|  | /* | 
|  | * Contains common pci routines for ALL ppc platform | 
|  | * (based on pci_32.c and pci_64.c) | 
|  | * | 
|  | * Port for PPC64 David Engebretsen, IBM Corp. | 
|  | * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. | 
|  | * | 
|  | * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | *   Rework, based on alpha PCI code. | 
|  | * | 
|  | * Common pmac/prep/chrp pci routines. -- Cort | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_pci.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vgaarb.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/pci-bridge.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/ppc-pci.h> | 
|  | #include <asm/eeh.h> | 
|  |  | 
|  | /* hose_spinlock protects accesses to the the phb_bitmap. */ | 
|  | static DEFINE_SPINLOCK(hose_spinlock); | 
|  | LIST_HEAD(hose_list); | 
|  |  | 
|  | /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ | 
|  | #define MAX_PHBS 0x10000 | 
|  |  | 
|  | /* | 
|  | * For dynamic PHB numbering: used/free PHBs tracking bitmap. | 
|  | * Accesses to this bitmap should be protected by hose_spinlock. | 
|  | */ | 
|  | static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); | 
|  |  | 
|  | /* ISA Memory physical address */ | 
|  | resource_size_t isa_mem_base; | 
|  | EXPORT_SYMBOL(isa_mem_base); | 
|  |  | 
|  |  | 
|  | static const struct dma_map_ops *pci_dma_ops = &dma_nommu_ops; | 
|  |  | 
|  | void set_pci_dma_ops(const struct dma_map_ops *dma_ops) | 
|  | { | 
|  | pci_dma_ops = dma_ops; | 
|  | } | 
|  |  | 
|  | const struct dma_map_ops *get_pci_dma_ops(void) | 
|  | { | 
|  | return pci_dma_ops; | 
|  | } | 
|  | EXPORT_SYMBOL(get_pci_dma_ops); | 
|  |  | 
|  | /* | 
|  | * This function should run under locking protection, specifically | 
|  | * hose_spinlock. | 
|  | */ | 
|  | static int get_phb_number(struct device_node *dn) | 
|  | { | 
|  | int ret, phb_id = -1; | 
|  | u32 prop_32; | 
|  | u64 prop; | 
|  |  | 
|  | /* | 
|  | * Try fixed PHB numbering first, by checking archs and reading | 
|  | * the respective device-tree properties. Firstly, try powernv by | 
|  | * reading "ibm,opal-phbid", only present in OPAL environment. | 
|  | */ | 
|  | ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); | 
|  | if (ret) { | 
|  | ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); | 
|  | prop = prop_32; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | phb_id = (int)(prop & (MAX_PHBS - 1)); | 
|  |  | 
|  | /* We need to be sure to not use the same PHB number twice. */ | 
|  | if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) | 
|  | return phb_id; | 
|  |  | 
|  | /* | 
|  | * If not pseries nor powernv, or if fixed PHB numbering tried to add | 
|  | * the same PHB number twice, then fallback to dynamic PHB numbering. | 
|  | */ | 
|  | phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); | 
|  | BUG_ON(phb_id >= MAX_PHBS); | 
|  | set_bit(phb_id, phb_bitmap); | 
|  |  | 
|  | return phb_id; | 
|  | } | 
|  |  | 
|  | struct pci_controller *pcibios_alloc_controller(struct device_node *dev) | 
|  | { | 
|  | struct pci_controller *phb; | 
|  |  | 
|  | phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); | 
|  | if (phb == NULL) | 
|  | return NULL; | 
|  | spin_lock(&hose_spinlock); | 
|  | phb->global_number = get_phb_number(dev); | 
|  | list_add_tail(&phb->list_node, &hose_list); | 
|  | spin_unlock(&hose_spinlock); | 
|  | phb->dn = dev; | 
|  | phb->is_dynamic = slab_is_available(); | 
|  | #ifdef CONFIG_PPC64 | 
|  | if (dev) { | 
|  | int nid = of_node_to_nid(dev); | 
|  |  | 
|  | if (nid < 0 || !node_online(nid)) | 
|  | nid = -1; | 
|  |  | 
|  | PHB_SET_NODE(phb, nid); | 
|  | } | 
|  | #endif | 
|  | return phb; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_alloc_controller); | 
|  |  | 
|  | void pcibios_free_controller(struct pci_controller *phb) | 
|  | { | 
|  | spin_lock(&hose_spinlock); | 
|  |  | 
|  | /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ | 
|  | if (phb->global_number < MAX_PHBS) | 
|  | clear_bit(phb->global_number, phb_bitmap); | 
|  |  | 
|  | list_del(&phb->list_node); | 
|  | spin_unlock(&hose_spinlock); | 
|  |  | 
|  | if (phb->is_dynamic) | 
|  | kfree(phb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_free_controller); | 
|  |  | 
|  | /* | 
|  | * This function is used to call pcibios_free_controller() | 
|  | * in a deferred manner: a callback from the PCI subsystem. | 
|  | * | 
|  | * _*DO NOT*_ call pcibios_free_controller() explicitly if | 
|  | * this is used (or it may access an invalid *phb pointer). | 
|  | * | 
|  | * The callback occurs when all references to the root bus | 
|  | * are dropped (e.g., child buses/devices and their users). | 
|  | * | 
|  | * It's called as .release_fn() of 'struct pci_host_bridge' | 
|  | * which is associated with the 'struct pci_controller.bus' | 
|  | * (root bus) - it expects .release_data to hold a pointer | 
|  | * to 'struct pci_controller'. | 
|  | * | 
|  | * In order to use it, register .release_fn()/release_data | 
|  | * like this: | 
|  | * | 
|  | * pci_set_host_bridge_release(bridge, | 
|  | *                             pcibios_free_controller_deferred | 
|  | *                             (void *) phb); | 
|  | * | 
|  | * e.g. in the pcibios_root_bridge_prepare() callback from | 
|  | * pci_create_root_bus(). | 
|  | */ | 
|  | void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) | 
|  | { | 
|  | struct pci_controller *phb = (struct pci_controller *) | 
|  | bridge->release_data; | 
|  |  | 
|  | pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); | 
|  |  | 
|  | pcibios_free_controller(phb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); | 
|  |  | 
|  | /* | 
|  | * The function is used to return the minimal alignment | 
|  | * for memory or I/O windows of the associated P2P bridge. | 
|  | * By default, 4KiB alignment for I/O windows and 1MiB for | 
|  | * memory windows. | 
|  | */ | 
|  | resource_size_t pcibios_window_alignment(struct pci_bus *bus, | 
|  | unsigned long type) | 
|  | { | 
|  | struct pci_controller *phb = pci_bus_to_host(bus); | 
|  |  | 
|  | if (phb->controller_ops.window_alignment) | 
|  | return phb->controller_ops.window_alignment(bus, type); | 
|  |  | 
|  | /* | 
|  | * PCI core will figure out the default | 
|  | * alignment: 4KiB for I/O and 1MiB for | 
|  | * memory window. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  |  | 
|  | if (hose->controller_ops.setup_bridge) | 
|  | hose->controller_ops.setup_bridge(bus, type); | 
|  | } | 
|  |  | 
|  | void pcibios_reset_secondary_bus(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_controller *phb = pci_bus_to_host(dev->bus); | 
|  |  | 
|  | if (phb->controller_ops.reset_secondary_bus) { | 
|  | phb->controller_ops.reset_secondary_bus(dev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pci_reset_secondary_bus(dev); | 
|  | } | 
|  |  | 
|  | resource_size_t pcibios_default_alignment(void) | 
|  | { | 
|  | if (ppc_md.pcibios_default_alignment) | 
|  | return ppc_md.pcibios_default_alignment(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) | 
|  | { | 
|  | if (ppc_md.pcibios_iov_resource_alignment) | 
|  | return ppc_md.pcibios_iov_resource_alignment(pdev, resno); | 
|  |  | 
|  | return pci_iov_resource_size(pdev, resno); | 
|  | } | 
|  |  | 
|  | int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) | 
|  | { | 
|  | if (ppc_md.pcibios_sriov_enable) | 
|  | return ppc_md.pcibios_sriov_enable(pdev, num_vfs); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pcibios_sriov_disable(struct pci_dev *pdev) | 
|  | { | 
|  | if (ppc_md.pcibios_sriov_disable) | 
|  | return ppc_md.pcibios_sriov_disable(pdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  |  | 
|  | void pcibios_bus_add_device(struct pci_dev *pdev) | 
|  | { | 
|  | if (ppc_md.pcibios_bus_add_device) | 
|  | ppc_md.pcibios_bus_add_device(pdev); | 
|  | } | 
|  |  | 
|  | static resource_size_t pcibios_io_size(const struct pci_controller *hose) | 
|  | { | 
|  | #ifdef CONFIG_PPC64 | 
|  | return hose->pci_io_size; | 
|  | #else | 
|  | return resource_size(&hose->io_resource); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int pcibios_vaddr_is_ioport(void __iomem *address) | 
|  | { | 
|  | int ret = 0; | 
|  | struct pci_controller *hose; | 
|  | resource_size_t size; | 
|  |  | 
|  | spin_lock(&hose_spinlock); | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | size = pcibios_io_size(hose); | 
|  | if (address >= hose->io_base_virt && | 
|  | address < (hose->io_base_virt + size)) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hose_spinlock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long pci_address_to_pio(phys_addr_t address) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | resource_size_t size; | 
|  | unsigned long ret = ~0; | 
|  |  | 
|  | spin_lock(&hose_spinlock); | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | size = pcibios_io_size(hose); | 
|  | if (address >= hose->io_base_phys && | 
|  | address < (hose->io_base_phys + size)) { | 
|  | unsigned long base = | 
|  | (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | ret = base + (address - hose->io_base_phys); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hose_spinlock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pci_address_to_pio); | 
|  |  | 
|  | /* | 
|  | * Return the domain number for this bus. | 
|  | */ | 
|  | int pci_domain_nr(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  |  | 
|  | return hose->global_number; | 
|  | } | 
|  | EXPORT_SYMBOL(pci_domain_nr); | 
|  |  | 
|  | /* This routine is meant to be used early during boot, when the | 
|  | * PCI bus numbers have not yet been assigned, and you need to | 
|  | * issue PCI config cycles to an OF device. | 
|  | * It could also be used to "fix" RTAS config cycles if you want | 
|  | * to set pci_assign_all_buses to 1 and still use RTAS for PCI | 
|  | * config cycles. | 
|  | */ | 
|  | struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) | 
|  | { | 
|  | while(node) { | 
|  | struct pci_controller *hose, *tmp; | 
|  | list_for_each_entry_safe(hose, tmp, &hose_list, list_node) | 
|  | if (hose->dn == node) | 
|  | return hose; | 
|  | node = node->parent; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the interrupt pin to determine if interrupt is use by card. | 
|  | * If the interrupt is used, then gets the interrupt line from the | 
|  | * openfirmware and sets it in the pci_dev and pci_config line. | 
|  | */ | 
|  | static int pci_read_irq_line(struct pci_dev *pci_dev) | 
|  | { | 
|  | int virq; | 
|  |  | 
|  | pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | memset(&oirq, 0xff, sizeof(oirq)); | 
|  | #endif | 
|  | /* Try to get a mapping from the device-tree */ | 
|  | virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); | 
|  | if (virq <= 0) { | 
|  | u8 line, pin; | 
|  |  | 
|  | /* If that fails, lets fallback to what is in the config | 
|  | * space and map that through the default controller. We | 
|  | * also set the type to level low since that's what PCI | 
|  | * interrupts are. If your platform does differently, then | 
|  | * either provide a proper interrupt tree or don't use this | 
|  | * function. | 
|  | */ | 
|  | if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) | 
|  | return -1; | 
|  | if (pin == 0) | 
|  | return -1; | 
|  | if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || | 
|  | line == 0xff || line == 0) { | 
|  | return -1; | 
|  | } | 
|  | pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", | 
|  | line, pin); | 
|  |  | 
|  | virq = irq_create_mapping(NULL, line); | 
|  | if (virq) | 
|  | irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); | 
|  | } | 
|  |  | 
|  | if (!virq) { | 
|  | pr_debug(" Failed to map !\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pr_debug(" Mapped to linux irq %d\n", virq); | 
|  |  | 
|  | pci_dev->irq = virq; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Platform support for /proc/bus/pci/X/Y mmap()s, | 
|  | * modelled on the sparc64 implementation by Dave Miller. | 
|  | *  -- paulus. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Adjust vm_pgoff of VMA such that it is the physical page offset | 
|  | * corresponding to the 32-bit pci bus offset for DEV requested by the user. | 
|  | * | 
|  | * Basically, the user finds the base address for his device which he wishes | 
|  | * to mmap.  They read the 32-bit value from the config space base register, | 
|  | * add whatever PAGE_SIZE multiple offset they wish, and feed this into the | 
|  | * offset parameter of mmap on /proc/bus/pci/XXX for that device. | 
|  | * | 
|  | * Returns negative error code on failure, zero on success. | 
|  | */ | 
|  | static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, | 
|  | resource_size_t *offset, | 
|  | enum pci_mmap_state mmap_state) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(dev->bus); | 
|  | unsigned long io_offset = 0; | 
|  | int i, res_bit; | 
|  |  | 
|  | if (hose == NULL) | 
|  | return NULL;		/* should never happen */ | 
|  |  | 
|  | /* If memory, add on the PCI bridge address offset */ | 
|  | if (mmap_state == pci_mmap_mem) { | 
|  | #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ | 
|  | *offset += hose->pci_mem_offset; | 
|  | #endif | 
|  | res_bit = IORESOURCE_MEM; | 
|  | } else { | 
|  | io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | *offset += io_offset; | 
|  | res_bit = IORESOURCE_IO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the offset requested corresponds to one of the | 
|  | * resources of the device. | 
|  | */ | 
|  | for (i = 0; i <= PCI_ROM_RESOURCE; i++) { | 
|  | struct resource *rp = &dev->resource[i]; | 
|  | int flags = rp->flags; | 
|  |  | 
|  | /* treat ROM as memory (should be already) */ | 
|  | if (i == PCI_ROM_RESOURCE) | 
|  | flags |= IORESOURCE_MEM; | 
|  |  | 
|  | /* Active and same type? */ | 
|  | if ((flags & res_bit) == 0) | 
|  | continue; | 
|  |  | 
|  | /* In the range of this resource? */ | 
|  | if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) | 
|  | continue; | 
|  |  | 
|  | /* found it! construct the final physical address */ | 
|  | if (mmap_state == pci_mmap_io) | 
|  | *offset += hose->io_base_phys - io_offset; | 
|  | return rp; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This one is used by /dev/mem and fbdev who have no clue about the | 
|  | * PCI device, it tries to find the PCI device first and calls the | 
|  | * above routine | 
|  | */ | 
|  | pgprot_t pci_phys_mem_access_prot(struct file *file, | 
|  | unsigned long pfn, | 
|  | unsigned long size, | 
|  | pgprot_t prot) | 
|  | { | 
|  | struct pci_dev *pdev = NULL; | 
|  | struct resource *found = NULL; | 
|  | resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; | 
|  | int i; | 
|  |  | 
|  | if (page_is_ram(pfn)) | 
|  | return prot; | 
|  |  | 
|  | prot = pgprot_noncached(prot); | 
|  | for_each_pci_dev(pdev) { | 
|  | for (i = 0; i <= PCI_ROM_RESOURCE; i++) { | 
|  | struct resource *rp = &pdev->resource[i]; | 
|  | int flags = rp->flags; | 
|  |  | 
|  | /* Active and same type? */ | 
|  | if ((flags & IORESOURCE_MEM) == 0) | 
|  | continue; | 
|  | /* In the range of this resource? */ | 
|  | if (offset < (rp->start & PAGE_MASK) || | 
|  | offset > rp->end) | 
|  | continue; | 
|  | found = rp; | 
|  | break; | 
|  | } | 
|  | if (found) | 
|  | break; | 
|  | } | 
|  | if (found) { | 
|  | if (found->flags & IORESOURCE_PREFETCH) | 
|  | prot = pgprot_noncached_wc(prot); | 
|  | pci_dev_put(pdev); | 
|  | } | 
|  |  | 
|  | pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", | 
|  | (unsigned long long)offset, pgprot_val(prot)); | 
|  |  | 
|  | return prot; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Perform the actual remap of the pages for a PCI device mapping, as | 
|  | * appropriate for this architecture.  The region in the process to map | 
|  | * is described by vm_start and vm_end members of VMA, the base physical | 
|  | * address is found in vm_pgoff. | 
|  | * The pci device structure is provided so that architectures may make mapping | 
|  | * decisions on a per-device or per-bus basis. | 
|  | * | 
|  | * Returns a negative error code on failure, zero on success. | 
|  | */ | 
|  | int pci_mmap_page_range(struct pci_dev *dev, int bar, | 
|  | struct vm_area_struct *vma, | 
|  | enum pci_mmap_state mmap_state, int write_combine) | 
|  | { | 
|  | resource_size_t offset = | 
|  | ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; | 
|  | struct resource *rp; | 
|  | int ret; | 
|  |  | 
|  | rp = __pci_mmap_make_offset(dev, &offset, mmap_state); | 
|  | if (rp == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma->vm_pgoff = offset >> PAGE_SHIFT; | 
|  | if (write_combine) | 
|  | vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); | 
|  | else | 
|  | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | 
|  |  | 
|  | ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, | 
|  | vma->vm_end - vma->vm_start, vma->vm_page_prot); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* This provides legacy IO read access on a bus */ | 
|  | int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) | 
|  | { | 
|  | unsigned long offset; | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  | struct resource *rp = &hose->io_resource; | 
|  | void __iomem *addr; | 
|  |  | 
|  | /* Check if port can be supported by that bus. We only check | 
|  | * the ranges of the PHB though, not the bus itself as the rules | 
|  | * for forwarding legacy cycles down bridges are not our problem | 
|  | * here. So if the host bridge supports it, we do it. | 
|  | */ | 
|  | offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | offset += port; | 
|  |  | 
|  | if (!(rp->flags & IORESOURCE_IO)) | 
|  | return -ENXIO; | 
|  | if (offset < rp->start || (offset + size) > rp->end) | 
|  | return -ENXIO; | 
|  | addr = hose->io_base_virt + port; | 
|  |  | 
|  | switch(size) { | 
|  | case 1: | 
|  | *((u8 *)val) = in_8(addr); | 
|  | return 1; | 
|  | case 2: | 
|  | if (port & 1) | 
|  | return -EINVAL; | 
|  | *((u16 *)val) = in_le16(addr); | 
|  | return 2; | 
|  | case 4: | 
|  | if (port & 3) | 
|  | return -EINVAL; | 
|  | *((u32 *)val) = in_le32(addr); | 
|  | return 4; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This provides legacy IO write access on a bus */ | 
|  | int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) | 
|  | { | 
|  | unsigned long offset; | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  | struct resource *rp = &hose->io_resource; | 
|  | void __iomem *addr; | 
|  |  | 
|  | /* Check if port can be supported by that bus. We only check | 
|  | * the ranges of the PHB though, not the bus itself as the rules | 
|  | * for forwarding legacy cycles down bridges are not our problem | 
|  | * here. So if the host bridge supports it, we do it. | 
|  | */ | 
|  | offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | offset += port; | 
|  |  | 
|  | if (!(rp->flags & IORESOURCE_IO)) | 
|  | return -ENXIO; | 
|  | if (offset < rp->start || (offset + size) > rp->end) | 
|  | return -ENXIO; | 
|  | addr = hose->io_base_virt + port; | 
|  |  | 
|  | /* WARNING: The generic code is idiotic. It gets passed a pointer | 
|  | * to what can be a 1, 2 or 4 byte quantity and always reads that | 
|  | * as a u32, which means that we have to correct the location of | 
|  | * the data read within those 32 bits for size 1 and 2 | 
|  | */ | 
|  | switch(size) { | 
|  | case 1: | 
|  | out_8(addr, val >> 24); | 
|  | return 1; | 
|  | case 2: | 
|  | if (port & 1) | 
|  | return -EINVAL; | 
|  | out_le16(addr, val >> 16); | 
|  | return 2; | 
|  | case 4: | 
|  | if (port & 3) | 
|  | return -EINVAL; | 
|  | out_le32(addr, val); | 
|  | return 4; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This provides legacy IO or memory mmap access on a bus */ | 
|  | int pci_mmap_legacy_page_range(struct pci_bus *bus, | 
|  | struct vm_area_struct *vma, | 
|  | enum pci_mmap_state mmap_state) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  | resource_size_t offset = | 
|  | ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; | 
|  | resource_size_t size = vma->vm_end - vma->vm_start; | 
|  | struct resource *rp; | 
|  |  | 
|  | pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", | 
|  | pci_domain_nr(bus), bus->number, | 
|  | mmap_state == pci_mmap_mem ? "MEM" : "IO", | 
|  | (unsigned long long)offset, | 
|  | (unsigned long long)(offset + size - 1)); | 
|  |  | 
|  | if (mmap_state == pci_mmap_mem) { | 
|  | /* Hack alert ! | 
|  | * | 
|  | * Because X is lame and can fail starting if it gets an error trying | 
|  | * to mmap legacy_mem (instead of just moving on without legacy memory | 
|  | * access) we fake it here by giving it anonymous memory, effectively | 
|  | * behaving just like /dev/zero | 
|  | */ | 
|  | if ((offset + size) > hose->isa_mem_size) { | 
|  | printk(KERN_DEBUG | 
|  | "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", | 
|  | current->comm, current->pid, pci_domain_nr(bus), bus->number); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | return shmem_zero_setup(vma); | 
|  | return 0; | 
|  | } | 
|  | offset += hose->isa_mem_phys; | 
|  | } else { | 
|  | unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | unsigned long roffset = offset + io_offset; | 
|  | rp = &hose->io_resource; | 
|  | if (!(rp->flags & IORESOURCE_IO)) | 
|  | return -ENXIO; | 
|  | if (roffset < rp->start || (roffset + size) > rp->end) | 
|  | return -ENXIO; | 
|  | offset += hose->io_base_phys; | 
|  | } | 
|  | pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); | 
|  |  | 
|  | vma->vm_pgoff = offset >> PAGE_SHIFT; | 
|  | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | 
|  | return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, | 
|  | vma->vm_end - vma->vm_start, | 
|  | vma->vm_page_prot); | 
|  | } | 
|  |  | 
|  | void pci_resource_to_user(const struct pci_dev *dev, int bar, | 
|  | const struct resource *rsrc, | 
|  | resource_size_t *start, resource_size_t *end) | 
|  | { | 
|  | struct pci_bus_region region; | 
|  |  | 
|  | if (rsrc->flags & IORESOURCE_IO) { | 
|  | pcibios_resource_to_bus(dev->bus, ®ion, | 
|  | (struct resource *) rsrc); | 
|  | *start = region.start; | 
|  | *end = region.end; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We pass a CPU physical address to userland for MMIO instead of a | 
|  | * BAR value because X is lame and expects to be able to use that | 
|  | * to pass to /dev/mem! | 
|  | * | 
|  | * That means we may have 64-bit values where some apps only expect | 
|  | * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). | 
|  | */ | 
|  | *start = rsrc->start; | 
|  | *end = rsrc->end; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree | 
|  | * @hose: newly allocated pci_controller to be setup | 
|  | * @dev: device node of the host bridge | 
|  | * @primary: set if primary bus (32 bits only, soon to be deprecated) | 
|  | * | 
|  | * This function will parse the "ranges" property of a PCI host bridge device | 
|  | * node and setup the resource mapping of a pci controller based on its | 
|  | * content. | 
|  | * | 
|  | * Life would be boring if it wasn't for a few issues that we have to deal | 
|  | * with here: | 
|  | * | 
|  | *   - We can only cope with one IO space range and up to 3 Memory space | 
|  | *     ranges. However, some machines (thanks Apple !) tend to split their | 
|  | *     space into lots of small contiguous ranges. So we have to coalesce. | 
|  | * | 
|  | *   - Some busses have IO space not starting at 0, which causes trouble with | 
|  | *     the way we do our IO resource renumbering. The code somewhat deals with | 
|  | *     it for 64 bits but I would expect problems on 32 bits. | 
|  | * | 
|  | *   - Some 32 bits platforms such as 4xx can have physical space larger than | 
|  | *     32 bits so we need to use 64 bits values for the parsing | 
|  | */ | 
|  | void pci_process_bridge_OF_ranges(struct pci_controller *hose, | 
|  | struct device_node *dev, int primary) | 
|  | { | 
|  | int memno = 0; | 
|  | struct resource *res; | 
|  | struct of_pci_range range; | 
|  | struct of_pci_range_parser parser; | 
|  |  | 
|  | printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", | 
|  | dev, primary ? "(primary)" : ""); | 
|  |  | 
|  | /* Check for ranges property */ | 
|  | if (of_pci_range_parser_init(&parser, dev)) | 
|  | return; | 
|  |  | 
|  | /* Parse it */ | 
|  | for_each_of_pci_range(&parser, &range) { | 
|  | /* If we failed translation or got a zero-sized region | 
|  | * (some FW try to feed us with non sensical zero sized regions | 
|  | * such as power3 which look like some kind of attempt at exposing | 
|  | * the VGA memory hole) | 
|  | */ | 
|  | if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) | 
|  | continue; | 
|  |  | 
|  | /* Act based on address space type */ | 
|  | res = NULL; | 
|  | switch (range.flags & IORESOURCE_TYPE_BITS) { | 
|  | case IORESOURCE_IO: | 
|  | printk(KERN_INFO | 
|  | "  IO 0x%016llx..0x%016llx -> 0x%016llx\n", | 
|  | range.cpu_addr, range.cpu_addr + range.size - 1, | 
|  | range.pci_addr); | 
|  |  | 
|  | /* We support only one IO range */ | 
|  | if (hose->pci_io_size) { | 
|  | printk(KERN_INFO | 
|  | " \\--> Skipped (too many) !\n"); | 
|  | continue; | 
|  | } | 
|  | #ifdef CONFIG_PPC32 | 
|  | /* On 32 bits, limit I/O space to 16MB */ | 
|  | if (range.size > 0x01000000) | 
|  | range.size = 0x01000000; | 
|  |  | 
|  | /* 32 bits needs to map IOs here */ | 
|  | hose->io_base_virt = ioremap(range.cpu_addr, | 
|  | range.size); | 
|  |  | 
|  | /* Expect trouble if pci_addr is not 0 */ | 
|  | if (primary) | 
|  | isa_io_base = | 
|  | (unsigned long)hose->io_base_virt; | 
|  | #endif /* CONFIG_PPC32 */ | 
|  | /* pci_io_size and io_base_phys always represent IO | 
|  | * space starting at 0 so we factor in pci_addr | 
|  | */ | 
|  | hose->pci_io_size = range.pci_addr + range.size; | 
|  | hose->io_base_phys = range.cpu_addr - range.pci_addr; | 
|  |  | 
|  | /* Build resource */ | 
|  | res = &hose->io_resource; | 
|  | range.cpu_addr = range.pci_addr; | 
|  | break; | 
|  | case IORESOURCE_MEM: | 
|  | printk(KERN_INFO | 
|  | " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", | 
|  | range.cpu_addr, range.cpu_addr + range.size - 1, | 
|  | range.pci_addr, | 
|  | (range.pci_space & 0x40000000) ? | 
|  | "Prefetch" : ""); | 
|  |  | 
|  | /* We support only 3 memory ranges */ | 
|  | if (memno >= 3) { | 
|  | printk(KERN_INFO | 
|  | " \\--> Skipped (too many) !\n"); | 
|  | continue; | 
|  | } | 
|  | /* Handles ISA memory hole space here */ | 
|  | if (range.pci_addr == 0) { | 
|  | if (primary || isa_mem_base == 0) | 
|  | isa_mem_base = range.cpu_addr; | 
|  | hose->isa_mem_phys = range.cpu_addr; | 
|  | hose->isa_mem_size = range.size; | 
|  | } | 
|  |  | 
|  | /* Build resource */ | 
|  | hose->mem_offset[memno] = range.cpu_addr - | 
|  | range.pci_addr; | 
|  | res = &hose->mem_resources[memno++]; | 
|  | break; | 
|  | } | 
|  | if (res != NULL) { | 
|  | res->name = dev->full_name; | 
|  | res->flags = range.flags; | 
|  | res->start = range.cpu_addr; | 
|  | res->end = range.cpu_addr + range.size - 1; | 
|  | res->parent = res->child = res->sibling = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decide whether to display the domain number in /proc */ | 
|  | int pci_proc_domain(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  |  | 
|  | if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) | 
|  | return 0; | 
|  | if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) | 
|  | return hose->global_number != 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) | 
|  | { | 
|  | if (ppc_md.pcibios_root_bridge_prepare) | 
|  | return ppc_md.pcibios_root_bridge_prepare(bridge); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This header fixup will do the resource fixup for all devices as they are | 
|  | * probed, but not for bridge ranges | 
|  | */ | 
|  | static void pcibios_fixup_resources(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(dev->bus); | 
|  | int i; | 
|  |  | 
|  | if (!hose) { | 
|  | printk(KERN_ERR "No host bridge for PCI dev %s !\n", | 
|  | pci_name(dev)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dev->is_virtfn) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
|  | struct resource *res = dev->resource + i; | 
|  | struct pci_bus_region reg; | 
|  | if (!res->flags) | 
|  | continue; | 
|  |  | 
|  | /* If we're going to re-assign everything, we mark all resources | 
|  | * as unset (and 0-base them). In addition, we mark BARs starting | 
|  | * at 0 as unset as well, except if PCI_PROBE_ONLY is also set | 
|  | * since in that case, we don't want to re-assign anything | 
|  | */ | 
|  | pcibios_resource_to_bus(dev->bus, ®, res); | 
|  | if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || | 
|  | (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { | 
|  | /* Only print message if not re-assigning */ | 
|  | if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) | 
|  | pr_debug("PCI:%s Resource %d %pR is unassigned\n", | 
|  | pci_name(dev), i, res); | 
|  | res->end -= res->start; | 
|  | res->start = 0; | 
|  | res->flags |= IORESOURCE_UNSET; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); | 
|  | } | 
|  |  | 
|  | /* Call machine specific resource fixup */ | 
|  | if (ppc_md.pcibios_fixup_resources) | 
|  | ppc_md.pcibios_fixup_resources(dev); | 
|  | } | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); | 
|  |  | 
|  | /* This function tries to figure out if a bridge resource has been initialized | 
|  | * by the firmware or not. It doesn't have to be absolutely bullet proof, but | 
|  | * things go more smoothly when it gets it right. It should covers cases such | 
|  | * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges | 
|  | */ | 
|  | static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, | 
|  | struct resource *res) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  | struct pci_dev *dev = bus->self; | 
|  | resource_size_t offset; | 
|  | struct pci_bus_region region; | 
|  | u16 command; | 
|  | int i; | 
|  |  | 
|  | /* We don't do anything if PCI_PROBE_ONLY is set */ | 
|  | if (pci_has_flag(PCI_PROBE_ONLY)) | 
|  | return 0; | 
|  |  | 
|  | /* Job is a bit different between memory and IO */ | 
|  | if (res->flags & IORESOURCE_MEM) { | 
|  | pcibios_resource_to_bus(dev->bus, ®ion, res); | 
|  |  | 
|  | /* If the BAR is non-0 then it's probably been initialized */ | 
|  | if (region.start != 0) | 
|  | return 0; | 
|  |  | 
|  | /* The BAR is 0, let's check if memory decoding is enabled on | 
|  | * the bridge. If not, we consider it unassigned | 
|  | */ | 
|  | pci_read_config_word(dev, PCI_COMMAND, &command); | 
|  | if ((command & PCI_COMMAND_MEMORY) == 0) | 
|  | return 1; | 
|  |  | 
|  | /* Memory decoding is enabled and the BAR is 0. If any of the bridge | 
|  | * resources covers that starting address (0 then it's good enough for | 
|  | * us for memory space) | 
|  | */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && | 
|  | hose->mem_resources[i].start == hose->mem_offset[i]) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Well, it starts at 0 and we know it will collide so we may as | 
|  | * well consider it as unassigned. That covers the Apple case. | 
|  | */ | 
|  | return 1; | 
|  | } else { | 
|  | /* If the BAR is non-0, then we consider it assigned */ | 
|  | offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | if (((res->start - offset) & 0xfffffffful) != 0) | 
|  | return 0; | 
|  |  | 
|  | /* Here, we are a bit different than memory as typically IO space | 
|  | * starting at low addresses -is- valid. What we do instead if that | 
|  | * we consider as unassigned anything that doesn't have IO enabled | 
|  | * in the PCI command register, and that's it. | 
|  | */ | 
|  | pci_read_config_word(dev, PCI_COMMAND, &command); | 
|  | if (command & PCI_COMMAND_IO) | 
|  | return 0; | 
|  |  | 
|  | /* It's starting at 0 and IO is disabled in the bridge, consider | 
|  | * it unassigned | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fixup resources of a PCI<->PCI bridge */ | 
|  | static void pcibios_fixup_bridge(struct pci_bus *bus) | 
|  | { | 
|  | struct resource *res; | 
|  | int i; | 
|  |  | 
|  | struct pci_dev *dev = bus->self; | 
|  |  | 
|  | pci_bus_for_each_resource(bus, res, i) { | 
|  | if (!res || !res->flags) | 
|  | continue; | 
|  | if (i >= 3 && bus->self->transparent) | 
|  | continue; | 
|  |  | 
|  | /* If we're going to reassign everything, we can | 
|  | * shrink the P2P resource to have size as being | 
|  | * of 0 in order to save space. | 
|  | */ | 
|  | if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { | 
|  | res->flags |= IORESOURCE_UNSET; | 
|  | res->start = 0; | 
|  | res->end = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); | 
|  |  | 
|  | /* Try to detect uninitialized P2P bridge resources, | 
|  | * and clear them out so they get re-assigned later | 
|  | */ | 
|  | if (pcibios_uninitialized_bridge_resource(bus, res)) { | 
|  | res->flags = 0; | 
|  | pr_debug("PCI:%s            (unassigned)\n", pci_name(dev)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void pcibios_setup_bus_self(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_controller *phb; | 
|  |  | 
|  | /* Fix up the bus resources for P2P bridges */ | 
|  | if (bus->self != NULL) | 
|  | pcibios_fixup_bridge(bus); | 
|  |  | 
|  | /* Platform specific bus fixups. This is currently only used | 
|  | * by fsl_pci and I'm hoping to get rid of it at some point | 
|  | */ | 
|  | if (ppc_md.pcibios_fixup_bus) | 
|  | ppc_md.pcibios_fixup_bus(bus); | 
|  |  | 
|  | /* Setup bus DMA mappings */ | 
|  | phb = pci_bus_to_host(bus); | 
|  | if (phb->controller_ops.dma_bus_setup) | 
|  | phb->controller_ops.dma_bus_setup(bus); | 
|  | } | 
|  |  | 
|  | static void pcibios_setup_device(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_controller *phb; | 
|  | /* Fixup NUMA node as it may not be setup yet by the generic | 
|  | * code and is needed by the DMA init | 
|  | */ | 
|  | set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); | 
|  |  | 
|  | /* Hook up default DMA ops */ | 
|  | set_dma_ops(&dev->dev, pci_dma_ops); | 
|  | set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); | 
|  |  | 
|  | /* Additional platform DMA/iommu setup */ | 
|  | phb = pci_bus_to_host(dev->bus); | 
|  | if (phb->controller_ops.dma_dev_setup) | 
|  | phb->controller_ops.dma_dev_setup(dev); | 
|  |  | 
|  | /* Read default IRQs and fixup if necessary */ | 
|  | pci_read_irq_line(dev); | 
|  | if (ppc_md.pci_irq_fixup) | 
|  | ppc_md.pci_irq_fixup(dev); | 
|  | } | 
|  |  | 
|  | int pcibios_add_device(struct pci_dev *dev) | 
|  | { | 
|  | /* | 
|  | * We can only call pcibios_setup_device() after bus setup is complete, | 
|  | * since some of the platform specific DMA setup code depends on it. | 
|  | */ | 
|  | if (dev->bus->is_added) | 
|  | pcibios_setup_device(dev); | 
|  |  | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | if (ppc_md.pcibios_fixup_sriov) | 
|  | ppc_md.pcibios_fixup_sriov(dev); | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void pcibios_setup_bus_devices(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_dev *dev; | 
|  |  | 
|  | pr_debug("PCI: Fixup bus devices %d (%s)\n", | 
|  | bus->number, bus->self ? pci_name(bus->self) : "PHB"); | 
|  |  | 
|  | list_for_each_entry(dev, &bus->devices, bus_list) { | 
|  | /* Cardbus can call us to add new devices to a bus, so ignore | 
|  | * those who are already fully discovered | 
|  | */ | 
|  | if (dev->is_added) | 
|  | continue; | 
|  |  | 
|  | pcibios_setup_device(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | void pcibios_set_master(struct pci_dev *dev) | 
|  | { | 
|  | /* No special bus mastering setup handling */ | 
|  | } | 
|  |  | 
|  | void pcibios_fixup_bus(struct pci_bus *bus) | 
|  | { | 
|  | /* When called from the generic PCI probe, read PCI<->PCI bridge | 
|  | * bases. This is -not- called when generating the PCI tree from | 
|  | * the OF device-tree. | 
|  | */ | 
|  | pci_read_bridge_bases(bus); | 
|  |  | 
|  | /* Now fixup the bus bus */ | 
|  | pcibios_setup_bus_self(bus); | 
|  |  | 
|  | /* Now fixup devices on that bus */ | 
|  | pcibios_setup_bus_devices(bus); | 
|  | } | 
|  | EXPORT_SYMBOL(pcibios_fixup_bus); | 
|  |  | 
|  | void pci_fixup_cardbus(struct pci_bus *bus) | 
|  | { | 
|  | /* Now fixup devices on that bus */ | 
|  | pcibios_setup_bus_devices(bus); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int skip_isa_ioresource_align(struct pci_dev *dev) | 
|  | { | 
|  | if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && | 
|  | !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to avoid collisions with `mirrored' VGA ports | 
|  | * and other strange ISA hardware, so we always want the | 
|  | * addresses to be allocated in the 0x000-0x0ff region | 
|  | * modulo 0x400. | 
|  | * | 
|  | * Why? Because some silly external IO cards only decode | 
|  | * the low 10 bits of the IO address. The 0x00-0xff region | 
|  | * is reserved for motherboard devices that decode all 16 | 
|  | * bits, so it's ok to allocate at, say, 0x2800-0x28ff, | 
|  | * but we want to try to avoid allocating at 0x2900-0x2bff | 
|  | * which might have be mirrored at 0x0100-0x03ff.. | 
|  | */ | 
|  | resource_size_t pcibios_align_resource(void *data, const struct resource *res, | 
|  | resource_size_t size, resource_size_t align) | 
|  | { | 
|  | struct pci_dev *dev = data; | 
|  | resource_size_t start = res->start; | 
|  |  | 
|  | if (res->flags & IORESOURCE_IO) { | 
|  | if (skip_isa_ioresource_align(dev)) | 
|  | return start; | 
|  | if (start & 0x300) | 
|  | start = (start + 0x3ff) & ~0x3ff; | 
|  | } | 
|  |  | 
|  | return start; | 
|  | } | 
|  | EXPORT_SYMBOL(pcibios_align_resource); | 
|  |  | 
|  | /* | 
|  | * Reparent resource children of pr that conflict with res | 
|  | * under res, and make res replace those children. | 
|  | */ | 
|  | static int reparent_resources(struct resource *parent, | 
|  | struct resource *res) | 
|  | { | 
|  | struct resource *p, **pp; | 
|  | struct resource **firstpp = NULL; | 
|  |  | 
|  | for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { | 
|  | if (p->end < res->start) | 
|  | continue; | 
|  | if (res->end < p->start) | 
|  | break; | 
|  | if (p->start < res->start || p->end > res->end) | 
|  | return -1;	/* not completely contained */ | 
|  | if (firstpp == NULL) | 
|  | firstpp = pp; | 
|  | } | 
|  | if (firstpp == NULL) | 
|  | return -1;	/* didn't find any conflicting entries? */ | 
|  | res->parent = parent; | 
|  | res->child = *firstpp; | 
|  | res->sibling = *pp; | 
|  | *firstpp = res; | 
|  | *pp = NULL; | 
|  | for (p = res->child; p != NULL; p = p->sibling) { | 
|  | p->parent = res; | 
|  | pr_debug("PCI: Reparented %s %pR under %s\n", | 
|  | p->name, p, res->name); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Handle resources of PCI devices.  If the world were perfect, we could | 
|  | *  just allocate all the resource regions and do nothing more.  It isn't. | 
|  | *  On the other hand, we cannot just re-allocate all devices, as it would | 
|  | *  require us to know lots of host bridge internals.  So we attempt to | 
|  | *  keep as much of the original configuration as possible, but tweak it | 
|  | *  when it's found to be wrong. | 
|  | * | 
|  | *  Known BIOS problems we have to work around: | 
|  | *	- I/O or memory regions not configured | 
|  | *	- regions configured, but not enabled in the command register | 
|  | *	- bogus I/O addresses above 64K used | 
|  | *	- expansion ROMs left enabled (this may sound harmless, but given | 
|  | *	  the fact the PCI specs explicitly allow address decoders to be | 
|  | *	  shared between expansion ROMs and other resource regions, it's | 
|  | *	  at least dangerous) | 
|  | * | 
|  | *  Our solution: | 
|  | *	(1) Allocate resources for all buses behind PCI-to-PCI bridges. | 
|  | *	    This gives us fixed barriers on where we can allocate. | 
|  | *	(2) Allocate resources for all enabled devices.  If there is | 
|  | *	    a collision, just mark the resource as unallocated. Also | 
|  | *	    disable expansion ROMs during this step. | 
|  | *	(3) Try to allocate resources for disabled devices.  If the | 
|  | *	    resources were assigned correctly, everything goes well, | 
|  | *	    if they weren't, they won't disturb allocation of other | 
|  | *	    resources. | 
|  | *	(4) Assign new addresses to resources which were either | 
|  | *	    not configured at all or misconfigured.  If explicitly | 
|  | *	    requested by the user, configure expansion ROM address | 
|  | *	    as well. | 
|  | */ | 
|  |  | 
|  | static void pcibios_allocate_bus_resources(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_bus *b; | 
|  | int i; | 
|  | struct resource *res, *pr; | 
|  |  | 
|  | pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", | 
|  | pci_domain_nr(bus), bus->number); | 
|  |  | 
|  | pci_bus_for_each_resource(bus, res, i) { | 
|  | if (!res || !res->flags || res->start > res->end || res->parent) | 
|  | continue; | 
|  |  | 
|  | /* If the resource was left unset at this point, we clear it */ | 
|  | if (res->flags & IORESOURCE_UNSET) | 
|  | goto clear_resource; | 
|  |  | 
|  | if (bus->parent == NULL) | 
|  | pr = (res->flags & IORESOURCE_IO) ? | 
|  | &ioport_resource : &iomem_resource; | 
|  | else { | 
|  | pr = pci_find_parent_resource(bus->self, res); | 
|  | if (pr == res) { | 
|  | /* this happens when the generic PCI | 
|  | * code (wrongly) decides that this | 
|  | * bridge is transparent  -- paulus | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", | 
|  | bus->self ? pci_name(bus->self) : "PHB", bus->number, | 
|  | i, res, pr, (pr && pr->name) ? pr->name : "nil"); | 
|  |  | 
|  | if (pr && !(pr->flags & IORESOURCE_UNSET)) { | 
|  | struct pci_dev *dev = bus->self; | 
|  |  | 
|  | if (request_resource(pr, res) == 0) | 
|  | continue; | 
|  | /* | 
|  | * Must be a conflict with an existing entry. | 
|  | * Move that entry (or entries) under the | 
|  | * bridge resource and try again. | 
|  | */ | 
|  | if (reparent_resources(pr, res) == 0) | 
|  | continue; | 
|  |  | 
|  | if (dev && i < PCI_BRIDGE_RESOURCE_NUM && | 
|  | pci_claim_bridge_resource(dev, | 
|  | i + PCI_BRIDGE_RESOURCES) == 0) | 
|  | continue; | 
|  | } | 
|  | pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", | 
|  | i, bus->number); | 
|  | clear_resource: | 
|  | /* The resource might be figured out when doing | 
|  | * reassignment based on the resources required | 
|  | * by the downstream PCI devices. Here we set | 
|  | * the size of the resource to be 0 in order to | 
|  | * save more space. | 
|  | */ | 
|  | res->start = 0; | 
|  | res->end = -1; | 
|  | res->flags = 0; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(b, &bus->children, node) | 
|  | pcibios_allocate_bus_resources(b); | 
|  | } | 
|  |  | 
|  | static inline void alloc_resource(struct pci_dev *dev, int idx) | 
|  | { | 
|  | struct resource *pr, *r = &dev->resource[idx]; | 
|  |  | 
|  | pr_debug("PCI: Allocating %s: Resource %d: %pR\n", | 
|  | pci_name(dev), idx, r); | 
|  |  | 
|  | pr = pci_find_parent_resource(dev, r); | 
|  | if (!pr || (pr->flags & IORESOURCE_UNSET) || | 
|  | request_resource(pr, r) < 0) { | 
|  | printk(KERN_WARNING "PCI: Cannot allocate resource region %d" | 
|  | " of device %s, will remap\n", idx, pci_name(dev)); | 
|  | if (pr) | 
|  | pr_debug("PCI:  parent is %p: %pR\n", pr, pr); | 
|  | /* We'll assign a new address later */ | 
|  | r->flags |= IORESOURCE_UNSET; | 
|  | r->end -= r->start; | 
|  | r->start = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init pcibios_allocate_resources(int pass) | 
|  | { | 
|  | struct pci_dev *dev = NULL; | 
|  | int idx, disabled; | 
|  | u16 command; | 
|  | struct resource *r; | 
|  |  | 
|  | for_each_pci_dev(dev) { | 
|  | pci_read_config_word(dev, PCI_COMMAND, &command); | 
|  | for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { | 
|  | r = &dev->resource[idx]; | 
|  | if (r->parent)		/* Already allocated */ | 
|  | continue; | 
|  | if (!r->flags || (r->flags & IORESOURCE_UNSET)) | 
|  | continue;	/* Not assigned at all */ | 
|  | /* We only allocate ROMs on pass 1 just in case they | 
|  | * have been screwed up by firmware | 
|  | */ | 
|  | if (idx == PCI_ROM_RESOURCE ) | 
|  | disabled = 1; | 
|  | if (r->flags & IORESOURCE_IO) | 
|  | disabled = !(command & PCI_COMMAND_IO); | 
|  | else | 
|  | disabled = !(command & PCI_COMMAND_MEMORY); | 
|  | if (pass == disabled) | 
|  | alloc_resource(dev, idx); | 
|  | } | 
|  | if (pass) | 
|  | continue; | 
|  | r = &dev->resource[PCI_ROM_RESOURCE]; | 
|  | if (r->flags) { | 
|  | /* Turn the ROM off, leave the resource region, | 
|  | * but keep it unregistered. | 
|  | */ | 
|  | u32 reg; | 
|  | pci_read_config_dword(dev, dev->rom_base_reg, ®); | 
|  | if (reg & PCI_ROM_ADDRESS_ENABLE) { | 
|  | pr_debug("PCI: Switching off ROM of %s\n", | 
|  | pci_name(dev)); | 
|  | r->flags &= ~IORESOURCE_ROM_ENABLE; | 
|  | pci_write_config_dword(dev, dev->rom_base_reg, | 
|  | reg & ~PCI_ROM_ADDRESS_ENABLE); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(bus); | 
|  | resource_size_t	offset; | 
|  | struct resource *res, *pres; | 
|  | int i; | 
|  |  | 
|  | pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); | 
|  |  | 
|  | /* Check for IO */ | 
|  | if (!(hose->io_resource.flags & IORESOURCE_IO)) | 
|  | goto no_io; | 
|  | offset = (unsigned long)hose->io_base_virt - _IO_BASE; | 
|  | res = kzalloc(sizeof(struct resource), GFP_KERNEL); | 
|  | BUG_ON(res == NULL); | 
|  | res->name = "Legacy IO"; | 
|  | res->flags = IORESOURCE_IO; | 
|  | res->start = offset; | 
|  | res->end = (offset + 0xfff) & 0xfffffffful; | 
|  | pr_debug("Candidate legacy IO: %pR\n", res); | 
|  | if (request_resource(&hose->io_resource, res)) { | 
|  | printk(KERN_DEBUG | 
|  | "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", | 
|  | pci_domain_nr(bus), bus->number, res); | 
|  | kfree(res); | 
|  | } | 
|  |  | 
|  | no_io: | 
|  | /* Check for memory */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | pres = &hose->mem_resources[i]; | 
|  | offset = hose->mem_offset[i]; | 
|  | if (!(pres->flags & IORESOURCE_MEM)) | 
|  | continue; | 
|  | pr_debug("hose mem res: %pR\n", pres); | 
|  | if ((pres->start - offset) <= 0xa0000 && | 
|  | (pres->end - offset) >= 0xbffff) | 
|  | break; | 
|  | } | 
|  | if (i >= 3) | 
|  | return; | 
|  | res = kzalloc(sizeof(struct resource), GFP_KERNEL); | 
|  | BUG_ON(res == NULL); | 
|  | res->name = "Legacy VGA memory"; | 
|  | res->flags = IORESOURCE_MEM; | 
|  | res->start = 0xa0000 + offset; | 
|  | res->end = 0xbffff + offset; | 
|  | pr_debug("Candidate VGA memory: %pR\n", res); | 
|  | if (request_resource(pres, res)) { | 
|  | printk(KERN_DEBUG | 
|  | "PCI %04x:%02x Cannot reserve VGA memory %pR\n", | 
|  | pci_domain_nr(bus), bus->number, res); | 
|  | kfree(res); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init pcibios_resource_survey(void) | 
|  | { | 
|  | struct pci_bus *b; | 
|  |  | 
|  | /* Allocate and assign resources */ | 
|  | list_for_each_entry(b, &pci_root_buses, node) | 
|  | pcibios_allocate_bus_resources(b); | 
|  | if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { | 
|  | pcibios_allocate_resources(0); | 
|  | pcibios_allocate_resources(1); | 
|  | } | 
|  |  | 
|  | /* Before we start assigning unassigned resource, we try to reserve | 
|  | * the low IO area and the VGA memory area if they intersect the | 
|  | * bus available resources to avoid allocating things on top of them | 
|  | */ | 
|  | if (!pci_has_flag(PCI_PROBE_ONLY)) { | 
|  | list_for_each_entry(b, &pci_root_buses, node) | 
|  | pcibios_reserve_legacy_regions(b); | 
|  | } | 
|  |  | 
|  | /* Now, if the platform didn't decide to blindly trust the firmware, | 
|  | * we proceed to assigning things that were left unassigned | 
|  | */ | 
|  | if (!pci_has_flag(PCI_PROBE_ONLY)) { | 
|  | pr_debug("PCI: Assigning unassigned resources...\n"); | 
|  | pci_assign_unassigned_resources(); | 
|  | } | 
|  |  | 
|  | /* Call machine dependent fixup */ | 
|  | if (ppc_md.pcibios_fixup) | 
|  | ppc_md.pcibios_fixup(); | 
|  | } | 
|  |  | 
|  | /* This is used by the PCI hotplug driver to allocate resource | 
|  | * of newly plugged busses. We can try to consolidate with the | 
|  | * rest of the code later, for now, keep it as-is as our main | 
|  | * resource allocation function doesn't deal with sub-trees yet. | 
|  | */ | 
|  | void pcibios_claim_one_bus(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_dev *dev; | 
|  | struct pci_bus *child_bus; | 
|  |  | 
|  | list_for_each_entry(dev, &bus->devices, bus_list) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | 
|  | struct resource *r = &dev->resource[i]; | 
|  |  | 
|  | if (r->parent || !r->start || !r->flags) | 
|  | continue; | 
|  |  | 
|  | pr_debug("PCI: Claiming %s: Resource %d: %pR\n", | 
|  | pci_name(dev), i, r); | 
|  |  | 
|  | if (pci_claim_resource(dev, i) == 0) | 
|  | continue; | 
|  |  | 
|  | pci_claim_bridge_resource(dev, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(child_bus, &bus->children, node) | 
|  | pcibios_claim_one_bus(child_bus); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); | 
|  |  | 
|  |  | 
|  | /* pcibios_finish_adding_to_bus | 
|  | * | 
|  | * This is to be called by the hotplug code after devices have been | 
|  | * added to a bus, this include calling it for a PHB that is just | 
|  | * being added | 
|  | */ | 
|  | void pcibios_finish_adding_to_bus(struct pci_bus *bus) | 
|  | { | 
|  | pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", | 
|  | pci_domain_nr(bus), bus->number); | 
|  |  | 
|  | /* Allocate bus and devices resources */ | 
|  | pcibios_allocate_bus_resources(bus); | 
|  | pcibios_claim_one_bus(bus); | 
|  | if (!pci_has_flag(PCI_PROBE_ONLY)) { | 
|  | if (bus->self) | 
|  | pci_assign_unassigned_bridge_resources(bus->self); | 
|  | else | 
|  | pci_assign_unassigned_bus_resources(bus); | 
|  | } | 
|  |  | 
|  | /* Fixup EEH */ | 
|  | eeh_add_device_tree_late(bus); | 
|  |  | 
|  | /* Add new devices to global lists.  Register in proc, sysfs. */ | 
|  | pci_bus_add_devices(bus); | 
|  |  | 
|  | /* sysfs files should only be added after devices are added */ | 
|  | eeh_add_sysfs_files(bus); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); | 
|  |  | 
|  | int pcibios_enable_device(struct pci_dev *dev, int mask) | 
|  | { | 
|  | struct pci_controller *phb = pci_bus_to_host(dev->bus); | 
|  |  | 
|  | if (phb->controller_ops.enable_device_hook) | 
|  | if (!phb->controller_ops.enable_device_hook(dev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return pci_enable_resources(dev, mask); | 
|  | } | 
|  |  | 
|  | void pcibios_disable_device(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_controller *phb = pci_bus_to_host(dev->bus); | 
|  |  | 
|  | if (phb->controller_ops.disable_device) | 
|  | phb->controller_ops.disable_device(dev); | 
|  | } | 
|  |  | 
|  | resource_size_t pcibios_io_space_offset(struct pci_controller *hose) | 
|  | { | 
|  | return (unsigned long) hose->io_base_virt - _IO_BASE; | 
|  | } | 
|  |  | 
|  | static void pcibios_setup_phb_resources(struct pci_controller *hose, | 
|  | struct list_head *resources) | 
|  | { | 
|  | struct resource *res; | 
|  | resource_size_t offset; | 
|  | int i; | 
|  |  | 
|  | /* Hookup PHB IO resource */ | 
|  | res = &hose->io_resource; | 
|  |  | 
|  | if (!res->flags) { | 
|  | pr_debug("PCI: I/O resource not set for host" | 
|  | " bridge %pOF (domain %d)\n", | 
|  | hose->dn, hose->global_number); | 
|  | } else { | 
|  | offset = pcibios_io_space_offset(hose); | 
|  |  | 
|  | pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n", | 
|  | res, (unsigned long long)offset); | 
|  | pci_add_resource_offset(resources, res, offset); | 
|  | } | 
|  |  | 
|  | /* Hookup PHB Memory resources */ | 
|  | for (i = 0; i < 3; ++i) { | 
|  | res = &hose->mem_resources[i]; | 
|  | if (!res->flags) | 
|  | continue; | 
|  |  | 
|  | offset = hose->mem_offset[i]; | 
|  | pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, | 
|  | res, (unsigned long long)offset); | 
|  |  | 
|  | pci_add_resource_offset(resources, res, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Null PCI config access functions, for the case when we can't | 
|  | * find a hose. | 
|  | */ | 
|  | #define NULL_PCI_OP(rw, size, type)					\ | 
|  | static int								\ | 
|  | null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\ | 
|  | {									\ | 
|  | return PCIBIOS_DEVICE_NOT_FOUND;    				\ | 
|  | } | 
|  |  | 
|  | static int | 
|  | null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int len, u32 *val) | 
|  | { | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | static int | 
|  | null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, | 
|  | int len, u32 val) | 
|  | { | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | static struct pci_ops null_pci_ops = | 
|  | { | 
|  | .read = null_read_config, | 
|  | .write = null_write_config, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These functions are used early on before PCI scanning is done | 
|  | * and all of the pci_dev and pci_bus structures have been created. | 
|  | */ | 
|  | static struct pci_bus * | 
|  | fake_pci_bus(struct pci_controller *hose, int busnr) | 
|  | { | 
|  | static struct pci_bus bus; | 
|  |  | 
|  | if (hose == NULL) { | 
|  | printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); | 
|  | } | 
|  | bus.number = busnr; | 
|  | bus.sysdata = hose; | 
|  | bus.ops = hose? hose->ops: &null_pci_ops; | 
|  | return &bus; | 
|  | } | 
|  |  | 
|  | #define EARLY_PCI_OP(rw, size, type)					\ | 
|  | int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\ | 
|  | int devfn, int offset, type value)	\ | 
|  | {									\ | 
|  | return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\ | 
|  | devfn, offset, value);	\ | 
|  | } | 
|  |  | 
|  | EARLY_PCI_OP(read, byte, u8 *) | 
|  | EARLY_PCI_OP(read, word, u16 *) | 
|  | EARLY_PCI_OP(read, dword, u32 *) | 
|  | EARLY_PCI_OP(write, byte, u8) | 
|  | EARLY_PCI_OP(write, word, u16) | 
|  | EARLY_PCI_OP(write, dword, u32) | 
|  |  | 
|  | int early_find_capability(struct pci_controller *hose, int bus, int devfn, | 
|  | int cap) | 
|  | { | 
|  | return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); | 
|  | } | 
|  |  | 
|  | struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) | 
|  | { | 
|  | struct pci_controller *hose = bus->sysdata; | 
|  |  | 
|  | return of_node_get(hose->dn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus | 
|  | * @hose: Pointer to the PCI host controller instance structure | 
|  | */ | 
|  | void pcibios_scan_phb(struct pci_controller *hose) | 
|  | { | 
|  | LIST_HEAD(resources); | 
|  | struct pci_bus *bus; | 
|  | struct device_node *node = hose->dn; | 
|  | int mode; | 
|  |  | 
|  | pr_debug("PCI: Scanning PHB %pOF\n", node); | 
|  |  | 
|  | /* Get some IO space for the new PHB */ | 
|  | pcibios_setup_phb_io_space(hose); | 
|  |  | 
|  | /* Wire up PHB bus resources */ | 
|  | pcibios_setup_phb_resources(hose, &resources); | 
|  |  | 
|  | hose->busn.start = hose->first_busno; | 
|  | hose->busn.end	 = hose->last_busno; | 
|  | hose->busn.flags = IORESOURCE_BUS; | 
|  | pci_add_resource(&resources, &hose->busn); | 
|  |  | 
|  | /* Create an empty bus for the toplevel */ | 
|  | bus = pci_create_root_bus(hose->parent, hose->first_busno, | 
|  | hose->ops, hose, &resources); | 
|  | if (bus == NULL) { | 
|  | pr_err("Failed to create bus for PCI domain %04x\n", | 
|  | hose->global_number); | 
|  | pci_free_resource_list(&resources); | 
|  | return; | 
|  | } | 
|  | hose->bus = bus; | 
|  |  | 
|  | /* Get probe mode and perform scan */ | 
|  | mode = PCI_PROBE_NORMAL; | 
|  | if (node && hose->controller_ops.probe_mode) | 
|  | mode = hose->controller_ops.probe_mode(bus); | 
|  | pr_debug("    probe mode: %d\n", mode); | 
|  | if (mode == PCI_PROBE_DEVTREE) | 
|  | of_scan_bus(node, bus); | 
|  |  | 
|  | if (mode == PCI_PROBE_NORMAL) { | 
|  | pci_bus_update_busn_res_end(bus, 255); | 
|  | hose->last_busno = pci_scan_child_bus(bus); | 
|  | pci_bus_update_busn_res_end(bus, hose->last_busno); | 
|  | } | 
|  |  | 
|  | /* Platform gets a chance to do some global fixups before | 
|  | * we proceed to resource allocation | 
|  | */ | 
|  | if (ppc_md.pcibios_fixup_phb) | 
|  | ppc_md.pcibios_fixup_phb(hose); | 
|  |  | 
|  | /* Configure PCI Express settings */ | 
|  | if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { | 
|  | struct pci_bus *child; | 
|  | list_for_each_entry(child, &bus->children, node) | 
|  | pcie_bus_configure_settings(child); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pcibios_scan_phb); | 
|  |  | 
|  | static void fixup_hide_host_resource_fsl(struct pci_dev *dev) | 
|  | { | 
|  | int i, class = dev->class >> 8; | 
|  | /* When configured as agent, programing interface = 1 */ | 
|  | int prog_if = dev->class & 0xf; | 
|  |  | 
|  | if ((class == PCI_CLASS_PROCESSOR_POWERPC || | 
|  | class == PCI_CLASS_BRIDGE_OTHER) && | 
|  | (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && | 
|  | (prog_if == 0) && | 
|  | (dev->bus->parent == NULL)) { | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
|  | dev->resource[i].start = 0; | 
|  | dev->resource[i].end = 0; | 
|  | dev->resource[i].flags = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); | 
|  | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); |