|  | /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580 | 
|  | * | 
|  | * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/ptp_classify.h> | 
|  |  | 
|  | #include "igb.h" | 
|  |  | 
|  | #define INCVALUE_MASK		0x7fffffff | 
|  | #define ISGN			0x80000000 | 
|  |  | 
|  | /* The 82580 timesync updates the system timer every 8ns by 8ns, | 
|  | * and this update value cannot be reprogrammed. | 
|  | * | 
|  | * Neither the 82576 nor the 82580 offer registers wide enough to hold | 
|  | * nanoseconds time values for very long. For the 82580, SYSTIM always | 
|  | * counts nanoseconds, but the upper 24 bits are not availible. The | 
|  | * frequency is adjusted by changing the 32 bit fractional nanoseconds | 
|  | * register, TIMINCA. | 
|  | * | 
|  | * For the 82576, the SYSTIM register time unit is affect by the | 
|  | * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this | 
|  | * field are needed to provide the nominal 16 nanosecond period, | 
|  | * leaving 19 bits for fractional nanoseconds. | 
|  | * | 
|  | * We scale the NIC clock cycle by a large factor so that relatively | 
|  | * small clock corrections can be added or subtracted at each clock | 
|  | * tick. The drawbacks of a large factor are a) that the clock | 
|  | * register overflows more quickly (not such a big deal) and b) that | 
|  | * the increment per tick has to fit into 24 bits.  As a result we | 
|  | * need to use a shift of 19 so we can fit a value of 16 into the | 
|  | * TIMINCA register. | 
|  | * | 
|  | * | 
|  | *             SYSTIMH            SYSTIML | 
|  | *        +--------------+   +---+---+------+ | 
|  | *  82576 |      32      |   | 8 | 5 |  19  | | 
|  | *        +--------------+   +---+---+------+ | 
|  | *         \________ 45 bits _______/  fract | 
|  | * | 
|  | *        +----------+---+   +--------------+ | 
|  | *  82580 |    24    | 8 |   |      32      | | 
|  | *        +----------+---+   +--------------+ | 
|  | *          reserved  \______ 40 bits _____/ | 
|  | * | 
|  | * | 
|  | * The 45 bit 82576 SYSTIM overflows every | 
|  | *   2^45 * 10^-9 / 3600 = 9.77 hours. | 
|  | * | 
|  | * The 40 bit 82580 SYSTIM overflows every | 
|  | *   2^40 * 10^-9 /  60  = 18.3 minutes. | 
|  | */ | 
|  |  | 
|  | #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9) | 
|  | #define IGB_PTP_TX_TIMEOUT		(HZ * 15) | 
|  | #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT) | 
|  | #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1) | 
|  | #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT) | 
|  | #define IGB_NBITS_82580			40 | 
|  |  | 
|  | /* SYSTIM read access for the 82576 */ | 
|  | static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); | 
|  | struct e1000_hw *hw = &igb->hw; | 
|  | u64 val; | 
|  | u32 lo, hi; | 
|  |  | 
|  | lo = rd32(E1000_SYSTIML); | 
|  | hi = rd32(E1000_SYSTIMH); | 
|  |  | 
|  | val = ((u64) hi) << 32; | 
|  | val |= lo; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* SYSTIM read access for the 82580 */ | 
|  | static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); | 
|  | struct e1000_hw *hw = &igb->hw; | 
|  | u64 val; | 
|  | u32 lo, hi, jk; | 
|  |  | 
|  | /* The timestamp latches on lowest register read. For the 82580 | 
|  | * the lowest register is SYSTIMR instead of SYSTIML.  However we only | 
|  | * need to provide nanosecond resolution, so we just ignore it. | 
|  | */ | 
|  | jk = rd32(E1000_SYSTIMR); | 
|  | lo = rd32(E1000_SYSTIML); | 
|  | hi = rd32(E1000_SYSTIMH); | 
|  |  | 
|  | val = ((u64) hi) << 32; | 
|  | val |= lo; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* SYSTIM read access for I210/I211 */ | 
|  | static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 sec, nsec, jk; | 
|  |  | 
|  | /* The timestamp latches on lowest register read. For I210/I211, the | 
|  | * lowest register is SYSTIMR. Since we only need to provide nanosecond | 
|  | * resolution, we can ignore it. | 
|  | */ | 
|  | jk = rd32(E1000_SYSTIMR); | 
|  | nsec = rd32(E1000_SYSTIML); | 
|  | sec = rd32(E1000_SYSTIMH); | 
|  |  | 
|  | ts->tv_sec = sec; | 
|  | ts->tv_nsec = nsec; | 
|  | } | 
|  |  | 
|  | static void igb_ptp_write_i210(struct igb_adapter *adapter, | 
|  | const struct timespec *ts) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* Writing the SYSTIMR register is not necessary as it only provides | 
|  | * sub-nanosecond resolution. | 
|  | */ | 
|  | wr32(E1000_SYSTIML, ts->tv_nsec); | 
|  | wr32(E1000_SYSTIMH, ts->tv_sec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp | 
|  | * @adapter: board private structure | 
|  | * @hwtstamps: timestamp structure to update | 
|  | * @systim: unsigned 64bit system time value. | 
|  | * | 
|  | * We need to convert the system time value stored in the RX/TXSTMP registers | 
|  | * into a hwtstamp which can be used by the upper level timestamping functions. | 
|  | * | 
|  | * The 'tmreg_lock' spinlock is used to protect the consistency of the | 
|  | * system time value. This is needed because reading the 64 bit time | 
|  | * value involves reading two (or three) 32 bit registers. The first | 
|  | * read latches the value. Ditto for writing. | 
|  | * | 
|  | * In addition, here have extended the system time with an overflow | 
|  | * counter in software. | 
|  | **/ | 
|  | static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, | 
|  | struct skb_shared_hwtstamps *hwtstamps, | 
|  | u64 systim) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 ns; | 
|  |  | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82576: | 
|  | case e1000_82580: | 
|  | case e1000_i354: | 
|  | case e1000_i350: | 
|  | spin_lock_irqsave(&adapter->tmreg_lock, flags); | 
|  |  | 
|  | ns = timecounter_cyc2time(&adapter->tc, systim); | 
|  |  | 
|  | spin_unlock_irqrestore(&adapter->tmreg_lock, flags); | 
|  |  | 
|  | memset(hwtstamps, 0, sizeof(*hwtstamps)); | 
|  | hwtstamps->hwtstamp = ns_to_ktime(ns); | 
|  | break; | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | memset(hwtstamps, 0, sizeof(*hwtstamps)); | 
|  | /* Upper 32 bits contain s, lower 32 bits contain ns. */ | 
|  | hwtstamps->hwtstamp = ktime_set(systim >> 32, | 
|  | systim & 0xFFFFFFFF); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* PTP clock operations */ | 
|  | static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | struct e1000_hw *hw = &igb->hw; | 
|  | int neg_adj = 0; | 
|  | u64 rate; | 
|  | u32 incvalue; | 
|  |  | 
|  | if (ppb < 0) { | 
|  | neg_adj = 1; | 
|  | ppb = -ppb; | 
|  | } | 
|  | rate = ppb; | 
|  | rate <<= 14; | 
|  | rate = div_u64(rate, 1953125); | 
|  |  | 
|  | incvalue = 16 << IGB_82576_TSYNC_SHIFT; | 
|  |  | 
|  | if (neg_adj) | 
|  | incvalue -= rate; | 
|  | else | 
|  | incvalue += rate; | 
|  |  | 
|  | wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | struct e1000_hw *hw = &igb->hw; | 
|  | int neg_adj = 0; | 
|  | u64 rate; | 
|  | u32 inca; | 
|  |  | 
|  | if (ppb < 0) { | 
|  | neg_adj = 1; | 
|  | ppb = -ppb; | 
|  | } | 
|  | rate = ppb; | 
|  | rate <<= 26; | 
|  | rate = div_u64(rate, 1953125); | 
|  |  | 
|  | inca = rate & INCVALUE_MASK; | 
|  | if (neg_adj) | 
|  | inca |= ISGN; | 
|  |  | 
|  | wr32(E1000_TIMINCA, inca); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  | s64 now; | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | now = timecounter_read(&igb->tc); | 
|  | now += delta; | 
|  | timecounter_init(&igb->tc, &igb->cc, now); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  | struct timespec now, then = ns_to_timespec(delta); | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | igb_ptp_read_i210(igb, &now); | 
|  | now = timespec_add(now, then); | 
|  | igb_ptp_write_i210(igb, (const struct timespec *)&now); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, | 
|  | struct timespec *ts) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  | u64 ns; | 
|  | u32 remainder; | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | ns = timecounter_read(&igb->tc); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); | 
|  | ts->tv_nsec = remainder; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, | 
|  | struct timespec *ts) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | igb_ptp_read_i210(igb, ts); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, | 
|  | const struct timespec *ts) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  | u64 ns; | 
|  |  | 
|  | ns = ts->tv_sec * 1000000000ULL; | 
|  | ns += ts->tv_nsec; | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | timecounter_init(&igb->tc, &igb->cc, ns); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, | 
|  | const struct timespec *ts) | 
|  | { | 
|  | struct igb_adapter *igb = container_of(ptp, struct igb_adapter, | 
|  | ptp_caps); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&igb->tmreg_lock, flags); | 
|  |  | 
|  | igb_ptp_write_i210(igb, ts); | 
|  |  | 
|  | spin_unlock_irqrestore(&igb->tmreg_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ptp_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *rq, int on) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_tx_work | 
|  | * @work: pointer to work struct | 
|  | * | 
|  | * This work function polls the TSYNCTXCTL valid bit to determine when a | 
|  | * timestamp has been taken for the current stored skb. | 
|  | **/ | 
|  | void igb_ptp_tx_work(struct work_struct *work) | 
|  | { | 
|  | struct igb_adapter *adapter = container_of(work, struct igb_adapter, | 
|  | ptp_tx_work); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tsynctxctl; | 
|  |  | 
|  | if (!adapter->ptp_tx_skb) | 
|  | return; | 
|  |  | 
|  | if (time_is_before_jiffies(adapter->ptp_tx_start + | 
|  | IGB_PTP_TX_TIMEOUT)) { | 
|  | dev_kfree_skb_any(adapter->ptp_tx_skb); | 
|  | adapter->ptp_tx_skb = NULL; | 
|  | adapter->tx_hwtstamp_timeouts++; | 
|  | dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tsynctxctl = rd32(E1000_TSYNCTXCTL); | 
|  | if (tsynctxctl & E1000_TSYNCTXCTL_VALID) | 
|  | igb_ptp_tx_hwtstamp(adapter); | 
|  | else | 
|  | /* reschedule to check later */ | 
|  | schedule_work(&adapter->ptp_tx_work); | 
|  | } | 
|  |  | 
|  | static void igb_ptp_overflow_check(struct work_struct *work) | 
|  | { | 
|  | struct igb_adapter *igb = | 
|  | container_of(work, struct igb_adapter, ptp_overflow_work.work); | 
|  | struct timespec ts; | 
|  |  | 
|  | igb->ptp_caps.gettime(&igb->ptp_caps, &ts); | 
|  |  | 
|  | pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec); | 
|  |  | 
|  | schedule_delayed_work(&igb->ptp_overflow_work, | 
|  | IGB_SYSTIM_OVERFLOW_PERIOD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched | 
|  | * @adapter: private network adapter structure | 
|  | * | 
|  | * This watchdog task is scheduled to detect error case where hardware has | 
|  | * dropped an Rx packet that was timestamped when the ring is full. The | 
|  | * particular error is rare but leaves the device in a state unable to timestamp | 
|  | * any future packets. | 
|  | **/ | 
|  | void igb_ptp_rx_hang(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct igb_ring *rx_ring; | 
|  | u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); | 
|  | unsigned long rx_event; | 
|  | int n; | 
|  |  | 
|  | if (hw->mac.type != e1000_82576) | 
|  | return; | 
|  |  | 
|  | /* If we don't have a valid timestamp in the registers, just update the | 
|  | * timeout counter and exit | 
|  | */ | 
|  | if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { | 
|  | adapter->last_rx_ptp_check = jiffies; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Determine the most recent watchdog or rx_timestamp event */ | 
|  | rx_event = adapter->last_rx_ptp_check; | 
|  | for (n = 0; n < adapter->num_rx_queues; n++) { | 
|  | rx_ring = adapter->rx_ring[n]; | 
|  | if (time_after(rx_ring->last_rx_timestamp, rx_event)) | 
|  | rx_event = rx_ring->last_rx_timestamp; | 
|  | } | 
|  |  | 
|  | /* Only need to read the high RXSTMP register to clear the lock */ | 
|  | if (time_is_before_jiffies(rx_event + 5 * HZ)) { | 
|  | rd32(E1000_RXSTMPH); | 
|  | adapter->last_rx_ptp_check = jiffies; | 
|  | adapter->rx_hwtstamp_cleared++; | 
|  | dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp | 
|  | * @adapter: Board private structure. | 
|  | * | 
|  | * If we were asked to do hardware stamping and such a time stamp is | 
|  | * available, then it must have been for this skb here because we only | 
|  | * allow only one such packet into the queue. | 
|  | **/ | 
|  | void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct skb_shared_hwtstamps shhwtstamps; | 
|  | u64 regval; | 
|  |  | 
|  | regval = rd32(E1000_TXSTMPL); | 
|  | regval |= (u64)rd32(E1000_TXSTMPH) << 32; | 
|  |  | 
|  | igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); | 
|  | skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); | 
|  | dev_kfree_skb_any(adapter->ptp_tx_skb); | 
|  | adapter->ptp_tx_skb = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp | 
|  | * @q_vector: Pointer to interrupt specific structure | 
|  | * @va: Pointer to address containing Rx buffer | 
|  | * @skb: Buffer containing timestamp and packet | 
|  | * | 
|  | * This function is meant to retrieve a timestamp from the first buffer of an | 
|  | * incoming frame.  The value is stored in little endian format starting on | 
|  | * byte 8. | 
|  | **/ | 
|  | void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, | 
|  | unsigned char *va, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | __le64 *regval = (__le64 *)va; | 
|  |  | 
|  | /* The timestamp is recorded in little endian format. | 
|  | * DWORD: 0        1        2        3 | 
|  | * Field: Reserved Reserved SYSTIML  SYSTIMH | 
|  | */ | 
|  | igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), | 
|  | le64_to_cpu(regval[1])); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register | 
|  | * @q_vector: Pointer to interrupt specific structure | 
|  | * @skb: Buffer containing timestamp and packet | 
|  | * | 
|  | * This function is meant to retrieve a timestamp from the internal registers | 
|  | * of the adapter and store it in the skb. | 
|  | **/ | 
|  | void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u64 regval; | 
|  |  | 
|  | /* If this bit is set, then the RX registers contain the time stamp. No | 
|  | * other packet will be time stamped until we read these registers, so | 
|  | * read the registers to make them available again. Because only one | 
|  | * packet can be time stamped at a time, we know that the register | 
|  | * values must belong to this one here and therefore we don't need to | 
|  | * compare any of the additional attributes stored for it. | 
|  | * | 
|  | * If nothing went wrong, then it should have a shared tx_flags that we | 
|  | * can turn into a skb_shared_hwtstamps. | 
|  | */ | 
|  | if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | 
|  | return; | 
|  |  | 
|  | regval = rd32(E1000_RXSTMPL); | 
|  | regval |= (u64)rd32(E1000_RXSTMPH) << 32; | 
|  |  | 
|  | igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_hwtstamp_ioctl - control hardware time stamping | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | * | 
|  | * Outgoing time stamping can be enabled and disabled. Play nice and | 
|  | * disable it when requested, although it shouldn't case any overhead | 
|  | * when no packet needs it. At most one packet in the queue may be | 
|  | * marked for time stamping, otherwise it would be impossible to tell | 
|  | * for sure to which packet the hardware time stamp belongs. | 
|  | * | 
|  | * Incoming time stamping has to be configured via the hardware | 
|  | * filters. Not all combinations are supported, in particular event | 
|  | * type has to be specified. Matching the kind of event packet is | 
|  | * not supported, with the exception of "all V2 events regardless of | 
|  | * level 2 or 4". | 
|  | **/ | 
|  | int igb_ptp_hwtstamp_ioctl(struct net_device *netdev, | 
|  | struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct hwtstamp_config config; | 
|  | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | 
|  | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | 
|  | u32 tsync_rx_cfg = 0; | 
|  | bool is_l4 = false; | 
|  | bool is_l2 = false; | 
|  | u32 regval; | 
|  |  | 
|  | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* reserved for future extensions */ | 
|  | if (config.flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (config.tx_type) { | 
|  | case HWTSTAMP_TX_OFF: | 
|  | tsync_tx_ctl = 0; | 
|  | case HWTSTAMP_TX_ON: | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | switch (config.rx_filter) { | 
|  | case HWTSTAMP_FILTER_NONE: | 
|  | tsync_rx_ctl = 0; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | 
|  | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_ALL: | 
|  | /* 82576 cannot timestamp all packets, which it needs to do to | 
|  | * support both V1 Sync and Delay_Req messages | 
|  | */ | 
|  | if (hw->mac.type != e1000_82576) { | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | 
|  | config.rx_filter = HWTSTAMP_FILTER_ALL; | 
|  | break; | 
|  | } | 
|  | /* fall through */ | 
|  | default: | 
|  | config.rx_filter = HWTSTAMP_FILTER_NONE; | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | if (tsync_rx_ctl | tsync_tx_ctl) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Per-packet timestamping only works if all packets are | 
|  | * timestamped, so enable timestamping in all packets as | 
|  | * long as one Rx filter was configured. | 
|  | */ | 
|  | if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { | 
|  | tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | 
|  | config.rx_filter = HWTSTAMP_FILTER_ALL; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  |  | 
|  | if ((hw->mac.type == e1000_i210) || | 
|  | (hw->mac.type == e1000_i211)) { | 
|  | regval = rd32(E1000_RXPBS); | 
|  | regval |= E1000_RXPBS_CFG_TS_EN; | 
|  | wr32(E1000_RXPBS, regval); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* enable/disable TX */ | 
|  | regval = rd32(E1000_TSYNCTXCTL); | 
|  | regval &= ~E1000_TSYNCTXCTL_ENABLED; | 
|  | regval |= tsync_tx_ctl; | 
|  | wr32(E1000_TSYNCTXCTL, regval); | 
|  |  | 
|  | /* enable/disable RX */ | 
|  | regval = rd32(E1000_TSYNCRXCTL); | 
|  | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | 
|  | regval |= tsync_rx_ctl; | 
|  | wr32(E1000_TSYNCRXCTL, regval); | 
|  |  | 
|  | /* define which PTP packets are time stamped */ | 
|  | wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); | 
|  |  | 
|  | /* define ethertype filter for timestamped packets */ | 
|  | if (is_l2) | 
|  | wr32(E1000_ETQF(3), | 
|  | (E1000_ETQF_FILTER_ENABLE | /* enable filter */ | 
|  | E1000_ETQF_1588 | /* enable timestamping */ | 
|  | ETH_P_1588));     /* 1588 eth protocol type */ | 
|  | else | 
|  | wr32(E1000_ETQF(3), 0); | 
|  |  | 
|  | /* L4 Queue Filter[3]: filter by destination port and protocol */ | 
|  | if (is_l4) { | 
|  | u32 ftqf = (IPPROTO_UDP /* UDP */ | 
|  | | E1000_FTQF_VF_BP /* VF not compared */ | 
|  | | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | 
|  | | E1000_FTQF_MASK); /* mask all inputs */ | 
|  | ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ | 
|  |  | 
|  | wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); | 
|  | wr32(E1000_IMIREXT(3), | 
|  | (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); | 
|  | if (hw->mac.type == e1000_82576) { | 
|  | /* enable source port check */ | 
|  | wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); | 
|  | ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; | 
|  | } | 
|  | wr32(E1000_FTQF(3), ftqf); | 
|  | } else { | 
|  | wr32(E1000_FTQF(3), E1000_FTQF_MASK); | 
|  | } | 
|  | wrfl(); | 
|  |  | 
|  | /* clear TX/RX time stamp registers, just to be sure */ | 
|  | regval = rd32(E1000_TXSTMPL); | 
|  | regval = rd32(E1000_TXSTMPH); | 
|  | regval = rd32(E1000_RXSTMPL); | 
|  | regval = rd32(E1000_RXSTMPH); | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
|  | -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | void igb_ptp_init(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82576: | 
|  | snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); | 
|  | adapter->ptp_caps.owner = THIS_MODULE; | 
|  | adapter->ptp_caps.max_adj = 999999881; | 
|  | adapter->ptp_caps.n_ext_ts = 0; | 
|  | adapter->ptp_caps.pps = 0; | 
|  | adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; | 
|  | adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; | 
|  | adapter->ptp_caps.gettime = igb_ptp_gettime_82576; | 
|  | adapter->ptp_caps.settime = igb_ptp_settime_82576; | 
|  | adapter->ptp_caps.enable = igb_ptp_enable; | 
|  | adapter->cc.read = igb_ptp_read_82576; | 
|  | adapter->cc.mask = CLOCKSOURCE_MASK(64); | 
|  | adapter->cc.mult = 1; | 
|  | adapter->cc.shift = IGB_82576_TSYNC_SHIFT; | 
|  | /* Dial the nominal frequency. */ | 
|  | wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); | 
|  | break; | 
|  | case e1000_82580: | 
|  | case e1000_i354: | 
|  | case e1000_i350: | 
|  | snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); | 
|  | adapter->ptp_caps.owner = THIS_MODULE; | 
|  | adapter->ptp_caps.max_adj = 62499999; | 
|  | adapter->ptp_caps.n_ext_ts = 0; | 
|  | adapter->ptp_caps.pps = 0; | 
|  | adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; | 
|  | adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; | 
|  | adapter->ptp_caps.gettime = igb_ptp_gettime_82576; | 
|  | adapter->ptp_caps.settime = igb_ptp_settime_82576; | 
|  | adapter->ptp_caps.enable = igb_ptp_enable; | 
|  | adapter->cc.read = igb_ptp_read_82580; | 
|  | adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580); | 
|  | adapter->cc.mult = 1; | 
|  | adapter->cc.shift = 0; | 
|  | /* Enable the timer functions by clearing bit 31. */ | 
|  | wr32(E1000_TSAUXC, 0x0); | 
|  | break; | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); | 
|  | adapter->ptp_caps.owner = THIS_MODULE; | 
|  | adapter->ptp_caps.max_adj = 62499999; | 
|  | adapter->ptp_caps.n_ext_ts = 0; | 
|  | adapter->ptp_caps.pps = 0; | 
|  | adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; | 
|  | adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; | 
|  | adapter->ptp_caps.gettime = igb_ptp_gettime_i210; | 
|  | adapter->ptp_caps.settime = igb_ptp_settime_i210; | 
|  | adapter->ptp_caps.enable = igb_ptp_enable; | 
|  | /* Enable the timer functions by clearing bit 31. */ | 
|  | wr32(E1000_TSAUXC, 0x0); | 
|  | break; | 
|  | default: | 
|  | adapter->ptp_clock = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | wrfl(); | 
|  |  | 
|  | spin_lock_init(&adapter->tmreg_lock); | 
|  | INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); | 
|  |  | 
|  | /* Initialize the clock and overflow work for devices that need it. */ | 
|  | if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { | 
|  | struct timespec ts = ktime_to_timespec(ktime_get_real()); | 
|  |  | 
|  | igb_ptp_settime_i210(&adapter->ptp_caps, &ts); | 
|  | } else { | 
|  | timecounter_init(&adapter->tc, &adapter->cc, | 
|  | ktime_to_ns(ktime_get_real())); | 
|  |  | 
|  | INIT_DELAYED_WORK(&adapter->ptp_overflow_work, | 
|  | igb_ptp_overflow_check); | 
|  |  | 
|  | schedule_delayed_work(&adapter->ptp_overflow_work, | 
|  | IGB_SYSTIM_OVERFLOW_PERIOD); | 
|  | } | 
|  |  | 
|  | /* Initialize the time sync interrupts for devices that support it. */ | 
|  | if (hw->mac.type >= e1000_82580) { | 
|  | wr32(E1000_TSIM, E1000_TSIM_TXTS); | 
|  | wr32(E1000_IMS, E1000_IMS_TS); | 
|  | } | 
|  |  | 
|  | adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, | 
|  | &adapter->pdev->dev); | 
|  | if (IS_ERR(adapter->ptp_clock)) { | 
|  | adapter->ptp_clock = NULL; | 
|  | dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); | 
|  | } else { | 
|  | dev_info(&adapter->pdev->dev, "added PHC on %s\n", | 
|  | adapter->netdev->name); | 
|  | adapter->flags |= IGB_FLAG_PTP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_stop - Disable PTP device and stop the overflow check. | 
|  | * @adapter: Board private structure. | 
|  | * | 
|  | * This function stops the PTP support and cancels the delayed work. | 
|  | **/ | 
|  | void igb_ptp_stop(struct igb_adapter *adapter) | 
|  | { | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82576: | 
|  | case e1000_82580: | 
|  | case e1000_i354: | 
|  | case e1000_i350: | 
|  | cancel_delayed_work_sync(&adapter->ptp_overflow_work); | 
|  | break; | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | /* No delayed work to cancel. */ | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | cancel_work_sync(&adapter->ptp_tx_work); | 
|  | if (adapter->ptp_tx_skb) { | 
|  | dev_kfree_skb_any(adapter->ptp_tx_skb); | 
|  | adapter->ptp_tx_skb = NULL; | 
|  | } | 
|  |  | 
|  | if (adapter->ptp_clock) { | 
|  | ptp_clock_unregister(adapter->ptp_clock); | 
|  | dev_info(&adapter->pdev->dev, "removed PHC on %s\n", | 
|  | adapter->netdev->name); | 
|  | adapter->flags &= ~IGB_FLAG_PTP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ptp_reset - Re-enable the adapter for PTP following a reset. | 
|  | * @adapter: Board private structure. | 
|  | * | 
|  | * This function handles the reset work required to re-enable the PTP device. | 
|  | **/ | 
|  | void igb_ptp_reset(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (!(adapter->flags & IGB_FLAG_PTP)) | 
|  | return; | 
|  |  | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82576: | 
|  | /* Dial the nominal frequency. */ | 
|  | wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); | 
|  | break; | 
|  | case e1000_82580: | 
|  | case e1000_i354: | 
|  | case e1000_i350: | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | /* Enable the timer functions and interrupts. */ | 
|  | wr32(E1000_TSAUXC, 0x0); | 
|  | wr32(E1000_TSIM, E1000_TSIM_TXTS); | 
|  | wr32(E1000_IMS, E1000_IMS_TS); | 
|  | break; | 
|  | default: | 
|  | /* No work to do. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Re-initialize the timer. */ | 
|  | if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { | 
|  | struct timespec ts = ktime_to_timespec(ktime_get_real()); | 
|  |  | 
|  | igb_ptp_settime_i210(&adapter->ptp_caps, &ts); | 
|  | } else { | 
|  | timecounter_init(&adapter->tc, &adapter->cc, | 
|  | ktime_to_ns(ktime_get_real())); | 
|  | } | 
|  | } |