|  | /* | 
|  | * PowerPC64 port by Mike Corrigan and Dave Engebretsen | 
|  | *   {mikejc|engebret}@us.ibm.com | 
|  | * | 
|  | *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> | 
|  | * | 
|  | * SMP scalability work: | 
|  | *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | *    Module name: htab.c | 
|  | * | 
|  | *    Description: | 
|  | *      PowerPC Hashed Page Table functions | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  | #undef DEBUG_LOW | 
|  |  | 
|  | #define pr_fmt(fmt) "hash-mmu: " fmt | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/libfdt.h> | 
|  | #include <linux/pkeys.h> | 
|  |  | 
|  | #include <asm/debugfs.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/types.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/eeh.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/copro.h> | 
|  | #include <asm/udbg.h> | 
|  | #include <asm/code-patching.h> | 
|  | #include <asm/fadump.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/tm.h> | 
|  | #include <asm/trace.h> | 
|  | #include <asm/ps3.h> | 
|  | #include <asm/pte-walk.h> | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DBG(fmt...) udbg_printf(fmt) | 
|  | #else | 
|  | #define DBG(fmt...) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_LOW | 
|  | #define DBG_LOW(fmt...) udbg_printf(fmt) | 
|  | #else | 
|  | #define DBG_LOW(fmt...) | 
|  | #endif | 
|  |  | 
|  | #define KB (1024) | 
|  | #define MB (1024*KB) | 
|  | #define GB (1024L*MB) | 
|  |  | 
|  | /* | 
|  | * Note:  pte   --> Linux PTE | 
|  | *        HPTE  --> PowerPC Hashed Page Table Entry | 
|  | * | 
|  | * Execution context: | 
|  | *   htab_initialize is called with the MMU off (of course), but | 
|  | *   the kernel has been copied down to zero so it can directly | 
|  | *   reference global data.  At this point it is very difficult | 
|  | *   to print debug info. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static unsigned long _SDR1; | 
|  | struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | 
|  | EXPORT_SYMBOL_GPL(mmu_psize_defs); | 
|  |  | 
|  | u8 hpte_page_sizes[1 << LP_BITS]; | 
|  | EXPORT_SYMBOL_GPL(hpte_page_sizes); | 
|  |  | 
|  | struct hash_pte *htab_address; | 
|  | unsigned long htab_size_bytes; | 
|  | unsigned long htab_hash_mask; | 
|  | EXPORT_SYMBOL_GPL(htab_hash_mask); | 
|  | int mmu_linear_psize = MMU_PAGE_4K; | 
|  | EXPORT_SYMBOL_GPL(mmu_linear_psize); | 
|  | int mmu_virtual_psize = MMU_PAGE_4K; | 
|  | int mmu_vmalloc_psize = MMU_PAGE_4K; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | int mmu_vmemmap_psize = MMU_PAGE_4K; | 
|  | #endif | 
|  | int mmu_io_psize = MMU_PAGE_4K; | 
|  | int mmu_kernel_ssize = MMU_SEGSIZE_256M; | 
|  | EXPORT_SYMBOL_GPL(mmu_kernel_ssize); | 
|  | int mmu_highuser_ssize = MMU_SEGSIZE_256M; | 
|  | u16 mmu_slb_size = 64; | 
|  | EXPORT_SYMBOL_GPL(mmu_slb_size); | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | int mmu_ci_restrictions; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static u8 *linear_map_hash_slots; | 
|  | static unsigned long linear_map_hash_count; | 
|  | static DEFINE_SPINLOCK(linear_map_hash_lock); | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  | struct mmu_hash_ops mmu_hash_ops; | 
|  | EXPORT_SYMBOL(mmu_hash_ops); | 
|  |  | 
|  | /* There are definitions of page sizes arrays to be used when none | 
|  | * is provided by the firmware. | 
|  | */ | 
|  |  | 
|  | /* Pre-POWER4 CPUs (4k pages only) | 
|  | */ | 
|  | static struct mmu_psize_def mmu_psize_defaults_old[] = { | 
|  | [MMU_PAGE_4K] = { | 
|  | .shift	= 12, | 
|  | .sllp	= 0, | 
|  | .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, | 
|  | .avpnm	= 0, | 
|  | .tlbiel = 0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* POWER4, GPUL, POWER5 | 
|  | * | 
|  | * Support for 16Mb large pages | 
|  | */ | 
|  | static struct mmu_psize_def mmu_psize_defaults_gp[] = { | 
|  | [MMU_PAGE_4K] = { | 
|  | .shift	= 12, | 
|  | .sllp	= 0, | 
|  | .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, | 
|  | .avpnm	= 0, | 
|  | .tlbiel = 1, | 
|  | }, | 
|  | [MMU_PAGE_16M] = { | 
|  | .shift	= 24, | 
|  | .sllp	= SLB_VSID_L, | 
|  | .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, | 
|  | [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, | 
|  | .avpnm	= 0x1UL, | 
|  | .tlbiel = 0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * 'R' and 'C' update notes: | 
|  | *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will* | 
|  | *     create writeable HPTEs without C set, because the hcall H_PROTECT | 
|  | *     that we use in that case will not update C | 
|  | *  - The above is however not a problem, because we also don't do that | 
|  | *     fancy "no flush" variant of eviction and we use H_REMOVE which will | 
|  | *     do the right thing and thus we don't have the race I described earlier | 
|  | * | 
|  | *    - Under bare metal,  we do have the race, so we need R and C set | 
|  | *    - We make sure R is always set and never lost | 
|  | *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping | 
|  | */ | 
|  | unsigned long htab_convert_pte_flags(unsigned long pteflags) | 
|  | { | 
|  | unsigned long rflags = 0; | 
|  |  | 
|  | /* _PAGE_EXEC -> NOEXEC */ | 
|  | if ((pteflags & _PAGE_EXEC) == 0) | 
|  | rflags |= HPTE_R_N; | 
|  | /* | 
|  | * PPP bits: | 
|  | * Linux uses slb key 0 for kernel and 1 for user. | 
|  | * kernel RW areas are mapped with PPP=0b000 | 
|  | * User area is mapped with PPP=0b010 for read/write | 
|  | * or PPP=0b011 for read-only (including writeable but clean pages). | 
|  | */ | 
|  | if (pteflags & _PAGE_PRIVILEGED) { | 
|  | /* | 
|  | * Kernel read only mapped with ppp bits 0b110 | 
|  | */ | 
|  | if (!(pteflags & _PAGE_WRITE)) { | 
|  | if (mmu_has_feature(MMU_FTR_KERNEL_RO)) | 
|  | rflags |= (HPTE_R_PP0 | 0x2); | 
|  | else | 
|  | rflags |= 0x3; | 
|  | } | 
|  | } else { | 
|  | if (pteflags & _PAGE_RWX) | 
|  | rflags |= 0x2; | 
|  | if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) | 
|  | rflags |= 0x1; | 
|  | } | 
|  | /* | 
|  | * We can't allow hardware to update hpte bits. Hence always | 
|  | * set 'R' bit and set 'C' if it is a write fault | 
|  | */ | 
|  | rflags |=  HPTE_R_R; | 
|  |  | 
|  | if (pteflags & _PAGE_DIRTY) | 
|  | rflags |= HPTE_R_C; | 
|  | /* | 
|  | * Add in WIG bits | 
|  | */ | 
|  |  | 
|  | if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) | 
|  | rflags |= HPTE_R_I; | 
|  | else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) | 
|  | rflags |= (HPTE_R_I | HPTE_R_G); | 
|  | else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) | 
|  | rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); | 
|  | else | 
|  | /* | 
|  | * Add memory coherence if cache inhibited is not set | 
|  | */ | 
|  | rflags |= HPTE_R_M; | 
|  |  | 
|  | rflags |= pte_to_hpte_pkey_bits(pteflags); | 
|  | return rflags; | 
|  | } | 
|  |  | 
|  | int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | 
|  | unsigned long pstart, unsigned long prot, | 
|  | int psize, int ssize) | 
|  | { | 
|  | unsigned long vaddr, paddr; | 
|  | unsigned int step, shift; | 
|  | int ret = 0; | 
|  |  | 
|  | shift = mmu_psize_defs[psize].shift; | 
|  | step = 1 << shift; | 
|  |  | 
|  | prot = htab_convert_pte_flags(prot); | 
|  |  | 
|  | DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", | 
|  | vstart, vend, pstart, prot, psize, ssize); | 
|  |  | 
|  | for (vaddr = vstart, paddr = pstart; vaddr < vend; | 
|  | vaddr += step, paddr += step) { | 
|  | unsigned long hash, hpteg; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, ssize); | 
|  | unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize); | 
|  | unsigned long tprot = prot; | 
|  |  | 
|  | /* | 
|  | * If we hit a bad address return error. | 
|  | */ | 
|  | if (!vsid) | 
|  | return -1; | 
|  | /* Make kernel text executable */ | 
|  | if (overlaps_kernel_text(vaddr, vaddr + step)) | 
|  | tprot &= ~HPTE_R_N; | 
|  |  | 
|  | /* Make kvm guest trampolines executable */ | 
|  | if (overlaps_kvm_tmp(vaddr, vaddr + step)) | 
|  | tprot &= ~HPTE_R_N; | 
|  |  | 
|  | /* | 
|  | * If relocatable, check if it overlaps interrupt vectors that | 
|  | * are copied down to real 0. For relocatable kernel | 
|  | * (e.g. kdump case) we copy interrupt vectors down to real | 
|  | * address 0. Mark that region as executable. This is | 
|  | * because on p8 system with relocation on exception feature | 
|  | * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence | 
|  | * in order to execute the interrupt handlers in virtual | 
|  | * mode the vector region need to be marked as executable. | 
|  | */ | 
|  | if ((PHYSICAL_START > MEMORY_START) && | 
|  | overlaps_interrupt_vector_text(vaddr, vaddr + step)) | 
|  | tprot &= ~HPTE_R_N; | 
|  |  | 
|  | hash = hpt_hash(vpn, shift, ssize); | 
|  | hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); | 
|  |  | 
|  | BUG_ON(!mmu_hash_ops.hpte_insert); | 
|  | ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, | 
|  | HPTE_V_BOLTED, psize, psize, | 
|  | ssize); | 
|  |  | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (debug_pagealloc_enabled() && | 
|  | (paddr >> PAGE_SHIFT) < linear_map_hash_count) | 
|  | linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  | } | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | int htab_remove_mapping(unsigned long vstart, unsigned long vend, | 
|  | int psize, int ssize) | 
|  | { | 
|  | unsigned long vaddr; | 
|  | unsigned int step, shift; | 
|  | int rc; | 
|  | int ret = 0; | 
|  |  | 
|  | shift = mmu_psize_defs[psize].shift; | 
|  | step = 1 << shift; | 
|  |  | 
|  | if (!mmu_hash_ops.hpte_removebolted) | 
|  | return -ENODEV; | 
|  |  | 
|  | for (vaddr = vstart; vaddr < vend; vaddr += step) { | 
|  | rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); | 
|  | if (rc == -ENOENT) { | 
|  | ret = -ENOENT; | 
|  | continue; | 
|  | } | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool disable_1tb_segments = false; | 
|  |  | 
|  | static int __init parse_disable_1tb_segments(char *p) | 
|  | { | 
|  | disable_1tb_segments = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("disable_1tb_segments", parse_disable_1tb_segments); | 
|  |  | 
|  | static int __init htab_dt_scan_seg_sizes(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | const __be32 *prop; | 
|  | int size = 0; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); | 
|  | if (prop == NULL) | 
|  | return 0; | 
|  | for (; size >= 4; size -= 4, ++prop) { | 
|  | if (be32_to_cpu(prop[0]) == 40) { | 
|  | DBG("1T segment support detected\n"); | 
|  |  | 
|  | if (disable_1tb_segments) { | 
|  | DBG("1T segments disabled by command line\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init get_idx_from_shift(unsigned int shift) | 
|  | { | 
|  | int idx = -1; | 
|  |  | 
|  | switch (shift) { | 
|  | case 0xc: | 
|  | idx = MMU_PAGE_4K; | 
|  | break; | 
|  | case 0x10: | 
|  | idx = MMU_PAGE_64K; | 
|  | break; | 
|  | case 0x14: | 
|  | idx = MMU_PAGE_1M; | 
|  | break; | 
|  | case 0x18: | 
|  | idx = MMU_PAGE_16M; | 
|  | break; | 
|  | case 0x22: | 
|  | idx = MMU_PAGE_16G; | 
|  | break; | 
|  | } | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static int __init htab_dt_scan_page_sizes(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | const __be32 *prop; | 
|  | int size = 0; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); | 
|  | if (!prop) | 
|  | return 0; | 
|  |  | 
|  | pr_info("Page sizes from device-tree:\n"); | 
|  | size /= 4; | 
|  | cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); | 
|  | while(size > 0) { | 
|  | unsigned int base_shift = be32_to_cpu(prop[0]); | 
|  | unsigned int slbenc = be32_to_cpu(prop[1]); | 
|  | unsigned int lpnum = be32_to_cpu(prop[2]); | 
|  | struct mmu_psize_def *def; | 
|  | int idx, base_idx; | 
|  |  | 
|  | size -= 3; prop += 3; | 
|  | base_idx = get_idx_from_shift(base_shift); | 
|  | if (base_idx < 0) { | 
|  | /* skip the pte encoding also */ | 
|  | prop += lpnum * 2; size -= lpnum * 2; | 
|  | continue; | 
|  | } | 
|  | def = &mmu_psize_defs[base_idx]; | 
|  | if (base_idx == MMU_PAGE_16M) | 
|  | cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; | 
|  |  | 
|  | def->shift = base_shift; | 
|  | if (base_shift <= 23) | 
|  | def->avpnm = 0; | 
|  | else | 
|  | def->avpnm = (1 << (base_shift - 23)) - 1; | 
|  | def->sllp = slbenc; | 
|  | /* | 
|  | * We don't know for sure what's up with tlbiel, so | 
|  | * for now we only set it for 4K and 64K pages | 
|  | */ | 
|  | if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) | 
|  | def->tlbiel = 1; | 
|  | else | 
|  | def->tlbiel = 0; | 
|  |  | 
|  | while (size > 0 && lpnum) { | 
|  | unsigned int shift = be32_to_cpu(prop[0]); | 
|  | int penc  = be32_to_cpu(prop[1]); | 
|  |  | 
|  | prop += 2; size -= 2; | 
|  | lpnum--; | 
|  |  | 
|  | idx = get_idx_from_shift(shift); | 
|  | if (idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (penc == -1) | 
|  | pr_err("Invalid penc for base_shift=%d " | 
|  | "shift=%d\n", base_shift, shift); | 
|  |  | 
|  | def->penc[idx] = penc; | 
|  | pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," | 
|  | " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", | 
|  | base_shift, shift, def->sllp, | 
|  | def->avpnm, def->tlbiel, def->penc[idx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* Scan for 16G memory blocks that have been set aside for huge pages | 
|  | * and reserve those blocks for 16G huge pages. | 
|  | */ | 
|  | static int __init htab_dt_scan_hugepage_blocks(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) { | 
|  | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | const __be64 *addr_prop; | 
|  | const __be32 *page_count_prop; | 
|  | unsigned int expected_pages; | 
|  | long unsigned int phys_addr; | 
|  | long unsigned int block_size; | 
|  |  | 
|  | /* We are scanning "memory" nodes only */ | 
|  | if (type == NULL || strcmp(type, "memory") != 0) | 
|  | return 0; | 
|  |  | 
|  | /* This property is the log base 2 of the number of virtual pages that | 
|  | * will represent this memory block. */ | 
|  | page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); | 
|  | if (page_count_prop == NULL) | 
|  | return 0; | 
|  | expected_pages = (1 << be32_to_cpu(page_count_prop[0])); | 
|  | addr_prop = of_get_flat_dt_prop(node, "reg", NULL); | 
|  | if (addr_prop == NULL) | 
|  | return 0; | 
|  | phys_addr = be64_to_cpu(addr_prop[0]); | 
|  | block_size = be64_to_cpu(addr_prop[1]); | 
|  | if (block_size != (16 * GB)) | 
|  | return 0; | 
|  | printk(KERN_INFO "Huge page(16GB) memory: " | 
|  | "addr = 0x%lX size = 0x%lX pages = %d\n", | 
|  | phys_addr, block_size, expected_pages); | 
|  | if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { | 
|  | memblock_reserve(phys_addr, block_size * expected_pages); | 
|  | pseries_add_gpage(phys_addr, block_size, expected_pages); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | static void mmu_psize_set_default_penc(void) | 
|  | { | 
|  | int bpsize, apsize; | 
|  | for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) | 
|  | for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) | 
|  | mmu_psize_defs[bpsize].penc[apsize] = -1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  |  | 
|  | static bool might_have_hea(void) | 
|  | { | 
|  | /* | 
|  | * The HEA ethernet adapter requires awareness of the | 
|  | * GX bus. Without that awareness we can easily assume | 
|  | * we will never see an HEA ethernet device. | 
|  | */ | 
|  | #ifdef CONFIG_IBMEBUS | 
|  | return !cpu_has_feature(CPU_FTR_ARCH_207S) && | 
|  | firmware_has_feature(FW_FEATURE_SPLPAR); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | static void __init htab_scan_page_sizes(void) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* se the invalid penc to -1 */ | 
|  | mmu_psize_set_default_penc(); | 
|  |  | 
|  | /* Default to 4K pages only */ | 
|  | memcpy(mmu_psize_defs, mmu_psize_defaults_old, | 
|  | sizeof(mmu_psize_defaults_old)); | 
|  |  | 
|  | /* | 
|  | * Try to find the available page sizes in the device-tree | 
|  | */ | 
|  | rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); | 
|  | if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { | 
|  | /* | 
|  | * Nothing in the device-tree, but the CPU supports 16M pages, | 
|  | * so let's fallback on a known size list for 16M capable CPUs. | 
|  | */ | 
|  | memcpy(mmu_psize_defs, mmu_psize_defaults_gp, | 
|  | sizeof(mmu_psize_defaults_gp)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* Reserve 16G huge page memory sections for huge pages */ | 
|  | of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the hpte_page_sizes[] array. | 
|  | * We go through the mmu_psize_defs[] array looking for all the | 
|  | * supported base/actual page size combinations.  Each combination | 
|  | * has a unique pagesize encoding (penc) value in the low bits of | 
|  | * the LP field of the HPTE.  For actual page sizes less than 1MB, | 
|  | * some of the upper LP bits are used for RPN bits, meaning that | 
|  | * we need to fill in several entries in hpte_page_sizes[]. | 
|  | * | 
|  | * In diagrammatic form, with r = RPN bits and z = page size bits: | 
|  | *        PTE LP     actual page size | 
|  | *    rrrr rrrz		>=8KB | 
|  | *    rrrr rrzz		>=16KB | 
|  | *    rrrr rzzz		>=32KB | 
|  | *    rrrr zzzz		>=64KB | 
|  | *    ... | 
|  | * | 
|  | * The zzzz bits are implementation-specific but are chosen so that | 
|  | * no encoding for a larger page size uses the same value in its | 
|  | * low-order N bits as the encoding for the 2^(12+N) byte page size | 
|  | * (if it exists). | 
|  | */ | 
|  | static void init_hpte_page_sizes(void) | 
|  | { | 
|  | long int ap, bp; | 
|  | long int shift, penc; | 
|  |  | 
|  | for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { | 
|  | if (!mmu_psize_defs[bp].shift) | 
|  | continue;	/* not a supported page size */ | 
|  | for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { | 
|  | penc = mmu_psize_defs[bp].penc[ap]; | 
|  | if (penc == -1 || !mmu_psize_defs[ap].shift) | 
|  | continue; | 
|  | shift = mmu_psize_defs[ap].shift - LP_SHIFT; | 
|  | if (shift <= 0) | 
|  | continue;	/* should never happen */ | 
|  | /* | 
|  | * For page sizes less than 1MB, this loop | 
|  | * replicates the entry for all possible values | 
|  | * of the rrrr bits. | 
|  | */ | 
|  | while (penc < (1 << LP_BITS)) { | 
|  | hpte_page_sizes[penc] = (ap << 4) | bp; | 
|  | penc += 1 << shift; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init htab_init_page_sizes(void) | 
|  | { | 
|  | init_hpte_page_sizes(); | 
|  |  | 
|  | if (!debug_pagealloc_enabled()) { | 
|  | /* | 
|  | * Pick a size for the linear mapping. Currently, we only | 
|  | * support 16M, 1M and 4K which is the default | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
|  | mmu_linear_psize = MMU_PAGE_16M; | 
|  | else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
|  | mmu_linear_psize = MMU_PAGE_1M; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* | 
|  | * Pick a size for the ordinary pages. Default is 4K, we support | 
|  | * 64K for user mappings and vmalloc if supported by the processor. | 
|  | * We only use 64k for ioremap if the processor | 
|  | * (and firmware) support cache-inhibited large pages. | 
|  | * If not, we use 4k and set mmu_ci_restrictions so that | 
|  | * hash_page knows to switch processes that use cache-inhibited | 
|  | * mappings to 4k pages. | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_64K].shift) { | 
|  | mmu_virtual_psize = MMU_PAGE_64K; | 
|  | mmu_vmalloc_psize = MMU_PAGE_64K; | 
|  | if (mmu_linear_psize == MMU_PAGE_4K) | 
|  | mmu_linear_psize = MMU_PAGE_64K; | 
|  | if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { | 
|  | /* | 
|  | * When running on pSeries using 64k pages for ioremap | 
|  | * would stop us accessing the HEA ethernet. So if we | 
|  | * have the chance of ever seeing one, stay at 4k. | 
|  | */ | 
|  | if (!might_have_hea()) | 
|  | mmu_io_psize = MMU_PAGE_64K; | 
|  | } else | 
|  | mmu_ci_restrictions = 1; | 
|  | } | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | /* We try to use 16M pages for vmemmap if that is supported | 
|  | * and we have at least 1G of RAM at boot | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_16M].shift && | 
|  | memblock_phys_mem_size() >= 0x40000000) | 
|  | mmu_vmemmap_psize = MMU_PAGE_16M; | 
|  | else if (mmu_psize_defs[MMU_PAGE_64K].shift) | 
|  | mmu_vmemmap_psize = MMU_PAGE_64K; | 
|  | else | 
|  | mmu_vmemmap_psize = MMU_PAGE_4K; | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | printk(KERN_DEBUG "Page orders: linear mapping = %d, " | 
|  | "virtual = %d, io = %d" | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | ", vmemmap = %d" | 
|  | #endif | 
|  | "\n", | 
|  | mmu_psize_defs[mmu_linear_psize].shift, | 
|  | mmu_psize_defs[mmu_virtual_psize].shift, | 
|  | mmu_psize_defs[mmu_io_psize].shift | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | ,mmu_psize_defs[mmu_vmemmap_psize].shift | 
|  | #endif | 
|  | ); | 
|  | } | 
|  |  | 
|  | static int __init htab_dt_scan_pftsize(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | const __be32 *prop; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); | 
|  | if (prop != NULL) { | 
|  | /* pft_size[0] is the NUMA CEC cookie */ | 
|  | ppc64_pft_size = be32_to_cpu(prop[1]); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned htab_shift_for_mem_size(unsigned long mem_size) | 
|  | { | 
|  | unsigned memshift = __ilog2(mem_size); | 
|  | unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; | 
|  | unsigned pteg_shift; | 
|  |  | 
|  | /* round mem_size up to next power of 2 */ | 
|  | if ((1UL << memshift) < mem_size) | 
|  | memshift += 1; | 
|  |  | 
|  | /* aim for 2 pages / pteg */ | 
|  | pteg_shift = memshift - (pshift + 1); | 
|  |  | 
|  | /* | 
|  | * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab | 
|  | * size permitted by the architecture. | 
|  | */ | 
|  | return max(pteg_shift + 7, 18U); | 
|  | } | 
|  |  | 
|  | static unsigned long __init htab_get_table_size(void) | 
|  | { | 
|  | /* If hash size isn't already provided by the platform, we try to | 
|  | * retrieve it from the device-tree. If it's not there neither, we | 
|  | * calculate it now based on the total RAM size | 
|  | */ | 
|  | if (ppc64_pft_size == 0) | 
|  | of_scan_flat_dt(htab_dt_scan_pftsize, NULL); | 
|  | if (ppc64_pft_size) | 
|  | return 1UL << ppc64_pft_size; | 
|  |  | 
|  | return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void resize_hpt_for_hotplug(unsigned long new_mem_size) | 
|  | { | 
|  | unsigned target_hpt_shift; | 
|  |  | 
|  | if (!mmu_hash_ops.resize_hpt) | 
|  | return; | 
|  |  | 
|  | target_hpt_shift = htab_shift_for_mem_size(new_mem_size); | 
|  |  | 
|  | /* | 
|  | * To avoid lots of HPT resizes if memory size is fluctuating | 
|  | * across a boundary, we deliberately have some hysterisis | 
|  | * here: we immediately increase the HPT size if the target | 
|  | * shift exceeds the current shift, but we won't attempt to | 
|  | * reduce unless the target shift is at least 2 below the | 
|  | * current shift | 
|  | */ | 
|  | if ((target_hpt_shift > ppc64_pft_size) | 
|  | || (target_hpt_shift < (ppc64_pft_size - 1))) { | 
|  | int rc; | 
|  |  | 
|  | rc = mmu_hash_ops.resize_hpt(target_hpt_shift); | 
|  | if (rc && (rc != -ENODEV)) | 
|  | printk(KERN_WARNING | 
|  | "Unable to resize hash page table to target order %d: %d\n", | 
|  | target_hpt_shift, rc); | 
|  | } | 
|  | } | 
|  |  | 
|  | int hash__create_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | int rc = htab_bolt_mapping(start, end, __pa(start), | 
|  | pgprot_val(PAGE_KERNEL), mmu_linear_psize, | 
|  | mmu_kernel_ssize); | 
|  |  | 
|  | if (rc < 0) { | 
|  | int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, | 
|  | mmu_kernel_ssize); | 
|  | BUG_ON(rc2 && (rc2 != -ENOENT)); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int hash__remove_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | int rc = htab_remove_mapping(start, end, mmu_linear_psize, | 
|  | mmu_kernel_ssize); | 
|  | WARN_ON(rc < 0); | 
|  | return rc; | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | static void update_hid_for_hash(void) | 
|  | { | 
|  | unsigned long hid0; | 
|  | unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */ | 
|  |  | 
|  | asm volatile("ptesync": : :"memory"); | 
|  | /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */ | 
|  | asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) | 
|  | : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory"); | 
|  | asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory"); | 
|  | trace_tlbie(0, 0, rb, 0, 2, 0, 0); | 
|  |  | 
|  | /* | 
|  | * now switch the HID | 
|  | */ | 
|  | hid0  = mfspr(SPRN_HID0); | 
|  | hid0 &= ~HID0_POWER9_RADIX; | 
|  | mtspr(SPRN_HID0, hid0); | 
|  | asm volatile("isync": : :"memory"); | 
|  |  | 
|  | /* Wait for it to happen */ | 
|  | while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX)) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | static void __init hash_init_partition_table(phys_addr_t hash_table, | 
|  | unsigned long htab_size) | 
|  | { | 
|  | mmu_partition_table_init(); | 
|  |  | 
|  | /* | 
|  | * PS field (VRMA page size) is not used for LPID 0, hence set to 0. | 
|  | * For now, UPRT is 0 and we have no segment table. | 
|  | */ | 
|  | htab_size =  __ilog2(htab_size) - 18; | 
|  | mmu_partition_table_set_entry(0, hash_table | htab_size, 0); | 
|  | pr_info("Partition table %p\n", partition_tb); | 
|  | if (cpu_has_feature(CPU_FTR_POWER9_DD1)) | 
|  | update_hid_for_hash(); | 
|  | } | 
|  |  | 
|  | static void __init htab_initialize(void) | 
|  | { | 
|  | unsigned long table; | 
|  | unsigned long pteg_count; | 
|  | unsigned long prot; | 
|  | unsigned long base = 0, size = 0; | 
|  | struct memblock_region *reg; | 
|  |  | 
|  | DBG(" -> htab_initialize()\n"); | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { | 
|  | mmu_kernel_ssize = MMU_SEGSIZE_1T; | 
|  | mmu_highuser_ssize = MMU_SEGSIZE_1T; | 
|  | printk(KERN_INFO "Using 1TB segments\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the required size of the htab.  We want the number of | 
|  | * PTEGs to equal one half the number of real pages. | 
|  | */ | 
|  | htab_size_bytes = htab_get_table_size(); | 
|  | pteg_count = htab_size_bytes >> 7; | 
|  |  | 
|  | htab_hash_mask = pteg_count - 1; | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_LPAR) || | 
|  | firmware_has_feature(FW_FEATURE_PS3_LV1)) { | 
|  | /* Using a hypervisor which owns the htab */ | 
|  | htab_address = NULL; | 
|  | _SDR1 = 0; | 
|  | #ifdef CONFIG_FA_DUMP | 
|  | /* | 
|  | * If firmware assisted dump is active firmware preserves | 
|  | * the contents of htab along with entire partition memory. | 
|  | * Clear the htab if firmware assisted dump is active so | 
|  | * that we dont end up using old mappings. | 
|  | */ | 
|  | if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) | 
|  | mmu_hash_ops.hpte_clear_all(); | 
|  | #endif | 
|  | } else { | 
|  | unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; | 
|  |  | 
|  | #ifdef CONFIG_PPC_CELL | 
|  | /* | 
|  | * Cell may require the hash table down low when using the | 
|  | * Axon IOMMU in order to fit the dynamic region over it, see | 
|  | * comments in cell/iommu.c | 
|  | */ | 
|  | if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { | 
|  | limit = 0x80000000; | 
|  | pr_info("Hash table forced below 2G for Axon IOMMU\n"); | 
|  | } | 
|  | #endif /* CONFIG_PPC_CELL */ | 
|  |  | 
|  | table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, | 
|  | limit); | 
|  |  | 
|  | DBG("Hash table allocated at %lx, size: %lx\n", table, | 
|  | htab_size_bytes); | 
|  |  | 
|  | htab_address = __va(table); | 
|  |  | 
|  | /* htab absolute addr + encoded htabsize */ | 
|  | _SDR1 = table + __ilog2(htab_size_bytes) - 18; | 
|  |  | 
|  | /* Initialize the HPT with no entries */ | 
|  | memset((void *)table, 0, htab_size_bytes); | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | /* Set SDR1 */ | 
|  | mtspr(SPRN_SDR1, _SDR1); | 
|  | else | 
|  | hash_init_partition_table(table, htab_size_bytes); | 
|  | } | 
|  |  | 
|  | prot = pgprot_val(PAGE_KERNEL); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (debug_pagealloc_enabled()) { | 
|  | linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
|  | linear_map_hash_slots = __va(memblock_alloc_base( | 
|  | linear_map_hash_count, 1, ppc64_rma_size)); | 
|  | memset(linear_map_hash_slots, 0, linear_map_hash_count); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | /* create bolted the linear mapping in the hash table */ | 
|  | for_each_memblock(memory, reg) { | 
|  | base = (unsigned long)__va(reg->base); | 
|  | size = reg->size; | 
|  |  | 
|  | DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", | 
|  | base, size, prot); | 
|  |  | 
|  | BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), | 
|  | prot, mmu_linear_psize, mmu_kernel_ssize)); | 
|  | } | 
|  | memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); | 
|  |  | 
|  | /* | 
|  | * If we have a memory_limit and we've allocated TCEs then we need to | 
|  | * explicitly map the TCE area at the top of RAM. We also cope with the | 
|  | * case that the TCEs start below memory_limit. | 
|  | * tce_alloc_start/end are 16MB aligned so the mapping should work | 
|  | * for either 4K or 16MB pages. | 
|  | */ | 
|  | if (tce_alloc_start) { | 
|  | tce_alloc_start = (unsigned long)__va(tce_alloc_start); | 
|  | tce_alloc_end = (unsigned long)__va(tce_alloc_end); | 
|  |  | 
|  | if (base + size >= tce_alloc_start) | 
|  | tce_alloc_start = base + size + 1; | 
|  |  | 
|  | BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, | 
|  | __pa(tce_alloc_start), prot, | 
|  | mmu_linear_psize, mmu_kernel_ssize)); | 
|  | } | 
|  |  | 
|  |  | 
|  | DBG(" <- htab_initialize()\n"); | 
|  | } | 
|  | #undef KB | 
|  | #undef MB | 
|  |  | 
|  | void __init hash__early_init_devtree(void) | 
|  | { | 
|  | /* Initialize segment sizes */ | 
|  | of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); | 
|  |  | 
|  | /* Initialize page sizes */ | 
|  | htab_scan_page_sizes(); | 
|  | } | 
|  |  | 
|  | void __init hash__early_init_mmu(void) | 
|  | { | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | /* | 
|  | * We have code in __hash_page_4K() and elsewhere, which assumes it can | 
|  | * do the following: | 
|  | *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); | 
|  | * | 
|  | * Where the slot number is between 0-15, and values of 8-15 indicate | 
|  | * the secondary bucket. For that code to work H_PAGE_F_SECOND and | 
|  | * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and | 
|  | * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here | 
|  | * with a BUILD_BUG_ON(). | 
|  | */ | 
|  | BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3))); | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | htab_init_page_sizes(); | 
|  |  | 
|  | /* | 
|  | * initialize page table size | 
|  | */ | 
|  | __pte_frag_nr = H_PTE_FRAG_NR; | 
|  | __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; | 
|  |  | 
|  | __pte_index_size = H_PTE_INDEX_SIZE; | 
|  | __pmd_index_size = H_PMD_INDEX_SIZE; | 
|  | __pud_index_size = H_PUD_INDEX_SIZE; | 
|  | __pgd_index_size = H_PGD_INDEX_SIZE; | 
|  | __pud_cache_index = H_PUD_CACHE_INDEX; | 
|  | __pmd_cache_index = H_PMD_CACHE_INDEX; | 
|  | __pte_table_size = H_PTE_TABLE_SIZE; | 
|  | __pmd_table_size = H_PMD_TABLE_SIZE; | 
|  | __pud_table_size = H_PUD_TABLE_SIZE; | 
|  | __pgd_table_size = H_PGD_TABLE_SIZE; | 
|  | /* | 
|  | * 4k use hugepd format, so for hash set then to | 
|  | * zero | 
|  | */ | 
|  | __pmd_val_bits = 0; | 
|  | __pud_val_bits = 0; | 
|  | __pgd_val_bits = 0; | 
|  |  | 
|  | __kernel_virt_start = H_KERN_VIRT_START; | 
|  | __kernel_virt_size = H_KERN_VIRT_SIZE; | 
|  | __vmalloc_start = H_VMALLOC_START; | 
|  | __vmalloc_end = H_VMALLOC_END; | 
|  | __kernel_io_start = H_KERN_IO_START; | 
|  | vmemmap = (struct page *)H_VMEMMAP_BASE; | 
|  | ioremap_bot = IOREMAP_BASE; | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | pci_io_base = ISA_IO_BASE; | 
|  | #endif | 
|  |  | 
|  | /* Select appropriate backend */ | 
|  | if (firmware_has_feature(FW_FEATURE_PS3_LV1)) | 
|  | ps3_early_mm_init(); | 
|  | else if (firmware_has_feature(FW_FEATURE_LPAR)) | 
|  | hpte_init_pseries(); | 
|  | else if (IS_ENABLED(CONFIG_PPC_NATIVE)) | 
|  | hpte_init_native(); | 
|  |  | 
|  | if (!mmu_hash_ops.hpte_insert) | 
|  | panic("hash__early_init_mmu: No MMU hash ops defined!\n"); | 
|  |  | 
|  | /* Initialize the MMU Hash table and create the linear mapping | 
|  | * of memory. Has to be done before SLB initialization as this is | 
|  | * currently where the page size encoding is obtained. | 
|  | */ | 
|  | htab_initialize(); | 
|  |  | 
|  | pr_info("Initializing hash mmu with SLB\n"); | 
|  | /* Initialize SLB management */ | 
|  | slb_initialize(); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_206) | 
|  | && cpu_has_feature(CPU_FTR_HVMODE)) | 
|  | tlbiel_all(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void hash__early_init_mmu_secondary(void) | 
|  | { | 
|  | /* Initialize hash table for that CPU */ | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) { | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_POWER9_DD1)) | 
|  | update_hid_for_hash(); | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | mtspr(SPRN_SDR1, _SDR1); | 
|  | else | 
|  | mtspr(SPRN_PTCR, | 
|  | __pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); | 
|  | } | 
|  | /* Initialize SLB */ | 
|  | slb_initialize(); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_206) | 
|  | && cpu_has_feature(CPU_FTR_HVMODE)) | 
|  | tlbiel_all(); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Called by asm hashtable.S for doing lazy icache flush | 
|  | */ | 
|  | unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pte_pfn(pte))) | 
|  | return pp; | 
|  |  | 
|  | page = pte_page(pte); | 
|  |  | 
|  | /* page is dirty */ | 
|  | if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
|  | if (trap == 0x400) { | 
|  | flush_dcache_icache_page(page); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | } else | 
|  | pp |= HPTE_R_N; | 
|  | } | 
|  | return pp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | static unsigned int get_paca_psize(unsigned long addr) | 
|  | { | 
|  | u64 lpsizes; | 
|  | unsigned char *hpsizes; | 
|  | unsigned long index, mask_index; | 
|  |  | 
|  | if (addr < SLICE_LOW_TOP) { | 
|  | lpsizes = get_paca()->mm_ctx_low_slices_psize; | 
|  | index = GET_LOW_SLICE_INDEX(addr); | 
|  | return (lpsizes >> (index * 4)) & 0xF; | 
|  | } | 
|  | hpsizes = get_paca()->mm_ctx_high_slices_psize; | 
|  | index = GET_HIGH_SLICE_INDEX(addr); | 
|  | mask_index = index & 0x1; | 
|  | return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF; | 
|  | } | 
|  |  | 
|  | #else | 
|  | unsigned int get_paca_psize(unsigned long addr) | 
|  | { | 
|  | return get_paca()->mm_ctx_user_psize; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Demote a segment to using 4k pages. | 
|  | * For now this makes the whole process use 4k pages. | 
|  | */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | void demote_segment_4k(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | if (get_slice_psize(mm, addr) == MMU_PAGE_4K) | 
|  | return; | 
|  | slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); | 
|  | copro_flush_all_slbs(mm); | 
|  | if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { | 
|  |  | 
|  | copy_mm_to_paca(mm); | 
|  | slb_flush_and_rebolt(); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
|  | /* | 
|  | * This looks up a 2-bit protection code for a 4k subpage of a 64k page. | 
|  | * Userspace sets the subpage permissions using the subpage_prot system call. | 
|  | * | 
|  | * Result is 0: full permissions, _PAGE_RW: read-only, | 
|  | * _PAGE_RWX: no access. | 
|  | */ | 
|  | static int subpage_protection(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | struct subpage_prot_table *spt = &mm->context.spt; | 
|  | u32 spp = 0; | 
|  | u32 **sbpm, *sbpp; | 
|  |  | 
|  | if (ea >= spt->maxaddr) | 
|  | return 0; | 
|  | if (ea < 0x100000000UL) { | 
|  | /* addresses below 4GB use spt->low_prot */ | 
|  | sbpm = spt->low_prot; | 
|  | } else { | 
|  | sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; | 
|  | if (!sbpm) | 
|  | return 0; | 
|  | } | 
|  | sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; | 
|  | if (!sbpp) | 
|  | return 0; | 
|  | spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; | 
|  |  | 
|  | /* extract 2-bit bitfield for this 4k subpage */ | 
|  | spp >>= 30 - 2 * ((ea >> 12) & 0xf); | 
|  |  | 
|  | /* | 
|  | * 0 -> full premission | 
|  | * 1 -> Read only | 
|  | * 2 -> no access. | 
|  | * We return the flag that need to be cleared. | 
|  | */ | 
|  | spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); | 
|  | return spp; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PPC_SUBPAGE_PROT */ | 
|  | static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void hash_failure_debug(unsigned long ea, unsigned long access, | 
|  | unsigned long vsid, unsigned long trap, | 
|  | int ssize, int psize, int lpsize, unsigned long pte) | 
|  | { | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  | pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", | 
|  | ea, access, current->comm); | 
|  | pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", | 
|  | trap, vsid, ssize, psize, lpsize, pte); | 
|  | } | 
|  |  | 
|  | static void check_paca_psize(unsigned long ea, struct mm_struct *mm, | 
|  | int psize, bool user_region) | 
|  | { | 
|  | if (user_region) { | 
|  | if (psize != get_paca_psize(ea)) { | 
|  | copy_mm_to_paca(mm); | 
|  | slb_flush_and_rebolt(); | 
|  | } | 
|  | } else if (get_paca()->vmalloc_sllp != | 
|  | mmu_psize_defs[mmu_vmalloc_psize].sllp) { | 
|  | get_paca()->vmalloc_sllp = | 
|  | mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | slb_vmalloc_update(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Result code is: | 
|  | *  0 - handled | 
|  | *  1 - normal page fault | 
|  | * -1 - critical hash insertion error | 
|  | * -2 - access not permitted by subpage protection mechanism | 
|  | */ | 
|  | int hash_page_mm(struct mm_struct *mm, unsigned long ea, | 
|  | unsigned long access, unsigned long trap, | 
|  | unsigned long flags) | 
|  | { | 
|  | bool is_thp; | 
|  | enum ctx_state prev_state = exception_enter(); | 
|  | pgd_t *pgdir; | 
|  | unsigned long vsid; | 
|  | pte_t *ptep; | 
|  | unsigned hugeshift; | 
|  | int rc, user_region = 0; | 
|  | int psize, ssize; | 
|  |  | 
|  | DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", | 
|  | ea, access, trap); | 
|  | trace_hash_fault(ea, access, trap); | 
|  |  | 
|  | /* Get region & vsid */ | 
|  | switch (REGION_ID(ea)) { | 
|  | case USER_REGION_ID: | 
|  | user_region = 1; | 
|  | if (! mm) { | 
|  | DBG_LOW(" user region with no mm !\n"); | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  | psize = get_slice_psize(mm, ea); | 
|  | ssize = user_segment_size(ea); | 
|  | vsid = get_vsid(mm->context.id, ea, ssize); | 
|  | break; | 
|  | case VMALLOC_REGION_ID: | 
|  | vsid = get_kernel_vsid(ea, mmu_kernel_ssize); | 
|  | if (ea < VMALLOC_END) | 
|  | psize = mmu_vmalloc_psize; | 
|  | else | 
|  | psize = mmu_io_psize; | 
|  | ssize = mmu_kernel_ssize; | 
|  | break; | 
|  | default: | 
|  | /* Not a valid range | 
|  | * Send the problem up to do_page_fault | 
|  | */ | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  | DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); | 
|  |  | 
|  | /* Bad address. */ | 
|  | if (!vsid) { | 
|  | DBG_LOW("Bad address!\n"); | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  | /* Get pgdir */ | 
|  | pgdir = mm->pgd; | 
|  | if (pgdir == NULL) { | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* Check CPU locality */ | 
|  | if (user_region && mm_is_thread_local(mm)) | 
|  | flags |= HPTE_LOCAL_UPDATE; | 
|  |  | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | /* If we use 4K pages and our psize is not 4K, then we might | 
|  | * be hitting a special driver mapping, and need to align the | 
|  | * address before we fetch the PTE. | 
|  | * | 
|  | * It could also be a hugepage mapping, in which case this is | 
|  | * not necessary, but it's not harmful, either. | 
|  | */ | 
|  | if (psize != MMU_PAGE_4K) | 
|  | ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | /* Get PTE and page size from page tables */ | 
|  | ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); | 
|  | if (ptep == NULL || !pte_present(*ptep)) { | 
|  | DBG_LOW(" no PTE !\n"); | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* Add _PAGE_PRESENT to the required access perm */ | 
|  | access |= _PAGE_PRESENT; | 
|  |  | 
|  | /* Pre-check access permissions (will be re-checked atomically | 
|  | * in __hash_page_XX but this pre-check is a fast path | 
|  | */ | 
|  | if (!check_pte_access(access, pte_val(*ptep))) { | 
|  | DBG_LOW(" no access !\n"); | 
|  | rc = 1; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (hugeshift) { | 
|  | if (is_thp) | 
|  | rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, | 
|  | trap, flags, ssize, psize); | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | else | 
|  | rc = __hash_page_huge(ea, access, vsid, ptep, trap, | 
|  | flags, ssize, hugeshift, psize); | 
|  | #else | 
|  | else { | 
|  | /* | 
|  | * if we have hugeshift, and is not transhuge with | 
|  | * hugetlb disabled, something is really wrong. | 
|  | */ | 
|  | rc = 1; | 
|  | WARN_ON(1); | 
|  | } | 
|  | #endif | 
|  | if (current->mm == mm) | 
|  | check_paca_psize(ea, mm, psize, user_region); | 
|  |  | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); | 
|  | #else | 
|  | DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), | 
|  | pte_val(*(ptep + PTRS_PER_PTE))); | 
|  | #endif | 
|  | /* Do actual hashing */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ | 
|  | if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { | 
|  | demote_segment_4k(mm, ea); | 
|  | psize = MMU_PAGE_4K; | 
|  | } | 
|  |  | 
|  | /* If this PTE is non-cacheable and we have restrictions on | 
|  | * using non cacheable large pages, then we switch to 4k | 
|  | */ | 
|  | if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { | 
|  | if (user_region) { | 
|  | demote_segment_4k(mm, ea); | 
|  | psize = MMU_PAGE_4K; | 
|  | } else if (ea < VMALLOC_END) { | 
|  | /* | 
|  | * some driver did a non-cacheable mapping | 
|  | * in vmalloc space, so switch vmalloc | 
|  | * to 4k pages | 
|  | */ | 
|  | printk(KERN_ALERT "Reducing vmalloc segment " | 
|  | "to 4kB pages because of " | 
|  | "non-cacheable mapping\n"); | 
|  | psize = mmu_vmalloc_psize = MMU_PAGE_4K; | 
|  | copro_flush_all_slbs(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | if (current->mm == mm) | 
|  | check_paca_psize(ea, mm, psize, user_region); | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | if (psize == MMU_PAGE_64K) | 
|  | rc = __hash_page_64K(ea, access, vsid, ptep, trap, | 
|  | flags, ssize); | 
|  | else | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  | { | 
|  | int spp = subpage_protection(mm, ea); | 
|  | if (access & spp) | 
|  | rc = -2; | 
|  | else | 
|  | rc = __hash_page_4K(ea, access, vsid, ptep, trap, | 
|  | flags, ssize, spp); | 
|  | } | 
|  |  | 
|  | /* Dump some info in case of hash insertion failure, they should | 
|  | * never happen so it is really useful to know if/when they do | 
|  | */ | 
|  | if (rc == -1) | 
|  | hash_failure_debug(ea, access, vsid, trap, ssize, psize, | 
|  | psize, pte_val(*ptep)); | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); | 
|  | #else | 
|  | DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), | 
|  | pte_val(*(ptep + PTRS_PER_PTE))); | 
|  | #endif | 
|  | DBG_LOW(" -> rc=%d\n", rc); | 
|  |  | 
|  | bail: | 
|  | exception_exit(prev_state); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hash_page_mm); | 
|  |  | 
|  | int hash_page(unsigned long ea, unsigned long access, unsigned long trap, | 
|  | unsigned long dsisr) | 
|  | { | 
|  | unsigned long flags = 0; | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | if (REGION_ID(ea) == VMALLOC_REGION_ID) | 
|  | mm = &init_mm; | 
|  |  | 
|  | if (dsisr & DSISR_NOHPTE) | 
|  | flags |= HPTE_NOHPTE_UPDATE; | 
|  |  | 
|  | return hash_page_mm(mm, ea, access, trap, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hash_page); | 
|  |  | 
|  | int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap, | 
|  | unsigned long dsisr) | 
|  | { | 
|  | unsigned long access = _PAGE_PRESENT | _PAGE_READ; | 
|  | unsigned long flags = 0; | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | if (REGION_ID(ea) == VMALLOC_REGION_ID) | 
|  | mm = &init_mm; | 
|  |  | 
|  | if (dsisr & DSISR_NOHPTE) | 
|  | flags |= HPTE_NOHPTE_UPDATE; | 
|  |  | 
|  | if (dsisr & DSISR_ISSTORE) | 
|  | access |= _PAGE_WRITE; | 
|  | /* | 
|  | * We set _PAGE_PRIVILEGED only when | 
|  | * kernel mode access kernel space. | 
|  | * | 
|  | * _PAGE_PRIVILEGED is NOT set | 
|  | * 1) when kernel mode access user space | 
|  | * 2) user space access kernel space. | 
|  | */ | 
|  | access |= _PAGE_PRIVILEGED; | 
|  | if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID)) | 
|  | access &= ~_PAGE_PRIVILEGED; | 
|  |  | 
|  | if (trap == 0x400) | 
|  | access |= _PAGE_EXEC; | 
|  |  | 
|  | return hash_page_mm(mm, ea, access, trap, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | int psize = get_slice_psize(mm, ea); | 
|  |  | 
|  | /* We only prefault standard pages for now */ | 
|  | if (unlikely(psize != mm->context.user_psize)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Don't prefault if subpage protection is enabled for the EA. | 
|  | */ | 
|  | if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void hash_preload(struct mm_struct *mm, unsigned long ea, | 
|  | unsigned long access, unsigned long trap) | 
|  | { | 
|  | int hugepage_shift; | 
|  | unsigned long vsid; | 
|  | pgd_t *pgdir; | 
|  | pte_t *ptep; | 
|  | unsigned long flags; | 
|  | int rc, ssize, update_flags = 0; | 
|  |  | 
|  | BUG_ON(REGION_ID(ea) != USER_REGION_ID); | 
|  |  | 
|  | if (!should_hash_preload(mm, ea)) | 
|  | return; | 
|  |  | 
|  | DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," | 
|  | " trap=%lx\n", mm, mm->pgd, ea, access, trap); | 
|  |  | 
|  | /* Get Linux PTE if available */ | 
|  | pgdir = mm->pgd; | 
|  | if (pgdir == NULL) | 
|  | return; | 
|  |  | 
|  | /* Get VSID */ | 
|  | ssize = user_segment_size(ea); | 
|  | vsid = get_vsid(mm->context.id, ea, ssize); | 
|  | if (!vsid) | 
|  | return; | 
|  | /* | 
|  | * Hash doesn't like irqs. Walking linux page table with irq disabled | 
|  | * saves us from holding multiple locks. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * THP pages use update_mmu_cache_pmd. We don't do | 
|  | * hash preload there. Hence can ignore THP here | 
|  | */ | 
|  | ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift); | 
|  | if (!ptep) | 
|  | goto out_exit; | 
|  |  | 
|  | WARN_ON(hugepage_shift); | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on | 
|  | * a 64K kernel), then we don't preload, hash_page() will take | 
|  | * care of it once we actually try to access the page. | 
|  | * That way we don't have to duplicate all of the logic for segment | 
|  | * page size demotion here | 
|  | */ | 
|  | if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) | 
|  | goto out_exit; | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | /* Is that local to this CPU ? */ | 
|  | if (mm_is_thread_local(mm)) | 
|  | update_flags |= HPTE_LOCAL_UPDATE; | 
|  |  | 
|  | /* Hash it in */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | if (mm->context.user_psize == MMU_PAGE_64K) | 
|  | rc = __hash_page_64K(ea, access, vsid, ptep, trap, | 
|  | update_flags, ssize); | 
|  | else | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  | rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, | 
|  | ssize, subpage_protection(mm, ea)); | 
|  |  | 
|  | /* Dump some info in case of hash insertion failure, they should | 
|  | * never happen so it is really useful to know if/when they do | 
|  | */ | 
|  | if (rc == -1) | 
|  | hash_failure_debug(ea, access, vsid, trap, ssize, | 
|  | mm->context.user_psize, | 
|  | mm->context.user_psize, | 
|  | pte_val(*ptep)); | 
|  | out_exit: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_MEM_KEYS | 
|  | /* | 
|  | * Return the protection key associated with the given address and the | 
|  | * mm_struct. | 
|  | */ | 
|  | u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | pte_t *ptep; | 
|  | u16 pkey = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!mm || !mm->pgd) | 
|  | return 0; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | ptep = find_linux_pte(mm->pgd, address, NULL, NULL); | 
|  | if (ptep) | 
|  | pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep))); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return pkey; | 
|  | } | 
|  | #endif /* CONFIG_PPC_MEM_KEYS */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | static inline void tm_flush_hash_page(int local) | 
|  | { | 
|  | /* | 
|  | * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a | 
|  | * page back to a block device w/PIO could pick up transactional data | 
|  | * (bad!) so we force an abort here. Before the sync the page will be | 
|  | * made read-only, which will flush_hash_page. BIG ISSUE here: if the | 
|  | * kernel uses a page from userspace without unmapping it first, it may | 
|  | * see the speculated version. | 
|  | */ | 
|  | if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && | 
|  | MSR_TM_ACTIVE(current->thread.regs->msr)) { | 
|  | tm_enable(); | 
|  | tm_abort(TM_CAUSE_TLBI); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void tm_flush_hash_page(int local) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Return the global hash slot, corresponding to the given PTE, which contains | 
|  | * the HPTE. | 
|  | */ | 
|  | unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, | 
|  | int ssize, real_pte_t rpte, unsigned int subpg_index) | 
|  | { | 
|  | unsigned long hash, gslot, hidx; | 
|  |  | 
|  | hash = hpt_hash(vpn, shift, ssize); | 
|  | hidx = __rpte_to_hidx(rpte, subpg_index); | 
|  | if (hidx & _PTEIDX_SECONDARY) | 
|  | hash = ~hash; | 
|  | gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | gslot += hidx & _PTEIDX_GROUP_IX; | 
|  | return gslot; | 
|  | } | 
|  |  | 
|  | /* WARNING: This is called from hash_low_64.S, if you change this prototype, | 
|  | *          do not forget to update the assembly call site ! | 
|  | */ | 
|  | void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, | 
|  | unsigned long flags) | 
|  | { | 
|  | unsigned long index, shift, gslot; | 
|  | int local = flags & HPTE_LOCAL_UPDATE; | 
|  |  | 
|  | DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); | 
|  | pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { | 
|  | gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); | 
|  | DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); | 
|  | /* | 
|  | * We use same base page size and actual psize, because we don't | 
|  | * use these functions for hugepage | 
|  | */ | 
|  | mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, | 
|  | ssize, local); | 
|  | } pte_iterate_hashed_end(); | 
|  |  | 
|  | tm_flush_hash_page(local); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | void flush_hash_hugepage(unsigned long vsid, unsigned long addr, | 
|  | pmd_t *pmdp, unsigned int psize, int ssize, | 
|  | unsigned long flags) | 
|  | { | 
|  | int i, max_hpte_count, valid; | 
|  | unsigned long s_addr; | 
|  | unsigned char *hpte_slot_array; | 
|  | unsigned long hidx, shift, vpn, hash, slot; | 
|  | int local = flags & HPTE_LOCAL_UPDATE; | 
|  |  | 
|  | s_addr = addr & HPAGE_PMD_MASK; | 
|  | hpte_slot_array = get_hpte_slot_array(pmdp); | 
|  | /* | 
|  | * IF we try to do a HUGE PTE update after a withdraw is done. | 
|  | * we will find the below NULL. This happens when we do | 
|  | * split_huge_page_pmd | 
|  | */ | 
|  | if (!hpte_slot_array) | 
|  | return; | 
|  |  | 
|  | if (mmu_hash_ops.hugepage_invalidate) { | 
|  | mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, | 
|  | psize, ssize, local); | 
|  | goto tm_abort; | 
|  | } | 
|  | /* | 
|  | * No bluk hpte removal support, invalidate each entry | 
|  | */ | 
|  | shift = mmu_psize_defs[psize].shift; | 
|  | max_hpte_count = HPAGE_PMD_SIZE >> shift; | 
|  | for (i = 0; i < max_hpte_count; i++) { | 
|  | /* | 
|  | * 8 bits per each hpte entries | 
|  | * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] | 
|  | */ | 
|  | valid = hpte_valid(hpte_slot_array, i); | 
|  | if (!valid) | 
|  | continue; | 
|  | hidx =  hpte_hash_index(hpte_slot_array, i); | 
|  |  | 
|  | /* get the vpn */ | 
|  | addr = s_addr + (i * (1ul << shift)); | 
|  | vpn = hpt_vpn(addr, vsid, ssize); | 
|  | hash = hpt_hash(vpn, shift, ssize); | 
|  | if (hidx & _PTEIDX_SECONDARY) | 
|  | hash = ~hash; | 
|  |  | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += hidx & _PTEIDX_GROUP_IX; | 
|  | mmu_hash_ops.hpte_invalidate(slot, vpn, psize, | 
|  | MMU_PAGE_16M, ssize, local); | 
|  | } | 
|  | tm_abort: | 
|  | tm_flush_hash_page(local); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | void flush_hash_range(unsigned long number, int local) | 
|  | { | 
|  | if (mmu_hash_ops.flush_hash_range) | 
|  | mmu_hash_ops.flush_hash_range(number, local); | 
|  | else { | 
|  | int i; | 
|  | struct ppc64_tlb_batch *batch = | 
|  | this_cpu_ptr(&ppc64_tlb_batch); | 
|  |  | 
|  | for (i = 0; i < number; i++) | 
|  | flush_hash_page(batch->vpn[i], batch->pte[i], | 
|  | batch->psize, batch->ssize, local); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * low_hash_fault is called when we the low level hash code failed | 
|  | * to instert a PTE due to an hypervisor error | 
|  | */ | 
|  | void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc) | 
|  | { | 
|  | enum ctx_state prev_state = exception_enter(); | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
|  | if (rc == -2) | 
|  | _exception(SIGSEGV, regs, SEGV_ACCERR, address); | 
|  | else | 
|  | #endif | 
|  | _exception(SIGBUS, regs, BUS_ADRERR, address); | 
|  | } else | 
|  | bad_page_fault(regs, address, SIGBUS); | 
|  |  | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | long hpte_insert_repeating(unsigned long hash, unsigned long vpn, | 
|  | unsigned long pa, unsigned long rflags, | 
|  | unsigned long vflags, int psize, int ssize) | 
|  | { | 
|  | unsigned long hpte_group; | 
|  | long slot; | 
|  |  | 
|  | repeat: | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  |  | 
|  | /* Insert into the hash table, primary slot */ | 
|  | slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, | 
|  | psize, psize, ssize); | 
|  |  | 
|  | /* Primary is full, try the secondary */ | 
|  | if (unlikely(slot == -1)) { | 
|  | hpte_group = ((~hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  | slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, | 
|  | vflags | HPTE_V_SECONDARY, | 
|  | psize, psize, ssize); | 
|  | if (slot == -1) { | 
|  | if (mftb() & 0x1) | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP)&~0x7UL; | 
|  |  | 
|  | mmu_hash_ops.hpte_remove(hpte_group); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) | 
|  | { | 
|  | unsigned long hash; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); | 
|  | unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); | 
|  | unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL)); | 
|  | long ret; | 
|  |  | 
|  | hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); | 
|  |  | 
|  | /* Don't create HPTE entries for bad address */ | 
|  | if (!vsid) | 
|  | return; | 
|  |  | 
|  | ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, | 
|  | HPTE_V_BOLTED, | 
|  | mmu_linear_psize, mmu_kernel_ssize); | 
|  |  | 
|  | BUG_ON (ret < 0); | 
|  | spin_lock(&linear_map_hash_lock); | 
|  | BUG_ON(linear_map_hash_slots[lmi] & 0x80); | 
|  | linear_map_hash_slots[lmi] = ret | 0x80; | 
|  | spin_unlock(&linear_map_hash_lock); | 
|  | } | 
|  |  | 
|  | static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) | 
|  | { | 
|  | unsigned long hash, hidx, slot; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); | 
|  | unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); | 
|  |  | 
|  | hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); | 
|  | spin_lock(&linear_map_hash_lock); | 
|  | BUG_ON(!(linear_map_hash_slots[lmi] & 0x80)); | 
|  | hidx = linear_map_hash_slots[lmi] & 0x7f; | 
|  | linear_map_hash_slots[lmi] = 0; | 
|  | spin_unlock(&linear_map_hash_lock); | 
|  | if (hidx & _PTEIDX_SECONDARY) | 
|  | hash = ~hash; | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += hidx & _PTEIDX_GROUP_IX; | 
|  | mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, | 
|  | mmu_linear_psize, | 
|  | mmu_kernel_ssize, 0); | 
|  | } | 
|  |  | 
|  | void __kernel_map_pages(struct page *page, int numpages, int enable) | 
|  | { | 
|  | unsigned long flags, vaddr, lmi; | 
|  | int i; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | for (i = 0; i < numpages; i++, page++) { | 
|  | vaddr = (unsigned long)page_address(page); | 
|  | lmi = __pa(vaddr) >> PAGE_SHIFT; | 
|  | if (lmi >= linear_map_hash_count) | 
|  | continue; | 
|  | if (enable) | 
|  | kernel_map_linear_page(vaddr, lmi); | 
|  | else | 
|  | kernel_unmap_linear_page(vaddr, lmi); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, | 
|  | phys_addr_t first_memblock_size) | 
|  | { | 
|  | /* We don't currently support the first MEMBLOCK not mapping 0 | 
|  | * physical on those processors | 
|  | */ | 
|  | BUG_ON(first_memblock_base != 0); | 
|  |  | 
|  | /* | 
|  | * On virtualized systems the first entry is our RMA region aka VRMA, | 
|  | * non-virtualized 64-bit hash MMU systems don't have a limitation | 
|  | * on real mode access. | 
|  | * | 
|  | * For guests on platforms before POWER9, we clamp the it limit to 1G | 
|  | * to avoid some funky things such as RTAS bugs etc... | 
|  | */ | 
|  | if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | ppc64_rma_size = first_memblock_size; | 
|  | if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); | 
|  |  | 
|  | /* Finally limit subsequent allocations */ | 
|  | memblock_set_current_limit(ppc64_rma_size); | 
|  | } else { | 
|  | ppc64_rma_size = ULONG_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  |  | 
|  | static int hpt_order_get(void *data, u64 *val) | 
|  | { | 
|  | *val = ppc64_pft_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpt_order_set(void *data, u64 val) | 
|  | { | 
|  | if (!mmu_hash_ops.resize_hpt) | 
|  | return -ENODEV; | 
|  |  | 
|  | return mmu_hash_ops.resize_hpt(val); | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); | 
|  |  | 
|  | static int __init hash64_debugfs(void) | 
|  | { | 
|  | if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, | 
|  | NULL, &fops_hpt_order)) { | 
|  | pr_err("lpar: unable to create hpt_order debugsfs file\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | machine_device_initcall(pseries, hash64_debugfs); | 
|  | #endif /* CONFIG_DEBUG_FS */ |