| /* |
| * arch/arm64/kernel/probes/decode-insn.c |
| * |
| * Copyright (C) 2013 Linaro Limited. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <asm/insn.h> |
| #include <asm/sections.h> |
| |
| #include "decode-insn.h" |
| #include "simulate-insn.h" |
| |
| static bool __kprobes aarch64_insn_is_steppable(u32 insn) |
| { |
| /* |
| * Branch instructions will write a new value into the PC which is |
| * likely to be relative to the XOL address and therefore invalid. |
| * Deliberate generation of an exception during stepping is also not |
| * currently safe. Lastly, MSR instructions can do any number of nasty |
| * things we can't handle during single-stepping. |
| */ |
| if (aarch64_get_insn_class(insn) == AARCH64_INSN_CLS_BR_SYS) { |
| if (aarch64_insn_is_branch(insn) || |
| aarch64_insn_is_msr_imm(insn) || |
| aarch64_insn_is_msr_reg(insn) || |
| aarch64_insn_is_exception(insn) || |
| aarch64_insn_is_eret(insn)) |
| return false; |
| |
| /* |
| * The MRS instruction may not return a correct value when |
| * executing in the single-stepping environment. We do make one |
| * exception, for reading the DAIF bits. |
| */ |
| if (aarch64_insn_is_mrs(insn)) |
| return aarch64_insn_extract_system_reg(insn) |
| != AARCH64_INSN_SPCLREG_DAIF; |
| |
| /* |
| * The HINT instruction is is problematic when single-stepping, |
| * except for the NOP case. |
| */ |
| if (aarch64_insn_is_hint(insn)) |
| return aarch64_insn_is_nop(insn); |
| |
| return true; |
| } |
| |
| /* |
| * Instructions which load PC relative literals are not going to work |
| * when executed from an XOL slot. Instructions doing an exclusive |
| * load/store are not going to complete successfully when single-step |
| * exception handling happens in the middle of the sequence. |
| */ |
| if (aarch64_insn_uses_literal(insn) || |
| aarch64_insn_is_exclusive(insn)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return: |
| * INSN_REJECTED If instruction is one not allowed to kprobe, |
| * INSN_GOOD If instruction is supported and uses instruction slot, |
| * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot. |
| */ |
| enum probe_insn __kprobes |
| arm_probe_decode_insn(probe_opcode_t insn, struct arch_probe_insn *api) |
| { |
| /* |
| * Instructions reading or modifying the PC won't work from the XOL |
| * slot. |
| */ |
| if (aarch64_insn_is_steppable(insn)) |
| return INSN_GOOD; |
| |
| if (aarch64_insn_is_bcond(insn)) { |
| api->handler = simulate_b_cond; |
| } else if (aarch64_insn_is_cbz(insn) || |
| aarch64_insn_is_cbnz(insn)) { |
| api->handler = simulate_cbz_cbnz; |
| } else if (aarch64_insn_is_tbz(insn) || |
| aarch64_insn_is_tbnz(insn)) { |
| api->handler = simulate_tbz_tbnz; |
| } else if (aarch64_insn_is_adr_adrp(insn)) { |
| api->handler = simulate_adr_adrp; |
| } else if (aarch64_insn_is_b(insn) || |
| aarch64_insn_is_bl(insn)) { |
| api->handler = simulate_b_bl; |
| } else if (aarch64_insn_is_br(insn) || |
| aarch64_insn_is_blr(insn) || |
| aarch64_insn_is_ret(insn)) { |
| api->handler = simulate_br_blr_ret; |
| } else if (aarch64_insn_is_ldr_lit(insn)) { |
| api->handler = simulate_ldr_literal; |
| } else if (aarch64_insn_is_ldrsw_lit(insn)) { |
| api->handler = simulate_ldrsw_literal; |
| } else { |
| /* |
| * Instruction cannot be stepped out-of-line and we don't |
| * (yet) simulate it. |
| */ |
| return INSN_REJECTED; |
| } |
| |
| return INSN_GOOD_NO_SLOT; |
| } |
| |
| #ifdef CONFIG_KPROBES |
| static bool __kprobes |
| is_probed_address_atomic(kprobe_opcode_t *scan_start, kprobe_opcode_t *scan_end) |
| { |
| while (scan_start >= scan_end) { |
| /* |
| * atomic region starts from exclusive load and ends with |
| * exclusive store. |
| */ |
| if (aarch64_insn_is_store_ex(le32_to_cpu(*scan_start))) |
| return false; |
| else if (aarch64_insn_is_load_ex(le32_to_cpu(*scan_start))) |
| return true; |
| scan_start--; |
| } |
| |
| return false; |
| } |
| |
| enum probe_insn __kprobes |
| arm_kprobe_decode_insn(kprobe_opcode_t *addr, struct arch_specific_insn *asi) |
| { |
| enum probe_insn decoded; |
| probe_opcode_t insn = le32_to_cpu(*addr); |
| probe_opcode_t *scan_end = NULL; |
| unsigned long size = 0, offset = 0; |
| |
| /* |
| * If there's a symbol defined in front of and near enough to |
| * the probe address assume it is the entry point to this |
| * code and use it to further limit how far back we search |
| * when determining if we're in an atomic sequence. If we could |
| * not find any symbol skip the atomic test altogether as we |
| * could otherwise end up searching irrelevant text/literals. |
| * KPROBES depends on KALLSYMS so this last case should never |
| * happen. |
| */ |
| if (kallsyms_lookup_size_offset((unsigned long) addr, &size, &offset)) { |
| if (offset < (MAX_ATOMIC_CONTEXT_SIZE*sizeof(kprobe_opcode_t))) |
| scan_end = addr - (offset / sizeof(kprobe_opcode_t)); |
| else |
| scan_end = addr - MAX_ATOMIC_CONTEXT_SIZE; |
| } |
| decoded = arm_probe_decode_insn(insn, &asi->api); |
| |
| if (decoded != INSN_REJECTED && scan_end) |
| if (is_probed_address_atomic(addr - 1, scan_end)) |
| return INSN_REJECTED; |
| |
| return decoded; |
| } |
| #endif |