|  | /* | 
|  | * Just-In-Time compiler for BPF filters on 32bit ARM | 
|  | * | 
|  | * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; version 2 of the License. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/hwcap.h> | 
|  | #include <asm/opcodes.h> | 
|  |  | 
|  | #include "bpf_jit_32.h" | 
|  |  | 
|  | /* | 
|  | * ABI: | 
|  | * | 
|  | * r0	scratch register | 
|  | * r4	BPF register A | 
|  | * r5	BPF register X | 
|  | * r6	pointer to the skb | 
|  | * r7	skb->data | 
|  | * r8	skb_headlen(skb) | 
|  | */ | 
|  |  | 
|  | #define r_scratch	ARM_R0 | 
|  | /* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */ | 
|  | #define r_off		ARM_R1 | 
|  | #define r_A		ARM_R4 | 
|  | #define r_X		ARM_R5 | 
|  | #define r_skb		ARM_R6 | 
|  | #define r_skb_data	ARM_R7 | 
|  | #define r_skb_hl	ARM_R8 | 
|  |  | 
|  | #define SCRATCH_SP_OFFSET	0 | 
|  | #define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k)) | 
|  |  | 
|  | #define SEEN_MEM		((1 << BPF_MEMWORDS) - 1) | 
|  | #define SEEN_MEM_WORD(k)	(1 << (k)) | 
|  | #define SEEN_X			(1 << BPF_MEMWORDS) | 
|  | #define SEEN_CALL		(1 << (BPF_MEMWORDS + 1)) | 
|  | #define SEEN_SKB		(1 << (BPF_MEMWORDS + 2)) | 
|  | #define SEEN_DATA		(1 << (BPF_MEMWORDS + 3)) | 
|  |  | 
|  | #define FLAG_NEED_X_RESET	(1 << 0) | 
|  | #define FLAG_IMM_OVERFLOW	(1 << 1) | 
|  |  | 
|  | struct jit_ctx { | 
|  | const struct bpf_prog *skf; | 
|  | unsigned idx; | 
|  | unsigned prologue_bytes; | 
|  | int ret0_fp_idx; | 
|  | u32 seen; | 
|  | u32 flags; | 
|  | u32 *offsets; | 
|  | u32 *target; | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  | u16 epilogue_bytes; | 
|  | u16 imm_count; | 
|  | u32 *imms; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | int bpf_jit_enable __read_mostly; | 
|  |  | 
|  | static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret, | 
|  | unsigned int size) | 
|  | { | 
|  | void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size); | 
|  |  | 
|  | if (!ptr) | 
|  | return -EFAULT; | 
|  | memcpy(ret, ptr, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 jit_get_skb_b(struct sk_buff *skb, int offset) | 
|  | { | 
|  | u8 ret; | 
|  | int err; | 
|  |  | 
|  | if (offset < 0) | 
|  | err = call_neg_helper(skb, offset, &ret, 1); | 
|  | else | 
|  | err = skb_copy_bits(skb, offset, &ret, 1); | 
|  |  | 
|  | return (u64)err << 32 | ret; | 
|  | } | 
|  |  | 
|  | static u64 jit_get_skb_h(struct sk_buff *skb, int offset) | 
|  | { | 
|  | u16 ret; | 
|  | int err; | 
|  |  | 
|  | if (offset < 0) | 
|  | err = call_neg_helper(skb, offset, &ret, 2); | 
|  | else | 
|  | err = skb_copy_bits(skb, offset, &ret, 2); | 
|  |  | 
|  | return (u64)err << 32 | ntohs(ret); | 
|  | } | 
|  |  | 
|  | static u64 jit_get_skb_w(struct sk_buff *skb, int offset) | 
|  | { | 
|  | u32 ret; | 
|  | int err; | 
|  |  | 
|  | if (offset < 0) | 
|  | err = call_neg_helper(skb, offset, &ret, 4); | 
|  | else | 
|  | err = skb_copy_bits(skb, offset, &ret, 4); | 
|  |  | 
|  | return (u64)err << 32 | ntohl(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrappers which handle both OABI and EABI and assures Thumb2 interworking | 
|  | * (where the assembly routines like __aeabi_uidiv could cause problems). | 
|  | */ | 
|  | static u32 jit_udiv(u32 dividend, u32 divisor) | 
|  | { | 
|  | return dividend / divisor; | 
|  | } | 
|  |  | 
|  | static u32 jit_mod(u32 dividend, u32 divisor) | 
|  | { | 
|  | return dividend % divisor; | 
|  | } | 
|  |  | 
|  | static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) | 
|  | { | 
|  | inst |= (cond << 28); | 
|  | inst = __opcode_to_mem_arm(inst); | 
|  |  | 
|  | if (ctx->target != NULL) | 
|  | ctx->target[ctx->idx] = inst; | 
|  |  | 
|  | ctx->idx++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emit an instruction that will be executed unconditionally. | 
|  | */ | 
|  | static inline void emit(u32 inst, struct jit_ctx *ctx) | 
|  | { | 
|  | _emit(ARM_COND_AL, inst, ctx); | 
|  | } | 
|  |  | 
|  | static u16 saved_regs(struct jit_ctx *ctx) | 
|  | { | 
|  | u16 ret = 0; | 
|  |  | 
|  | if ((ctx->skf->len > 1) || | 
|  | (ctx->skf->insns[0].code == (BPF_RET | BPF_A))) | 
|  | ret |= 1 << r_A; | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC); | 
|  | #else | 
|  | if (ctx->seen & SEEN_CALL) | 
|  | ret |= 1 << ARM_LR; | 
|  | #endif | 
|  | if (ctx->seen & (SEEN_DATA | SEEN_SKB)) | 
|  | ret |= 1 << r_skb; | 
|  | if (ctx->seen & SEEN_DATA) | 
|  | ret |= (1 << r_skb_data) | (1 << r_skb_hl); | 
|  | if (ctx->seen & SEEN_X) | 
|  | ret |= 1 << r_X; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int mem_words_used(struct jit_ctx *ctx) | 
|  | { | 
|  | /* yes, we do waste some stack space IF there are "holes" in the set" */ | 
|  | return fls(ctx->seen & SEEN_MEM); | 
|  | } | 
|  |  | 
|  | static void jit_fill_hole(void *area, unsigned int size) | 
|  | { | 
|  | u32 *ptr; | 
|  | /* We are guaranteed to have aligned memory. */ | 
|  | for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) | 
|  | *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); | 
|  | } | 
|  |  | 
|  | static void build_prologue(struct jit_ctx *ctx) | 
|  | { | 
|  | u16 reg_set = saved_regs(ctx); | 
|  | u16 off; | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); | 
|  | emit(ARM_PUSH(reg_set), ctx); | 
|  | emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); | 
|  | #else | 
|  | if (reg_set) | 
|  | emit(ARM_PUSH(reg_set), ctx); | 
|  | #endif | 
|  |  | 
|  | if (ctx->seen & (SEEN_DATA | SEEN_SKB)) | 
|  | emit(ARM_MOV_R(r_skb, ARM_R0), ctx); | 
|  |  | 
|  | if (ctx->seen & SEEN_DATA) { | 
|  | off = offsetof(struct sk_buff, data); | 
|  | emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx); | 
|  | /* headlen = len - data_len */ | 
|  | off = offsetof(struct sk_buff, len); | 
|  | emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx); | 
|  | off = offsetof(struct sk_buff, data_len); | 
|  | emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); | 
|  | emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx); | 
|  | } | 
|  |  | 
|  | if (ctx->flags & FLAG_NEED_X_RESET) | 
|  | emit(ARM_MOV_I(r_X, 0), ctx); | 
|  |  | 
|  | /* do not leak kernel data to userspace */ | 
|  | if (bpf_needs_clear_a(&ctx->skf->insns[0])) | 
|  | emit(ARM_MOV_I(r_A, 0), ctx); | 
|  |  | 
|  | /* stack space for the BPF_MEM words */ | 
|  | if (ctx->seen & SEEN_MEM) | 
|  | emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); | 
|  | } | 
|  |  | 
|  | static void build_epilogue(struct jit_ctx *ctx) | 
|  | { | 
|  | u16 reg_set = saved_regs(ctx); | 
|  |  | 
|  | if (ctx->seen & SEEN_MEM) | 
|  | emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx); | 
|  |  | 
|  | reg_set &= ~(1 << ARM_LR); | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | /* the first instruction of the prologue was: mov ip, sp */ | 
|  | reg_set &= ~(1 << ARM_IP); | 
|  | reg_set |= (1 << ARM_SP); | 
|  | emit(ARM_LDM(ARM_SP, reg_set), ctx); | 
|  | #else | 
|  | if (reg_set) { | 
|  | if (ctx->seen & SEEN_CALL) | 
|  | reg_set |= 1 << ARM_PC; | 
|  | emit(ARM_POP(reg_set), ctx); | 
|  | } | 
|  |  | 
|  | if (!(ctx->seen & SEEN_CALL)) | 
|  | emit(ARM_BX(ARM_LR), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int16_t imm8m(u32 x) | 
|  | { | 
|  | u32 rot; | 
|  |  | 
|  | for (rot = 0; rot < 16; rot++) | 
|  | if ((x & ~ror32(0xff, 2 * rot)) == 0) | 
|  | return rol32(x, 2 * rot) | (rot << 8); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  |  | 
|  | static u16 imm_offset(u32 k, struct jit_ctx *ctx) | 
|  | { | 
|  | unsigned i = 0, offset; | 
|  | u16 imm; | 
|  |  | 
|  | /* on the "fake" run we just count them (duplicates included) */ | 
|  | if (ctx->target == NULL) { | 
|  | ctx->imm_count++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while ((i < ctx->imm_count) && ctx->imms[i]) { | 
|  | if (ctx->imms[i] == k) | 
|  | break; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (ctx->imms[i] == 0) | 
|  | ctx->imms[i] = k; | 
|  |  | 
|  | /* constants go just after the epilogue */ | 
|  | offset =  ctx->offsets[ctx->skf->len]; | 
|  | offset += ctx->prologue_bytes; | 
|  | offset += ctx->epilogue_bytes; | 
|  | offset += i * 4; | 
|  |  | 
|  | ctx->target[offset / 4] = k; | 
|  |  | 
|  | /* PC in ARM mode == address of the instruction + 8 */ | 
|  | imm = offset - (8 + ctx->idx * 4); | 
|  |  | 
|  | if (imm & ~0xfff) { | 
|  | /* | 
|  | * literal pool is too far, signal it into flags. we | 
|  | * can only detect it on the second pass unfortunately. | 
|  | */ | 
|  | ctx->flags |= FLAG_IMM_OVERFLOW; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return imm; | 
|  | } | 
|  |  | 
|  | #endif /* __LINUX_ARM_ARCH__ */ | 
|  |  | 
|  | /* | 
|  | * Move an immediate that's not an imm8m to a core register. | 
|  | */ | 
|  | static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx) | 
|  | { | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  | emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); | 
|  | #else | 
|  | emit(ARM_MOVW(rd, val & 0xffff), ctx); | 
|  | if (val > 0xffff) | 
|  | emit(ARM_MOVT(rd, val >> 16), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx) | 
|  | { | 
|  | int imm12 = imm8m(val); | 
|  |  | 
|  | if (imm12 >= 0) | 
|  | emit(ARM_MOV_I(rd, imm12), ctx); | 
|  | else | 
|  | emit_mov_i_no8m(rd, val, ctx); | 
|  | } | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 6 | 
|  |  | 
|  | static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) | 
|  | { | 
|  | _emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx); | 
|  | _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); | 
|  | _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx); | 
|  | _emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx); | 
|  | _emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx); | 
|  | _emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx); | 
|  | _emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx); | 
|  | _emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx); | 
|  | } | 
|  |  | 
|  | static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) | 
|  | { | 
|  | _emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx); | 
|  | _emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx); | 
|  | _emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx); | 
|  | } | 
|  |  | 
|  | static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx) | 
|  | { | 
|  | /* r_dst = (r_src << 8) | (r_src >> 8) */ | 
|  | emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx); | 
|  | emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx); | 
|  |  | 
|  | /* | 
|  | * we need to mask out the bits set in r_dst[23:16] due to | 
|  | * the first shift instruction. | 
|  | * | 
|  | * note that 0x8ff is the encoded immediate 0x00ff0000. | 
|  | */ | 
|  | emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx); | 
|  | } | 
|  |  | 
|  | #else  /* ARMv6+ */ | 
|  |  | 
|  | static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) | 
|  | { | 
|  | _emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx); | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | _emit(cond, ARM_REV(r_res, r_res), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx) | 
|  | { | 
|  | _emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx); | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | _emit(cond, ARM_REV16(r_res, r_res), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void emit_swap16(u8 r_dst __maybe_unused, | 
|  | u8 r_src __maybe_unused, | 
|  | struct jit_ctx *ctx __maybe_unused) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | emit(ARM_REV16(r_dst, r_src), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif /* __LINUX_ARM_ARCH__ < 6 */ | 
|  |  | 
|  |  | 
|  | /* Compute the immediate value for a PC-relative branch. */ | 
|  | static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx) | 
|  | { | 
|  | u32 imm; | 
|  |  | 
|  | if (ctx->target == NULL) | 
|  | return 0; | 
|  | /* | 
|  | * BPF allows only forward jumps and the offset of the target is | 
|  | * still the one computed during the first pass. | 
|  | */ | 
|  | imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8); | 
|  |  | 
|  | return imm >> 2; | 
|  | } | 
|  |  | 
|  | #define OP_IMM3(op, r1, r2, imm_val, ctx)				\ | 
|  | do {								\ | 
|  | imm12 = imm8m(imm_val);					\ | 
|  | if (imm12 < 0) {					\ | 
|  | emit_mov_i_no8m(r_scratch, imm_val, ctx);	\ | 
|  | emit(op ## _R((r1), (r2), r_scratch), ctx);	\ | 
|  | } else {						\ | 
|  | emit(op ## _I((r1), (r2), imm12), ctx);		\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx) | 
|  | { | 
|  | if (ctx->ret0_fp_idx >= 0) { | 
|  | _emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx); | 
|  | /* NOP to keep the size constant between passes */ | 
|  | emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx); | 
|  | } else { | 
|  | _emit(cond, ARM_MOV_I(ARM_R0, 0), ctx); | 
|  | _emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) | 
|  | { | 
|  | #if __LINUX_ARM_ARCH__ < 5 | 
|  | emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); | 
|  |  | 
|  | if (elf_hwcap & HWCAP_THUMB) | 
|  | emit(ARM_BX(tgt_reg), ctx); | 
|  | else | 
|  | emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); | 
|  | #else | 
|  | emit(ARM_BLX_R(tgt_reg), ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, | 
|  | int bpf_op) | 
|  | { | 
|  | #if __LINUX_ARM_ARCH__ == 7 | 
|  | if (elf_hwcap & HWCAP_IDIVA) { | 
|  | if (bpf_op == BPF_DIV) | 
|  | emit(ARM_UDIV(rd, rm, rn), ctx); | 
|  | else { | 
|  | emit(ARM_UDIV(ARM_R3, rm, rn), ctx); | 
|  | emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx); | 
|  | } | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4 | 
|  | * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into | 
|  | * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm | 
|  | * before using it as a source for ARM_R1. | 
|  | * | 
|  | * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is | 
|  | * ARM_R5 (r_X) so there is no particular register overlap | 
|  | * issues. | 
|  | */ | 
|  | if (rn != ARM_R1) | 
|  | emit(ARM_MOV_R(ARM_R1, rn), ctx); | 
|  | if (rm != ARM_R0) | 
|  | emit(ARM_MOV_R(ARM_R0, rm), ctx); | 
|  |  | 
|  | ctx->seen |= SEEN_CALL; | 
|  | emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod, | 
|  | ctx); | 
|  | emit_blx_r(ARM_R3, ctx); | 
|  |  | 
|  | if (rd != ARM_R0) | 
|  | emit(ARM_MOV_R(rd, ARM_R0), ctx); | 
|  | } | 
|  |  | 
|  | static inline void update_on_xread(struct jit_ctx *ctx) | 
|  | { | 
|  | if (!(ctx->seen & SEEN_X)) | 
|  | ctx->flags |= FLAG_NEED_X_RESET; | 
|  |  | 
|  | ctx->seen |= SEEN_X; | 
|  | } | 
|  |  | 
|  | static int build_body(struct jit_ctx *ctx) | 
|  | { | 
|  | void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w}; | 
|  | const struct bpf_prog *prog = ctx->skf; | 
|  | const struct sock_filter *inst; | 
|  | unsigned i, load_order, off, condt; | 
|  | int imm12; | 
|  | u32 k; | 
|  |  | 
|  | for (i = 0; i < prog->len; i++) { | 
|  | u16 code; | 
|  |  | 
|  | inst = &(prog->insns[i]); | 
|  | /* K as an immediate value operand */ | 
|  | k = inst->k; | 
|  | code = bpf_anc_helper(inst); | 
|  |  | 
|  | /* compute offsets only in the fake pass */ | 
|  | if (ctx->target == NULL) | 
|  | ctx->offsets[i] = ctx->idx * 4; | 
|  |  | 
|  | switch (code) { | 
|  | case BPF_LD | BPF_IMM: | 
|  | emit_mov_i(r_A, k, ctx); | 
|  | break; | 
|  | case BPF_LD | BPF_W | BPF_LEN: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); | 
|  | emit(ARM_LDR_I(r_A, r_skb, | 
|  | offsetof(struct sk_buff, len)), ctx); | 
|  | break; | 
|  | case BPF_LD | BPF_MEM: | 
|  | /* A = scratch[k] */ | 
|  | ctx->seen |= SEEN_MEM_WORD(k); | 
|  | emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); | 
|  | break; | 
|  | case BPF_LD | BPF_W | BPF_ABS: | 
|  | load_order = 2; | 
|  | goto load; | 
|  | case BPF_LD | BPF_H | BPF_ABS: | 
|  | load_order = 1; | 
|  | goto load; | 
|  | case BPF_LD | BPF_B | BPF_ABS: | 
|  | load_order = 0; | 
|  | load: | 
|  | emit_mov_i(r_off, k, ctx); | 
|  | load_common: | 
|  | ctx->seen |= SEEN_DATA | SEEN_CALL; | 
|  |  | 
|  | if (load_order > 0) { | 
|  | emit(ARM_SUB_I(r_scratch, r_skb_hl, | 
|  | 1 << load_order), ctx); | 
|  | emit(ARM_CMP_R(r_scratch, r_off), ctx); | 
|  | condt = ARM_COND_GE; | 
|  | } else { | 
|  | emit(ARM_CMP_R(r_skb_hl, r_off), ctx); | 
|  | condt = ARM_COND_HI; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * test for negative offset, only if we are | 
|  | * currently scheduled to take the fast | 
|  | * path. this will update the flags so that | 
|  | * the slowpath instruction are ignored if the | 
|  | * offset is negative. | 
|  | * | 
|  | * for loard_order == 0 the HI condition will | 
|  | * make loads at offset 0 take the slow path too. | 
|  | */ | 
|  | _emit(condt, ARM_CMP_I(r_off, 0), ctx); | 
|  |  | 
|  | _emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data), | 
|  | ctx); | 
|  |  | 
|  | if (load_order == 0) | 
|  | _emit(condt, ARM_LDRB_I(r_A, r_scratch, 0), | 
|  | ctx); | 
|  | else if (load_order == 1) | 
|  | emit_load_be16(condt, r_A, r_scratch, ctx); | 
|  | else if (load_order == 2) | 
|  | emit_load_be32(condt, r_A, r_scratch, ctx); | 
|  |  | 
|  | _emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx); | 
|  |  | 
|  | /* the slowpath */ | 
|  | emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx); | 
|  | emit(ARM_MOV_R(ARM_R0, r_skb), ctx); | 
|  | /* the offset is already in R1 */ | 
|  | emit_blx_r(ARM_R3, ctx); | 
|  | /* check the result of skb_copy_bits */ | 
|  | emit(ARM_CMP_I(ARM_R1, 0), ctx); | 
|  | emit_err_ret(ARM_COND_NE, ctx); | 
|  | emit(ARM_MOV_R(r_A, ARM_R0), ctx); | 
|  | break; | 
|  | case BPF_LD | BPF_W | BPF_IND: | 
|  | load_order = 2; | 
|  | goto load_ind; | 
|  | case BPF_LD | BPF_H | BPF_IND: | 
|  | load_order = 1; | 
|  | goto load_ind; | 
|  | case BPF_LD | BPF_B | BPF_IND: | 
|  | load_order = 0; | 
|  | load_ind: | 
|  | update_on_xread(ctx); | 
|  | OP_IMM3(ARM_ADD, r_off, r_X, k, ctx); | 
|  | goto load_common; | 
|  | case BPF_LDX | BPF_IMM: | 
|  | ctx->seen |= SEEN_X; | 
|  | emit_mov_i(r_X, k, ctx); | 
|  | break; | 
|  | case BPF_LDX | BPF_W | BPF_LEN: | 
|  | ctx->seen |= SEEN_X | SEEN_SKB; | 
|  | emit(ARM_LDR_I(r_X, r_skb, | 
|  | offsetof(struct sk_buff, len)), ctx); | 
|  | break; | 
|  | case BPF_LDX | BPF_MEM: | 
|  | ctx->seen |= SEEN_X | SEEN_MEM_WORD(k); | 
|  | emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); | 
|  | break; | 
|  | case BPF_LDX | BPF_B | BPF_MSH: | 
|  | /* x = ((*(frame + k)) & 0xf) << 2; */ | 
|  | ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL; | 
|  | /* the interpreter should deal with the negative K */ | 
|  | if ((int)k < 0) | 
|  | return -1; | 
|  | /* offset in r1: we might have to take the slow path */ | 
|  | emit_mov_i(r_off, k, ctx); | 
|  | emit(ARM_CMP_R(r_skb_hl, r_off), ctx); | 
|  |  | 
|  | /* load in r0: common with the slowpath */ | 
|  | _emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data, | 
|  | ARM_R1), ctx); | 
|  | /* | 
|  | * emit_mov_i() might generate one or two instructions, | 
|  | * the same holds for emit_blx_r() | 
|  | */ | 
|  | _emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx); | 
|  |  | 
|  | emit(ARM_MOV_R(ARM_R0, r_skb), ctx); | 
|  | /* r_off is r1 */ | 
|  | emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx); | 
|  | emit_blx_r(ARM_R3, ctx); | 
|  | /* check the return value of skb_copy_bits */ | 
|  | emit(ARM_CMP_I(ARM_R1, 0), ctx); | 
|  | emit_err_ret(ARM_COND_NE, ctx); | 
|  |  | 
|  | emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx); | 
|  | emit(ARM_LSL_I(r_X, r_X, 2), ctx); | 
|  | break; | 
|  | case BPF_ST: | 
|  | ctx->seen |= SEEN_MEM_WORD(k); | 
|  | emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx); | 
|  | break; | 
|  | case BPF_STX: | 
|  | update_on_xread(ctx); | 
|  | ctx->seen |= SEEN_MEM_WORD(k); | 
|  | emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_ADD | BPF_K: | 
|  | /* A += K */ | 
|  | OP_IMM3(ARM_ADD, r_A, r_A, k, ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_ADD | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_ADD_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_K: | 
|  | /* A -= K */ | 
|  | OP_IMM3(ARM_SUB, r_A, r_A, k, ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_SUB_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_K: | 
|  | /* A *= K */ | 
|  | emit_mov_i(r_scratch, k, ctx); | 
|  | emit(ARM_MUL(r_A, r_A, r_scratch), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_MUL(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_DIV | BPF_K: | 
|  | if (k == 1) | 
|  | break; | 
|  | emit_mov_i(r_scratch, k, ctx); | 
|  | emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV); | 
|  | break; | 
|  | case BPF_ALU | BPF_DIV | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_CMP_I(r_X, 0), ctx); | 
|  | emit_err_ret(ARM_COND_EQ, ctx); | 
|  | emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV); | 
|  | break; | 
|  | case BPF_ALU | BPF_MOD | BPF_K: | 
|  | if (k == 1) { | 
|  | emit_mov_i(r_A, 0, ctx); | 
|  | break; | 
|  | } | 
|  | emit_mov_i(r_scratch, k, ctx); | 
|  | emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD); | 
|  | break; | 
|  | case BPF_ALU | BPF_MOD | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_CMP_I(r_X, 0), ctx); | 
|  | emit_err_ret(ARM_COND_EQ, ctx); | 
|  | emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD); | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_K: | 
|  | /* A |= K */ | 
|  | OP_IMM3(ARM_ORR, r_A, r_A, k, ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_ORR_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_XOR | BPF_K: | 
|  | /* A ^= K; */ | 
|  | OP_IMM3(ARM_EOR, r_A, r_A, k, ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_ALU_XOR_X: | 
|  | case BPF_ALU | BPF_XOR | BPF_X: | 
|  | /* A ^= X */ | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_EOR_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_K: | 
|  | /* A &= K */ | 
|  | OP_IMM3(ARM_AND, r_A, r_A, k, ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_AND_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_K: | 
|  | if (unlikely(k > 31)) | 
|  | return -1; | 
|  | emit(ARM_LSL_I(r_A, r_A, k), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_LSL_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_K: | 
|  | if (unlikely(k > 31)) | 
|  | return -1; | 
|  | if (k) | 
|  | emit(ARM_LSR_I(r_A, r_A, k), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_X: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_LSR_R(r_A, r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ALU | BPF_NEG: | 
|  | /* A = -A */ | 
|  | emit(ARM_RSB_I(r_A, r_A, 0), ctx); | 
|  | break; | 
|  | case BPF_JMP | BPF_JA: | 
|  | /* pc += K */ | 
|  | emit(ARM_B(b_imm(i + k + 1, ctx)), ctx); | 
|  | break; | 
|  | case BPF_JMP | BPF_JEQ | BPF_K: | 
|  | /* pc += (A == K) ? pc->jt : pc->jf */ | 
|  | condt  = ARM_COND_EQ; | 
|  | goto cmp_imm; | 
|  | case BPF_JMP | BPF_JGT | BPF_K: | 
|  | /* pc += (A > K) ? pc->jt : pc->jf */ | 
|  | condt  = ARM_COND_HI; | 
|  | goto cmp_imm; | 
|  | case BPF_JMP | BPF_JGE | BPF_K: | 
|  | /* pc += (A >= K) ? pc->jt : pc->jf */ | 
|  | condt  = ARM_COND_HS; | 
|  | cmp_imm: | 
|  | imm12 = imm8m(k); | 
|  | if (imm12 < 0) { | 
|  | emit_mov_i_no8m(r_scratch, k, ctx); | 
|  | emit(ARM_CMP_R(r_A, r_scratch), ctx); | 
|  | } else { | 
|  | emit(ARM_CMP_I(r_A, imm12), ctx); | 
|  | } | 
|  | cond_jump: | 
|  | if (inst->jt) | 
|  | _emit(condt, ARM_B(b_imm(i + inst->jt + 1, | 
|  | ctx)), ctx); | 
|  | if (inst->jf) | 
|  | _emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1, | 
|  | ctx)), ctx); | 
|  | break; | 
|  | case BPF_JMP | BPF_JEQ | BPF_X: | 
|  | /* pc += (A == X) ? pc->jt : pc->jf */ | 
|  | condt   = ARM_COND_EQ; | 
|  | goto cmp_x; | 
|  | case BPF_JMP | BPF_JGT | BPF_X: | 
|  | /* pc += (A > X) ? pc->jt : pc->jf */ | 
|  | condt   = ARM_COND_HI; | 
|  | goto cmp_x; | 
|  | case BPF_JMP | BPF_JGE | BPF_X: | 
|  | /* pc += (A >= X) ? pc->jt : pc->jf */ | 
|  | condt   = ARM_COND_CS; | 
|  | cmp_x: | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_CMP_R(r_A, r_X), ctx); | 
|  | goto cond_jump; | 
|  | case BPF_JMP | BPF_JSET | BPF_K: | 
|  | /* pc += (A & K) ? pc->jt : pc->jf */ | 
|  | condt  = ARM_COND_NE; | 
|  | /* not set iff all zeroes iff Z==1 iff EQ */ | 
|  |  | 
|  | imm12 = imm8m(k); | 
|  | if (imm12 < 0) { | 
|  | emit_mov_i_no8m(r_scratch, k, ctx); | 
|  | emit(ARM_TST_R(r_A, r_scratch), ctx); | 
|  | } else { | 
|  | emit(ARM_TST_I(r_A, imm12), ctx); | 
|  | } | 
|  | goto cond_jump; | 
|  | case BPF_JMP | BPF_JSET | BPF_X: | 
|  | /* pc += (A & X) ? pc->jt : pc->jf */ | 
|  | update_on_xread(ctx); | 
|  | condt  = ARM_COND_NE; | 
|  | emit(ARM_TST_R(r_A, r_X), ctx); | 
|  | goto cond_jump; | 
|  | case BPF_RET | BPF_A: | 
|  | emit(ARM_MOV_R(ARM_R0, r_A), ctx); | 
|  | goto b_epilogue; | 
|  | case BPF_RET | BPF_K: | 
|  | if ((k == 0) && (ctx->ret0_fp_idx < 0)) | 
|  | ctx->ret0_fp_idx = i; | 
|  | emit_mov_i(ARM_R0, k, ctx); | 
|  | b_epilogue: | 
|  | if (i != ctx->skf->len - 1) | 
|  | emit(ARM_B(b_imm(prog->len, ctx)), ctx); | 
|  | break; | 
|  | case BPF_MISC | BPF_TAX: | 
|  | /* X = A */ | 
|  | ctx->seen |= SEEN_X; | 
|  | emit(ARM_MOV_R(r_X, r_A), ctx); | 
|  | break; | 
|  | case BPF_MISC | BPF_TXA: | 
|  | /* A = X */ | 
|  | update_on_xread(ctx); | 
|  | emit(ARM_MOV_R(r_A, r_X), ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PROTOCOL: | 
|  | /* A = ntohs(skb->protocol) */ | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, | 
|  | protocol) != 2); | 
|  | off = offsetof(struct sk_buff, protocol); | 
|  | emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx); | 
|  | emit_swap16(r_A, r_scratch, ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_CPU: | 
|  | /* r_scratch = current_thread_info() */ | 
|  | OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx); | 
|  | /* A = current_thread_info()->cpu */ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4); | 
|  | off = offsetof(struct thread_info, cpu); | 
|  | emit(ARM_LDR_I(r_A, r_scratch, off), ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_IFINDEX: | 
|  | case BPF_ANC | SKF_AD_HATYPE: | 
|  | /* A = skb->dev->ifindex */ | 
|  | /* A = skb->dev->type */ | 
|  | ctx->seen |= SEEN_SKB; | 
|  | off = offsetof(struct sk_buff, dev); | 
|  | emit(ARM_LDR_I(r_scratch, r_skb, off), ctx); | 
|  |  | 
|  | emit(ARM_CMP_I(r_scratch, 0), ctx); | 
|  | emit_err_ret(ARM_COND_EQ, ctx); | 
|  |  | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, | 
|  | ifindex) != 4); | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, | 
|  | type) != 2); | 
|  |  | 
|  | if (code == (BPF_ANC | SKF_AD_IFINDEX)) { | 
|  | off = offsetof(struct net_device, ifindex); | 
|  | emit(ARM_LDR_I(r_A, r_scratch, off), ctx); | 
|  | } else { | 
|  | /* | 
|  | * offset of field "type" in "struct | 
|  | * net_device" is above what can be | 
|  | * used in the ldrh rd, [rn, #imm] | 
|  | * instruction, so load the offset in | 
|  | * a register and use ldrh rd, [rn, rm] | 
|  | */ | 
|  | off = offsetof(struct net_device, type); | 
|  | emit_mov_i(ARM_R3, off, ctx); | 
|  | emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx); | 
|  | } | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_MARK: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); | 
|  | off = offsetof(struct sk_buff, mark); | 
|  | emit(ARM_LDR_I(r_A, r_skb, off), ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_RXHASH: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); | 
|  | off = offsetof(struct sk_buff, hash); | 
|  | emit(ARM_LDR_I(r_A, r_skb, off), ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG: | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); | 
|  | off = offsetof(struct sk_buff, vlan_tci); | 
|  | emit(ARM_LDRH_I(r_A, r_skb, off), ctx); | 
|  | if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) | 
|  | OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx); | 
|  | else { | 
|  | OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx); | 
|  | OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx); | 
|  | } | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PKTTYPE: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, | 
|  | __pkt_type_offset[0]) != 1); | 
|  | off = PKT_TYPE_OFFSET(); | 
|  | emit(ARM_LDRB_I(r_A, r_skb, off), ctx); | 
|  | emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx); | 
|  | #ifdef __BIG_ENDIAN_BITFIELD | 
|  | emit(ARM_LSR_I(r_A, r_A, 5), ctx); | 
|  | #endif | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_QUEUE: | 
|  | ctx->seen |= SEEN_SKB; | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, | 
|  | queue_mapping) != 2); | 
|  | BUILD_BUG_ON(offsetof(struct sk_buff, | 
|  | queue_mapping) > 0xff); | 
|  | off = offsetof(struct sk_buff, queue_mapping); | 
|  | emit(ARM_LDRH_I(r_A, r_skb, off), ctx); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PAY_OFFSET: | 
|  | ctx->seen |= SEEN_SKB | SEEN_CALL; | 
|  |  | 
|  | emit(ARM_MOV_R(ARM_R0, r_skb), ctx); | 
|  | emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx); | 
|  | emit_blx_r(ARM_R3, ctx); | 
|  | emit(ARM_MOV_R(r_A, ARM_R0), ctx); | 
|  | break; | 
|  | case BPF_LDX | BPF_W | BPF_ABS: | 
|  | /* | 
|  | * load a 32bit word from struct seccomp_data. | 
|  | * seccomp_check_filter() will already have checked | 
|  | * that k is 32bit aligned and lies within the | 
|  | * struct seccomp_data. | 
|  | */ | 
|  | ctx->seen |= SEEN_SKB; | 
|  | emit(ARM_LDR_I(r_A, r_skb, k), ctx); | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ctx->flags & FLAG_IMM_OVERFLOW) | 
|  | /* | 
|  | * this instruction generated an overflow when | 
|  | * trying to access the literal pool, so | 
|  | * delegate this filter to the kernel interpreter. | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* compute offsets only during the first pass */ | 
|  | if (ctx->target == NULL) | 
|  | ctx->offsets[i] = ctx->idx * 4; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void bpf_jit_compile(struct bpf_prog *fp) | 
|  | { | 
|  | struct bpf_binary_header *header; | 
|  | struct jit_ctx ctx; | 
|  | unsigned tmp_idx; | 
|  | unsigned alloc_size; | 
|  | u8 *target_ptr; | 
|  |  | 
|  | if (!bpf_jit_enable) | 
|  | return; | 
|  |  | 
|  | memset(&ctx, 0, sizeof(ctx)); | 
|  | ctx.skf		= fp; | 
|  | ctx.ret0_fp_idx = -1; | 
|  |  | 
|  | ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL); | 
|  | if (ctx.offsets == NULL) | 
|  | return; | 
|  |  | 
|  | /* fake pass to fill in the ctx->seen */ | 
|  | if (unlikely(build_body(&ctx))) | 
|  | goto out; | 
|  |  | 
|  | tmp_idx = ctx.idx; | 
|  | build_prologue(&ctx); | 
|  | ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  | tmp_idx = ctx.idx; | 
|  | build_epilogue(&ctx); | 
|  | ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; | 
|  |  | 
|  | ctx.idx += ctx.imm_count; | 
|  | if (ctx.imm_count) { | 
|  | ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL); | 
|  | if (ctx.imms == NULL) | 
|  | goto out; | 
|  | } | 
|  | #else | 
|  | /* there's nothing after the epilogue on ARMv7 */ | 
|  | build_epilogue(&ctx); | 
|  | #endif | 
|  | alloc_size = 4 * ctx.idx; | 
|  | header = bpf_jit_binary_alloc(alloc_size, &target_ptr, | 
|  | 4, jit_fill_hole); | 
|  | if (header == NULL) | 
|  | goto out; | 
|  |  | 
|  | ctx.target = (u32 *) target_ptr; | 
|  | ctx.idx = 0; | 
|  |  | 
|  | build_prologue(&ctx); | 
|  | if (build_body(&ctx) < 0) { | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  | if (ctx.imm_count) | 
|  | kfree(ctx.imms); | 
|  | #endif | 
|  | bpf_jit_binary_free(header); | 
|  | goto out; | 
|  | } | 
|  | build_epilogue(&ctx); | 
|  |  | 
|  | flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx)); | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 7 | 
|  | if (ctx.imm_count) | 
|  | kfree(ctx.imms); | 
|  | #endif | 
|  |  | 
|  | if (bpf_jit_enable > 1) | 
|  | /* there are 2 passes here */ | 
|  | bpf_jit_dump(fp->len, alloc_size, 2, ctx.target); | 
|  |  | 
|  | set_memory_ro((unsigned long)header, header->pages); | 
|  | fp->bpf_func = (void *)ctx.target; | 
|  | fp->jited = 1; | 
|  | out: | 
|  | kfree(ctx.offsets); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void bpf_jit_free(struct bpf_prog *fp) | 
|  | { | 
|  | unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK; | 
|  | struct bpf_binary_header *header = (void *)addr; | 
|  |  | 
|  | if (!fp->jited) | 
|  | goto free_filter; | 
|  |  | 
|  | set_memory_rw(addr, header->pages); | 
|  | bpf_jit_binary_free(header); | 
|  |  | 
|  | free_filter: | 
|  | bpf_prog_unlock_free(fp); | 
|  | } |