|  | /* bpf_jit_comp.c: BPF JIT compiler | 
|  | * | 
|  | * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation | 
|  | * | 
|  | * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com) | 
|  | * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  | #include <linux/moduleloader.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | #include "bpf_jit.h" | 
|  |  | 
|  | int bpf_jit_enable __read_mostly; | 
|  |  | 
|  | static inline void bpf_flush_icache(void *start, void *end) | 
|  | { | 
|  | smp_wmb(); | 
|  | flush_icache_range((unsigned long)start, (unsigned long)end); | 
|  | } | 
|  |  | 
|  | static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image, | 
|  | struct codegen_context *ctx) | 
|  | { | 
|  | int i; | 
|  | const struct sock_filter *filter = fp->insns; | 
|  |  | 
|  | if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { | 
|  | /* Make stackframe */ | 
|  | if (ctx->seen & SEEN_DATAREF) { | 
|  | /* If we call any helpers (for loads), save LR */ | 
|  | EMIT(PPC_INST_MFLR | __PPC_RT(R0)); | 
|  | PPC_BPF_STL(0, 1, PPC_LR_STKOFF); | 
|  |  | 
|  | /* Back up non-volatile regs. */ | 
|  | PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D))); | 
|  | PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL))); | 
|  | } | 
|  | if (ctx->seen & SEEN_MEM) { | 
|  | /* | 
|  | * Conditionally save regs r15-r31 as some will be used | 
|  | * for M[] data. | 
|  | */ | 
|  | for (i = r_M; i < (r_M+16); i++) { | 
|  | if (ctx->seen & (1 << (i-r_M))) | 
|  | PPC_BPF_STL(i, 1, -(REG_SZ*(32-i))); | 
|  | } | 
|  | } | 
|  | PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME); | 
|  | } | 
|  |  | 
|  | if (ctx->seen & SEEN_DATAREF) { | 
|  | /* | 
|  | * If this filter needs to access skb data, | 
|  | * prepare r_D and r_HL: | 
|  | *  r_HL = skb->len - skb->data_len | 
|  | *  r_D	 = skb->data | 
|  | */ | 
|  | PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, | 
|  | data_len)); | 
|  | PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len)); | 
|  | PPC_SUB(r_HL, r_HL, r_scratch1); | 
|  | PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data)); | 
|  | } | 
|  |  | 
|  | if (ctx->seen & SEEN_XREG) { | 
|  | /* | 
|  | * TODO: Could also detect whether first instr. sets X and | 
|  | * avoid this (as below, with A). | 
|  | */ | 
|  | PPC_LI(r_X, 0); | 
|  | } | 
|  |  | 
|  | /* make sure we dont leak kernel information to user */ | 
|  | if (bpf_needs_clear_a(&filter[0])) | 
|  | PPC_LI(r_A, 0); | 
|  | } | 
|  |  | 
|  | static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { | 
|  | PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); | 
|  | if (ctx->seen & SEEN_DATAREF) { | 
|  | PPC_BPF_LL(0, 1, PPC_LR_STKOFF); | 
|  | PPC_MTLR(0); | 
|  | PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D))); | 
|  | PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL))); | 
|  | } | 
|  | if (ctx->seen & SEEN_MEM) { | 
|  | /* Restore any saved non-vol registers */ | 
|  | for (i = r_M; i < (r_M+16); i++) { | 
|  | if (ctx->seen & (1 << (i-r_M))) | 
|  | PPC_BPF_LL(i, 1, -(REG_SZ*(32-i))); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* The RETs have left a return value in R3. */ | 
|  |  | 
|  | PPC_BLR(); | 
|  | } | 
|  |  | 
|  | #define CHOOSE_LOAD_FUNC(K, func) \ | 
|  | ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) | 
|  |  | 
|  | /* Assemble the body code between the prologue & epilogue. */ | 
|  | static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, | 
|  | struct codegen_context *ctx, | 
|  | unsigned int *addrs) | 
|  | { | 
|  | const struct sock_filter *filter = fp->insns; | 
|  | int flen = fp->len; | 
|  | u8 *func; | 
|  | unsigned int true_cond; | 
|  | int i; | 
|  |  | 
|  | /* Start of epilogue code */ | 
|  | unsigned int exit_addr = addrs[flen]; | 
|  |  | 
|  | for (i = 0; i < flen; i++) { | 
|  | unsigned int K = filter[i].k; | 
|  | u16 code = bpf_anc_helper(&filter[i]); | 
|  |  | 
|  | /* | 
|  | * addrs[] maps a BPF bytecode address into a real offset from | 
|  | * the start of the body code. | 
|  | */ | 
|  | addrs[i] = ctx->idx * 4; | 
|  |  | 
|  | switch (code) { | 
|  | /*** ALU ops ***/ | 
|  | case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_ADD(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ | 
|  | if (!K) | 
|  | break; | 
|  | PPC_ADDI(r_A, r_A, IMM_L(K)); | 
|  | if (K >= 32768) | 
|  | PPC_ADDIS(r_A, r_A, IMM_HA(K)); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_SUB(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ | 
|  | if (!K) | 
|  | break; | 
|  | PPC_ADDI(r_A, r_A, IMM_L(-K)); | 
|  | if (K >= 32768) | 
|  | PPC_ADDIS(r_A, r_A, IMM_HA(-K)); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_MUL(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ | 
|  | if (K < 32768) | 
|  | PPC_MULI(r_A, r_A, K); | 
|  | else { | 
|  | PPC_LI32(r_scratch1, K); | 
|  | PPC_MUL(r_A, r_A, r_scratch1); | 
|  | } | 
|  | break; | 
|  | case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */ | 
|  | case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_CMPWI(r_X, 0); | 
|  | if (ctx->pc_ret0 != -1) { | 
|  | PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); | 
|  | } else { | 
|  | PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); | 
|  | PPC_LI(r_ret, 0); | 
|  | PPC_JMP(exit_addr); | 
|  | } | 
|  | if (code == (BPF_ALU | BPF_MOD | BPF_X)) { | 
|  | PPC_DIVWU(r_scratch1, r_A, r_X); | 
|  | PPC_MUL(r_scratch1, r_X, r_scratch1); | 
|  | PPC_SUB(r_A, r_A, r_scratch1); | 
|  | } else { | 
|  | PPC_DIVWU(r_A, r_A, r_X); | 
|  | } | 
|  | break; | 
|  | case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */ | 
|  | PPC_LI32(r_scratch2, K); | 
|  | PPC_DIVWU(r_scratch1, r_A, r_scratch2); | 
|  | PPC_MUL(r_scratch1, r_scratch2, r_scratch1); | 
|  | PPC_SUB(r_A, r_A, r_scratch1); | 
|  | break; | 
|  | case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */ | 
|  | if (K == 1) | 
|  | break; | 
|  | PPC_LI32(r_scratch1, K); | 
|  | PPC_DIVWU(r_A, r_A, r_scratch1); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_X: | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_AND(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_K: | 
|  | if (!IMM_H(K)) | 
|  | PPC_ANDI(r_A, r_A, K); | 
|  | else { | 
|  | PPC_LI32(r_scratch1, K); | 
|  | PPC_AND(r_A, r_A, r_scratch1); | 
|  | } | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_X: | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_OR(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_K: | 
|  | if (IMM_L(K)) | 
|  | PPC_ORI(r_A, r_A, IMM_L(K)); | 
|  | if (K >= 65536) | 
|  | PPC_ORIS(r_A, r_A, IMM_H(K)); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_ALU_XOR_X: | 
|  | case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_XOR(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ | 
|  | if (IMM_L(K)) | 
|  | PPC_XORI(r_A, r_A, IMM_L(K)); | 
|  | if (K >= 65536) | 
|  | PPC_XORIS(r_A, r_A, IMM_H(K)); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_SLW(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_K: | 
|  | if (K == 0) | 
|  | break; | 
|  | else | 
|  | PPC_SLWI(r_A, r_A, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_SRW(r_A, r_A, r_X); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */ | 
|  | if (K == 0) | 
|  | break; | 
|  | else | 
|  | PPC_SRWI(r_A, r_A, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_NEG: | 
|  | PPC_NEG(r_A, r_A); | 
|  | break; | 
|  | case BPF_RET | BPF_K: | 
|  | PPC_LI32(r_ret, K); | 
|  | if (!K) { | 
|  | if (ctx->pc_ret0 == -1) | 
|  | ctx->pc_ret0 = i; | 
|  | } | 
|  | /* | 
|  | * If this isn't the very last instruction, branch to | 
|  | * the epilogue if we've stuff to clean up.  Otherwise, | 
|  | * if there's nothing to tidy, just return.  If we /are/ | 
|  | * the last instruction, we're about to fall through to | 
|  | * the epilogue to return. | 
|  | */ | 
|  | if (i != flen - 1) { | 
|  | /* | 
|  | * Note: 'seen' is properly valid only on pass | 
|  | * #2.	Both parts of this conditional are the | 
|  | * same instruction size though, meaning the | 
|  | * first pass will still correctly determine the | 
|  | * code size/addresses. | 
|  | */ | 
|  | if (ctx->seen) | 
|  | PPC_JMP(exit_addr); | 
|  | else | 
|  | PPC_BLR(); | 
|  | } | 
|  | break; | 
|  | case BPF_RET | BPF_A: | 
|  | PPC_MR(r_ret, r_A); | 
|  | if (i != flen - 1) { | 
|  | if (ctx->seen) | 
|  | PPC_JMP(exit_addr); | 
|  | else | 
|  | PPC_BLR(); | 
|  | } | 
|  | break; | 
|  | case BPF_MISC | BPF_TAX: /* X = A */ | 
|  | PPC_MR(r_X, r_A); | 
|  | break; | 
|  | case BPF_MISC | BPF_TXA: /* A = X */ | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_MR(r_A, r_X); | 
|  | break; | 
|  |  | 
|  | /*** Constant loads/M[] access ***/ | 
|  | case BPF_LD | BPF_IMM: /* A = K */ | 
|  | PPC_LI32(r_A, K); | 
|  | break; | 
|  | case BPF_LDX | BPF_IMM: /* X = K */ | 
|  | PPC_LI32(r_X, K); | 
|  | break; | 
|  | case BPF_LD | BPF_MEM: /* A = mem[K] */ | 
|  | PPC_MR(r_A, r_M + (K & 0xf)); | 
|  | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); | 
|  | break; | 
|  | case BPF_LDX | BPF_MEM: /* X = mem[K] */ | 
|  | PPC_MR(r_X, r_M + (K & 0xf)); | 
|  | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); | 
|  | break; | 
|  | case BPF_ST: /* mem[K] = A */ | 
|  | PPC_MR(r_M + (K & 0xf), r_A); | 
|  | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); | 
|  | break; | 
|  | case BPF_STX: /* mem[K] = X */ | 
|  | PPC_MR(r_M + (K & 0xf), r_X); | 
|  | ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); | 
|  | break; | 
|  | case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); | 
|  | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); | 
|  | break; | 
|  | case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */ | 
|  | PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); | 
|  | break; | 
|  |  | 
|  | /*** Ancillary info loads ***/ | 
|  | case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, | 
|  | protocol) != 2); | 
|  | PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff, | 
|  | protocol)); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_IFINDEX: | 
|  | case BPF_ANC | SKF_AD_HATYPE: | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, | 
|  | ifindex) != 4); | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, | 
|  | type) != 2); | 
|  | PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, | 
|  | dev)); | 
|  | PPC_CMPDI(r_scratch1, 0); | 
|  | if (ctx->pc_ret0 != -1) { | 
|  | PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); | 
|  | } else { | 
|  | /* Exit, returning 0; first pass hits here. */ | 
|  | PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12); | 
|  | PPC_LI(r_ret, 0); | 
|  | PPC_JMP(exit_addr); | 
|  | } | 
|  | if (code == (BPF_ANC | SKF_AD_IFINDEX)) { | 
|  | PPC_LWZ_OFFS(r_A, r_scratch1, | 
|  | offsetof(struct net_device, ifindex)); | 
|  | } else { | 
|  | PPC_LHZ_OFFS(r_A, r_scratch1, | 
|  | offsetof(struct net_device, type)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_MARK: | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); | 
|  | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, | 
|  | mark)); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_RXHASH: | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); | 
|  | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, | 
|  | hash)); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG: | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); | 
|  | BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000); | 
|  |  | 
|  | PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, | 
|  | vlan_tci)); | 
|  | if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) { | 
|  | PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT); | 
|  | } else { | 
|  | PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT); | 
|  | PPC_SRWI(r_A, r_A, 12); | 
|  | } | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_QUEUE: | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, | 
|  | queue_mapping) != 2); | 
|  | PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, | 
|  | queue_mapping)); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PKTTYPE: | 
|  | PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET()); | 
|  | PPC_ANDI(r_A, r_A, PKT_TYPE_MAX); | 
|  | PPC_SRWI(r_A, r_A, 5); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_CPU: | 
|  | PPC_BPF_LOAD_CPU(r_A); | 
|  | break; | 
|  | /*** Absolute loads from packet header/data ***/ | 
|  | case BPF_LD | BPF_W | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, sk_load_word); | 
|  | goto common_load; | 
|  | case BPF_LD | BPF_H | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, sk_load_half); | 
|  | goto common_load; | 
|  | case BPF_LD | BPF_B | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, sk_load_byte); | 
|  | common_load: | 
|  | /* Load from [K]. */ | 
|  | ctx->seen |= SEEN_DATAREF; | 
|  | PPC_FUNC_ADDR(r_scratch1, func); | 
|  | PPC_MTLR(r_scratch1); | 
|  | PPC_LI32(r_addr, K); | 
|  | PPC_BLRL(); | 
|  | /* | 
|  | * Helper returns 'lt' condition on error, and an | 
|  | * appropriate return value in r3 | 
|  | */ | 
|  | PPC_BCC(COND_LT, exit_addr); | 
|  | break; | 
|  |  | 
|  | /*** Indirect loads from packet header/data ***/ | 
|  | case BPF_LD | BPF_W | BPF_IND: | 
|  | func = sk_load_word; | 
|  | goto common_load_ind; | 
|  | case BPF_LD | BPF_H | BPF_IND: | 
|  | func = sk_load_half; | 
|  | goto common_load_ind; | 
|  | case BPF_LD | BPF_B | BPF_IND: | 
|  | func = sk_load_byte; | 
|  | common_load_ind: | 
|  | /* | 
|  | * Load from [X + K].  Negative offsets are tested for | 
|  | * in the helper functions. | 
|  | */ | 
|  | ctx->seen |= SEEN_DATAREF | SEEN_XREG; | 
|  | PPC_FUNC_ADDR(r_scratch1, func); | 
|  | PPC_MTLR(r_scratch1); | 
|  | PPC_ADDI(r_addr, r_X, IMM_L(K)); | 
|  | if (K >= 32768) | 
|  | PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); | 
|  | PPC_BLRL(); | 
|  | /* If error, cr0.LT set */ | 
|  | PPC_BCC(COND_LT, exit_addr); | 
|  | break; | 
|  |  | 
|  | case BPF_LDX | BPF_B | BPF_MSH: | 
|  | func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); | 
|  | goto common_load; | 
|  | break; | 
|  |  | 
|  | /*** Jump and branches ***/ | 
|  | case BPF_JMP | BPF_JA: | 
|  | if (K != 0) | 
|  | PPC_JMP(addrs[i + 1 + K]); | 
|  | break; | 
|  |  | 
|  | case BPF_JMP | BPF_JGT | BPF_K: | 
|  | case BPF_JMP | BPF_JGT | BPF_X: | 
|  | true_cond = COND_GT; | 
|  | goto cond_branch; | 
|  | case BPF_JMP | BPF_JGE | BPF_K: | 
|  | case BPF_JMP | BPF_JGE | BPF_X: | 
|  | true_cond = COND_GE; | 
|  | goto cond_branch; | 
|  | case BPF_JMP | BPF_JEQ | BPF_K: | 
|  | case BPF_JMP | BPF_JEQ | BPF_X: | 
|  | true_cond = COND_EQ; | 
|  | goto cond_branch; | 
|  | case BPF_JMP | BPF_JSET | BPF_K: | 
|  | case BPF_JMP | BPF_JSET | BPF_X: | 
|  | true_cond = COND_NE; | 
|  | /* Fall through */ | 
|  | cond_branch: | 
|  | /* same targets, can avoid doing the test :) */ | 
|  | if (filter[i].jt == filter[i].jf) { | 
|  | if (filter[i].jt > 0) | 
|  | PPC_JMP(addrs[i + 1 + filter[i].jt]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (code) { | 
|  | case BPF_JMP | BPF_JGT | BPF_X: | 
|  | case BPF_JMP | BPF_JGE | BPF_X: | 
|  | case BPF_JMP | BPF_JEQ | BPF_X: | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_CMPLW(r_A, r_X); | 
|  | break; | 
|  | case BPF_JMP | BPF_JSET | BPF_X: | 
|  | ctx->seen |= SEEN_XREG; | 
|  | PPC_AND_DOT(r_scratch1, r_A, r_X); | 
|  | break; | 
|  | case BPF_JMP | BPF_JEQ | BPF_K: | 
|  | case BPF_JMP | BPF_JGT | BPF_K: | 
|  | case BPF_JMP | BPF_JGE | BPF_K: | 
|  | if (K < 32768) | 
|  | PPC_CMPLWI(r_A, K); | 
|  | else { | 
|  | PPC_LI32(r_scratch1, K); | 
|  | PPC_CMPLW(r_A, r_scratch1); | 
|  | } | 
|  | break; | 
|  | case BPF_JMP | BPF_JSET | BPF_K: | 
|  | if (K < 32768) | 
|  | /* PPC_ANDI is /only/ dot-form */ | 
|  | PPC_ANDI(r_scratch1, r_A, K); | 
|  | else { | 
|  | PPC_LI32(r_scratch1, K); | 
|  | PPC_AND_DOT(r_scratch1, r_A, | 
|  | r_scratch1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Sometimes branches are constructed "backward", with | 
|  | * the false path being the branch and true path being | 
|  | * a fallthrough to the next instruction. | 
|  | */ | 
|  | if (filter[i].jt == 0) | 
|  | /* Swap the sense of the branch */ | 
|  | PPC_BCC(true_cond ^ COND_CMP_TRUE, | 
|  | addrs[i + 1 + filter[i].jf]); | 
|  | else { | 
|  | PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); | 
|  | if (filter[i].jf != 0) | 
|  | PPC_JMP(addrs[i + 1 + filter[i].jf]); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* The filter contains something cruel & unusual. | 
|  | * We don't handle it, but also there shouldn't be | 
|  | * anything missing from our list. | 
|  | */ | 
|  | if (printk_ratelimit()) | 
|  | pr_err("BPF filter opcode %04x (@%d) unsupported\n", | 
|  | filter[i].code, i); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | } | 
|  | /* Set end-of-body-code address for exit. */ | 
|  | addrs[i] = ctx->idx * 4; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bpf_jit_compile(struct bpf_prog *fp) | 
|  | { | 
|  | unsigned int proglen; | 
|  | unsigned int alloclen; | 
|  | u32 *image = NULL; | 
|  | u32 *code_base; | 
|  | unsigned int *addrs; | 
|  | struct codegen_context cgctx; | 
|  | int pass; | 
|  | int flen = fp->len; | 
|  |  | 
|  | if (!bpf_jit_enable) | 
|  | return; | 
|  |  | 
|  | addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL); | 
|  | if (addrs == NULL) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * There are multiple assembly passes as the generated code will change | 
|  | * size as it settles down, figuring out the max branch offsets/exit | 
|  | * paths required. | 
|  | * | 
|  | * The range of standard conditional branches is +/- 32Kbytes.	Since | 
|  | * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to | 
|  | * finish with 8 bytes/instruction.  Not feasible, so long jumps are | 
|  | * used, distinct from short branches. | 
|  | * | 
|  | * Current: | 
|  | * | 
|  | * For now, both branch types assemble to 2 words (short branches padded | 
|  | * with a NOP); this is less efficient, but assembly will always complete | 
|  | * after exactly 3 passes: | 
|  | * | 
|  | * First pass: No code buffer; Program is "faux-generated" -- no code | 
|  | * emitted but maximum size of output determined (and addrs[] filled | 
|  | * in).	 Also, we note whether we use M[], whether we use skb data, etc. | 
|  | * All generation choices assumed to be 'worst-case', e.g. branches all | 
|  | * far (2 instructions), return path code reduction not available, etc. | 
|  | * | 
|  | * Second pass: Code buffer allocated with size determined previously. | 
|  | * Prologue generated to support features we have seen used.  Exit paths | 
|  | * determined and addrs[] is filled in again, as code may be slightly | 
|  | * smaller as a result. | 
|  | * | 
|  | * Third pass: Code generated 'for real', and branch destinations | 
|  | * determined from now-accurate addrs[] map. | 
|  | * | 
|  | * Ideal: | 
|  | * | 
|  | * If we optimise this, near branches will be shorter.	On the | 
|  | * first assembly pass, we should err on the side of caution and | 
|  | * generate the biggest code.  On subsequent passes, branches will be | 
|  | * generated short or long and code size will reduce.  With smaller | 
|  | * code, more branches may fall into the short category, and code will | 
|  | * reduce more. | 
|  | * | 
|  | * Finally, if we see one pass generate code the same size as the | 
|  | * previous pass we have converged and should now generate code for | 
|  | * real.  Allocating at the end will also save the memory that would | 
|  | * otherwise be wasted by the (small) current code shrinkage. | 
|  | * Preferably, we should do a small number of passes (e.g. 5) and if we | 
|  | * haven't converged by then, get impatient and force code to generate | 
|  | * as-is, even if the odd branch would be left long.  The chances of a | 
|  | * long jump are tiny with all but the most enormous of BPF filter | 
|  | * inputs, so we should usually converge on the third pass. | 
|  | */ | 
|  |  | 
|  | cgctx.idx = 0; | 
|  | cgctx.seen = 0; | 
|  | cgctx.pc_ret0 = -1; | 
|  | /* Scouting faux-generate pass 0 */ | 
|  | if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) | 
|  | /* We hit something illegal or unsupported. */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Pretend to build prologue, given the features we've seen.  This will | 
|  | * update ctgtx.idx as it pretends to output instructions, then we can | 
|  | * calculate total size from idx. | 
|  | */ | 
|  | bpf_jit_build_prologue(fp, 0, &cgctx); | 
|  | bpf_jit_build_epilogue(0, &cgctx); | 
|  |  | 
|  | proglen = cgctx.idx * 4; | 
|  | alloclen = proglen + FUNCTION_DESCR_SIZE; | 
|  | image = module_alloc(alloclen); | 
|  | if (!image) | 
|  | goto out; | 
|  |  | 
|  | code_base = image + (FUNCTION_DESCR_SIZE/4); | 
|  |  | 
|  | /* Code generation passes 1-2 */ | 
|  | for (pass = 1; pass < 3; pass++) { | 
|  | /* Now build the prologue, body code & epilogue for real. */ | 
|  | cgctx.idx = 0; | 
|  | bpf_jit_build_prologue(fp, code_base, &cgctx); | 
|  | bpf_jit_build_body(fp, code_base, &cgctx, addrs); | 
|  | bpf_jit_build_epilogue(code_base, &cgctx); | 
|  |  | 
|  | if (bpf_jit_enable > 1) | 
|  | pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, | 
|  | proglen - (cgctx.idx * 4), cgctx.seen); | 
|  | } | 
|  |  | 
|  | if (bpf_jit_enable > 1) | 
|  | /* Note that we output the base address of the code_base | 
|  | * rather than image, since opcodes are in code_base. | 
|  | */ | 
|  | bpf_jit_dump(flen, proglen, pass, code_base); | 
|  |  | 
|  | if (image) { | 
|  | bpf_flush_icache(code_base, code_base + (proglen/4)); | 
|  | #ifdef CONFIG_PPC64 | 
|  | /* Function descriptor nastiness: Address + TOC */ | 
|  | ((u64 *)image)[0] = (u64)code_base; | 
|  | ((u64 *)image)[1] = local_paca->kernel_toc; | 
|  | #endif | 
|  | fp->bpf_func = (void *)image; | 
|  | fp->jited = 1; | 
|  | } | 
|  | out: | 
|  | kfree(addrs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void bpf_jit_free(struct bpf_prog *fp) | 
|  | { | 
|  | if (fp->jited) | 
|  | module_memfree(fp->bpf_func); | 
|  |  | 
|  | bpf_prog_unlock_free(fp); | 
|  | } |