CONFIG_X86_32)) { | 
|  | err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  | } else { | 
|  | if (config_enabled(CONFIG_AS_FXSAVEQ)) { | 
|  | err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  | } else { | 
|  | /* See comment in copy_fxregs_to_kernel() below. */ | 
|  | err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); | 
|  | } | 
|  | } | 
|  | /* Copying from a kernel buffer to FPU registers should never fail: */ | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) | 
|  | { | 
|  | if (config_enabled(CONFIG_X86_32)) | 
|  | return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  | else if (config_enabled(CONFIG_AS_FXSAVEQ)) | 
|  | return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  |  | 
|  | /* See comment in copy_fxregs_to_kernel() below. */ | 
|  | return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), | 
|  | "m" (*fx)); | 
|  | } | 
|  |  | 
|  | static inline void copy_kernel_to_fregs(struct fregs_state *fx) | 
|  | { | 
|  | int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  |  | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | static inline int copy_user_to_fregs(struct fregs_state __user *fx) | 
|  | { | 
|  | return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); | 
|  | } | 
|  |  | 
|  | static inline void copy_fxregs_to_kernel(struct fpu *fpu) | 
|  | { | 
|  | if (config_enabled(CONFIG_X86_32)) | 
|  | asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); | 
|  | else if (config_enabled(CONFIG_AS_FXSAVEQ)) | 
|  | asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); | 
|  | else { | 
|  | /* Using "rex64; fxsave %0" is broken because, if the memory | 
|  | * operand uses any extended registers for addressing, a second | 
|  | * REX prefix will be generated (to the assembler, rex64 | 
|  | * followed by semicolon is a separate instruction), and hence | 
|  | * the 64-bitness is lost. | 
|  | * | 
|  | * Using "fxsaveq %0" would be the ideal choice, but is only | 
|  | * supported starting with gas 2.16. | 
|  | * | 
|  | * Using, as a workaround, the properly prefixed form below | 
|  | * isn't accepted by any binutils version so far released, | 
|  | * complaining that the same type of prefix is used twice if | 
|  | * an extended register is needed for addressing (fix submitted | 
|  | * to mainline 2005-11-21). | 
|  | * | 
|  | *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); | 
|  | * | 
|  | * This, however, we can work around by forcing the compiler to | 
|  | * select an addressing mode that doesn't require extended | 
|  | * registers. | 
|  | */ | 
|  | asm volatile( "rex64/fxsave (%[fx])" | 
|  | : "=m" (fpu->state.fxsave) | 
|  | : [fx] "R" (&fpu->state.fxsave)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* These macros all use (%edi)/(%rdi) as the single memory argument. */ | 
|  | #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27" | 
|  | #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37" | 
|  | #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f" | 
|  | #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f" | 
|  | #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f" | 
|  |  | 
|  | #define XSTATE_OP(op, st, lmask, hmask, err)				\ | 
|  | asm volatile("1:" op "\n\t"					\ | 
|  | "xor %[err], %[err]\n"				\ | 
|  | "2:\n\t"						\ | 
|  | ".pushsection .fixup,\"ax\"\n\t"			\ | 
|  | "3: movl $-2,%[err]\n\t"				\ | 
|  | "jmp 2b\n\t"					\ | 
|  | ".popsection\n\t"					\ | 
|  | _ASM_EXTABLE(1b, 3b)				\ | 
|  | : [err] "=r" (err)					\ | 
|  | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
|  | : "memory") | 
|  |  | 
|  | /* | 
|  | * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact | 
|  | * format and supervisor states in addition to modified optimization in | 
|  | * XSAVEOPT. | 
|  | * | 
|  | * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT | 
|  | * supports modified optimization which is not supported by XSAVE. | 
|  | * | 
|  | * We use XSAVE as a fallback. | 
|  | * | 
|  | * The 661 label is defined in the ALTERNATIVE* macros as the address of the | 
|  | * original instruction which gets replaced. We need to use it here as the | 
|  | * address of the instruction where we might get an exception at. | 
|  | */ | 
|  | #define XSTATE_XSAVE(st, lmask, hmask, err)				\ | 
|  | asm volatile(ALTERNATIVE_2(XSAVE,				\ | 
|  | XSAVEOPT, X86_FEATURE_XSAVEOPT,	\ | 
|  | XSAVES,   X86_FEATURE_XSAVES)	\ | 
|  | "\n"						\ | 
|  | "xor %[err], %[err]\n"				\ | 
|  | "3:\n"						\ | 
|  | ".pushsection .fixup,\"ax\"\n"			\ | 
|  | "4: movl $-2, %[err]\n"				\ | 
|  | "jmp 3b\n"						\ | 
|  | ".popsection\n"					\ | 
|  | _ASM_EXTABLE(661b, 4b)				\ | 
|  | : [err] "=r" (err)					\ | 
|  | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
|  | : "memory") | 
|  |  | 
|  | /* | 
|  | * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact | 
|  | * XSAVE area format. | 
|  | */ | 
|  | #define XSTATE_XRESTORE(st, lmask, hmask, err)				\ | 
|  | asm volatile(ALTERNATIVE(XRSTOR,				\ | 
|  | XRSTORS, X86_FEATURE_XSAVES)		\ | 
|  | "\n"						\ | 
|  | "xor %[err], %[err]\n"				\ | 
|  | "3:\n"						\ | 
|  | ".pushsection .fixup,\"ax\"\n"			\ | 
|  | "4: movl $-2, %[err]\n"				\ | 
|  | "jmp 3b\n"						\ | 
|  | ".popsection\n"					\ | 
|  | _ASM_EXTABLE(661b, 4b)				\ | 
|  | : [err] "=r" (err)					\ | 
|  | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\ | 
|  | : "memory") | 
|  |  | 
|  | /* | 
|  | * This function is called only during boot time when x86 caps are not set | 
|  | * up and alternative can not be used yet. | 
|  | */ | 
|  | static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate) | 
|  | { | 
|  | u64 mask = -1; | 
|  | u32 lmask = mask; | 
|  | u32 hmask = mask >> 32; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(system_state != SYSTEM_BOOTING); | 
|  |  | 
|  | if (static_cpu_has_safe(X86_FEATURE_XSAVES)) | 
|  | XSTATE_OP(XSAVES, xstate, lmask, hmask, err); | 
|  | else | 
|  | XSTATE_OP(XSAVE, xstate, lmask, hmask, err); | 
|  |  | 
|  | /* We should never fault when copying to a kernel buffer: */ | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called only during boot time when x86 caps are not set | 
|  | * up and alternative can not be used yet. | 
|  | */ | 
|  | static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) | 
|  | { | 
|  | u64 mask = -1; | 
|  | u32 lmask = mask; | 
|  | u32 hmask = mask >> 32; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(system_state != SYSTEM_BOOTING); | 
|  |  | 
|  | if (static_cpu_has_safe(X86_FEATURE_XSAVES)) | 
|  | XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); | 
|  | else | 
|  | XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); | 
|  |  | 
|  | /* We should never fault when copying from a kernel buffer: */ | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save processor xstate to xsave area. | 
|  | */ | 
|  | static inline void copy_xregs_to_kernel(struct xregs_state *xstate) | 
|  | { | 
|  | u64 mask = -1; | 
|  | u32 lmask = mask; | 
|  | u32 hmask = mask >> 32; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(!alternatives_patched); | 
|  |  | 
|  | XSTATE_XSAVE(xstate, lmask, hmask, err); | 
|  |  | 
|  | /* We should never fault when copying to a kernel buffer: */ | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore processor xstate from xsave area. | 
|  | */ | 
|  | static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) | 
|  | { | 
|  | u32 lmask = mask; | 
|  | u32 hmask = mask >> 32; | 
|  | int err; | 
|  |  | 
|  | XSTATE_XRESTORE(xstate, lmask, hmask, err); | 
|  |  | 
|  | /* We should never fault when copying from a kernel buffer: */ | 
|  | WARN_ON_FPU(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save xstate to user space xsave area. | 
|  | * | 
|  | * We don't use modified optimization because xrstor/xrstors might track | 
|  | * a different application. | 
|  | * | 
|  | * We don't use compacted format xsave area for | 
|  | * backward compatibility for old applications which don't understand | 
|  | * compacted format of xsave area. | 
|  | */ | 
|  | static inline int copy_xregs_to_user(struct xregs_state __user *buf) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Clear the xsave header first, so that reserved fields are | 
|  | * initialized to zero. | 
|  | */ | 
|  | err = __clear_user(&buf->header, sizeof(buf->header)); | 
|  | if (unlikely(err)) | 
|  | return -EFAULT; | 
|  |  | 
|  | stac(); | 
|  | XSTATE_OP(XSAVE, buf, -1, -1, err); | 
|  | clac(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore xstate from user space xsave area. | 
|  | */ | 
|  | static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) | 
|  | { | 
|  | struct xregs_state *xstate = ((__force struct xregs_state *)buf); | 
|  | u32 lmask = mask; | 
|  | u32 hmask = mask >> 32; | 
|  | int err; | 
|  |  | 
|  | stac(); | 
|  | XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); | 
|  | clac(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These must be called with preempt disabled. Returns | 
|  | * 'true' if the FPU state is still intact and we can | 
|  | * keep registers active. | 
|  | * | 
|  | * The legacy FNSAVE instruction cleared all FPU state | 
|  | * unconditionally, so registers are essentially destroyed. | 
|  | * Modern FPU state can be kept in registers, if there are | 
|  | * no pending FP exceptions. | 
|  | */ | 
|  | static inline int copy_fpregs_to_fpstate(struct fpu *fpu) | 
|  | { | 
|  | if (likely(use_xsave())) { | 
|  | copy_xregs_to_kernel(&fpu->state.xsave); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (likely(use_fxsr())) { | 
|  | copy_fxregs_to_kernel(fpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Legacy FPU register saving, FNSAVE always clears FPU registers, | 
|  | * so we have to mark them inactive: | 
|  | */ | 
|  | asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate) | 
|  | { | 
|  | if (use_xsave()) { | 
|  | copy_kernel_to_xregs(&fpstate->xsave, -1); | 
|  | } else { | 
|  | if (use_fxsr()) | 
|  | copy_kernel_to_fxregs(&fpstate->fxsave); | 
|  | else | 
|  | copy_kernel_to_fregs(&fpstate->fsave); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) | 
|  | { | 
|  | /* | 
|  | * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is | 
|  | * pending. Clear the x87 state here by setting it to fixed values. | 
|  | * "m" is a random variable that should be in L1. | 
|  | */ | 
|  | if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { | 
|  | asm volatile( | 
|  | "fnclex\n\t" | 
|  | "emms\n\t" | 
|  | "fildl %P[addr]"	/* set F?P to defined value */ | 
|  | : : [addr] "m" (fpstate)); | 
|  | } | 
|  |  | 
|  | __copy_kernel_to_fpregs(fpstate); | 
|  | } | 
|  |  | 
|  | extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); | 
|  |  | 
|  | /* | 
|  | * FPU context switch related helper methods: | 
|  | */ | 
|  |  | 
|  | DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); | 
|  |  | 
|  | /* | 
|  | * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, | 
|  | * on this CPU. | 
|  | * | 
|  | * This will disable any lazy FPU state restore of the current FPU state, | 
|  | * but if the current thread owns the FPU, it will still be saved by. | 
|  | */ | 
|  | static inline void __cpu_disable_lazy_restore(unsigned int cpu) | 
|  | { | 
|  | per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; | 
|  | } | 
|  |  | 
|  | static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu) | 
|  | { | 
|  | return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation' | 
|  | * idiom, which is then paired with the sw-flag (fpregs_active) later on: | 
|  | */ | 
|  |  | 
|  | static inline void __fpregs_activate_hw(void) | 
|  | { | 
|  | if (!use_eager_fpu()) | 
|  | clts(); | 
|  | } | 
|  |  | 
|  | static inline void __fpregs_deactivate_hw(void) | 
|  | { | 
|  | if (!use_eager_fpu()) | 
|  | stts(); | 
|  | } | 
|  |  | 
|  | /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */ | 
|  | static inline void __fpregs_deactivate(struct fpu *fpu) | 
|  | { | 
|  | WARN_ON_FPU(!fpu->fpregs_active); | 
|  |  | 
|  | fpu->fpregs_active = 0; | 
|  | this_cpu_write(fpu_fpregs_owner_ctx, NULL); | 
|  | } | 
|  |  | 
|  | /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */ | 
|  | static inline void __fpregs_activate(struct fpu *fpu) | 
|  | { | 
|  | WARN_ON_FPU(fpu->fpregs_active); | 
|  |  | 
|  | fpu->fpregs_active = 1; | 
|  | this_cpu_write(fpu_fpregs_owner_ctx, fpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The question "does this thread have fpu access?" | 
|  | * is slightly racy, since preemption could come in | 
|  | * and revoke it immediately after the test. | 
|  | * | 
|  | * However, even in that very unlikely scenario, | 
|  | * we can just assume we have FPU access - typically | 
|  | * to save the FP state - we'll just take a #NM | 
|  | * fault and get the FPU access back. | 
|  | */ | 
|  | static inline int fpregs_active(void) | 
|  | { | 
|  | return current->thread.fpu.fpregs_active; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encapsulate the CR0.TS handling together with the | 
|  | * software flag. | 
|  | * | 
|  | * These generally need preemption protection to work, | 
|  | * do try to avoid using these on their own. | 
|  | */ | 
|  | static inline void fpregs_activate(struct fpu *fpu) | 
|  | { | 
|  | __fpregs_activate_hw(); | 
|  | __fpregs_activate(fpu); | 
|  | } | 
|  |  | 
|  | static inline void fpregs_deactivate(struct fpu *fpu) | 
|  | { | 
|  | __fpregs_deactivate(fpu); | 
|  | __fpregs_deactivate_hw(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FPU state switching for scheduling. | 
|  | * | 
|  | * This is a two-stage process: | 
|  | * | 
|  | *  - switch_fpu_prepare() saves the old state and | 
|  | *    sets the new state of the CR0.TS bit. This is | 
|  | *    done within the context of the old process. | 
|  | * | 
|  | *  - switch_fpu_finish() restores the new state as | 
|  | *    necessary. | 
|  | */ | 
|  | typedef struct { int preload; } fpu_switch_t; | 
|  |  | 
|  | static inline fpu_switch_t | 
|  | switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu) | 
|  | { | 
|  | fpu_switch_t fpu; | 
|  |  | 
|  | /* | 
|  | * If the task has used the math, pre-load the FPU on xsave processors | 
|  | * or if the past 5 consecutive context-switches used math. | 
|  | */ | 
|  | fpu.preload = new_fpu->fpstate_active && | 
|  | (use_eager_fpu() || new_fpu->counter > 5); | 
|  |  | 
|  | if (old_fpu->fpregs_active) { | 
|  | if (!copy_fpregs_to_fpstate(old_fpu)) | 
|  | old_fpu->last_cpu = -1; | 
|  | else | 
|  | old_fpu->last_cpu = cpu; | 
|  |  | 
|  | /* But leave fpu_fpregs_owner_ctx! */ | 
|  | old_fpu->fpregs_active = 0; | 
|  |  | 
|  | /* Don't change CR0.TS if we just switch! */ | 
|  | if (fpu.preload) { | 
|  | new_fpu->counter++; | 
|  | __fpregs_activate(new_fpu); | 
|  | prefetch(&new_fpu->state); | 
|  | } else { | 
|  | __fpregs_deactivate_hw(); | 
|  | } | 
|  | } else { | 
|  | old_fpu->counter = 0; | 
|  | old_fpu->last_cpu = -1; | 
|  | if (fpu.preload) { | 
|  | new_fpu->counter++; | 
|  | if (fpu_want_lazy_restore(new_fpu, cpu)) | 
|  | fpu.preload = 0; | 
|  | else | 
|  | prefetch(&new_fpu->state); | 
|  | fpregs_activate(new_fpu); | 
|  | } | 
|  | } | 
|  | return fpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Misc helper functions: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * By the time this gets called, we've already cleared CR0.TS and | 
|  | * given the process the FPU if we are going to preload the FPU | 
|  | * state - all we need to do is to conditionally restore the register | 
|  | * state itself. | 
|  | */ | 
|  | static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch) | 
|  | { | 
|  | if (fpu_switch.preload) | 
|  | copy_kernel_to_fpregs(&new_fpu->state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Needs to be preemption-safe. | 
|  | * | 
|  | * NOTE! user_fpu_begin() must be used only immediately before restoring | 
|  | * the save state. It does not do any saving/restoring on its own. In | 
|  | * lazy FPU mode, it is just an optimization to avoid a #NM exception, | 
|  | * the task can lose the FPU right after preempt_enable(). | 
|  | */ | 
|  | static inline void user_fpu_begin(void) | 
|  | { | 
|  | struct fpu *fpu = ¤t->thread.fpu; | 
|  |  | 
|  | preempt_disable(); | 
|  | if (!fpregs_active()) | 
|  | fpregs_activate(fpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MXCSR and XCR definitions: | 
|  | */ | 
|  |  | 
|  | extern unsigned int mxcsr_feature_mask; | 
|  |  | 
|  | #define XCR_XFEATURE_ENABLED_MASK	0x00000000 | 
|  |  | 
|  | static inline u64 xgetbv(u32 index) | 
|  | { | 
|  | u32 eax, edx; | 
|  |  | 
|  | asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ | 
|  | : "=a" (eax), "=d" (edx) | 
|  | : "c" (index)); | 
|  | return eax + ((u64)edx << 32); | 
|  | } | 
|  |  | 
|  | static inline void xsetbv(u32 index, u64 value) | 
|  | { | 
|  | u32 eax = value; | 
|  | u32 edx = value >> 32; | 
|  |  | 
|  | asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ | 
|  | : : "a" (eax), "d" (edx), "c" (index)); | 
|  | } | 
|  |  | 
|  | #endif /* _ASM_X86_FPU_INTERNAL_H */ |