|  | /* | 
|  | * Copyright (C) 2014 Imagination Technologies | 
|  | * Author: Paul Burton <paul.burton@imgtec.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | * option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <asm/cpu-features.h> | 
|  | #include <asm/cpu-info.h> | 
|  |  | 
|  | /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */ | 
|  | bool mips_use_nan_legacy; | 
|  | bool mips_use_nan_2008; | 
|  |  | 
|  | /* FPU modes */ | 
|  | enum { | 
|  | FP_FRE, | 
|  | FP_FR0, | 
|  | FP_FR1, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct mode_req - ABI FPU mode requirements | 
|  | * @single:	The program being loaded needs an FPU but it will only issue | 
|  | *		single precision instructions meaning that it can execute in | 
|  | *		either FR0 or FR1. | 
|  | * @soft:	The soft(-float) requirement means that the program being | 
|  | *		loaded needs has no FPU dependency at all (i.e. it has no | 
|  | *		FPU instructions). | 
|  | * @fr1:	The program being loaded depends on FPU being in FR=1 mode. | 
|  | * @frdefault:	The program being loaded depends on the default FPU mode. | 
|  | *		That is FR0 for O32 and FR1 for N32/N64. | 
|  | * @fre:	The program being loaded depends on FPU with FRE=1. This mode is | 
|  | *		a bridge which uses FR=1 whilst still being able to maintain | 
|  | *		full compatibility with pre-existing code using the O32 FP32 | 
|  | *		ABI. | 
|  | * | 
|  | * More information about the FP ABIs can be found here: | 
|  | * | 
|  | * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up | 
|  | * | 
|  | */ | 
|  |  | 
|  | struct mode_req { | 
|  | bool single; | 
|  | bool soft; | 
|  | bool fr1; | 
|  | bool frdefault; | 
|  | bool fre; | 
|  | }; | 
|  |  | 
|  | static const struct mode_req fpu_reqs[] = { | 
|  | [MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  }, | 
|  | [MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  }, | 
|  | [MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false }, | 
|  | [MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false }, | 
|  | [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, | 
|  | [MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  }, | 
|  | [MIPS_ABI_FP_64]     = { false, false, true,  false, false }, | 
|  | [MIPS_ABI_FP_64A]    = { false, false, true,  false, true  } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode requirements when .MIPS.abiflags is not present in the ELF. | 
|  | * Not present means that everything is acceptable except FR1. | 
|  | */ | 
|  | static struct mode_req none_req = { true, true, false, true, true }; | 
|  |  | 
|  | int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, | 
|  | bool is_interp, struct arch_elf_state *state) | 
|  | { | 
|  | union { | 
|  | struct elf32_hdr e32; | 
|  | struct elf64_hdr e64; | 
|  | } *ehdr = _ehdr; | 
|  | struct elf32_phdr *phdr32 = _phdr; | 
|  | struct elf64_phdr *phdr64 = _phdr; | 
|  | struct mips_elf_abiflags_v0 abiflags; | 
|  | bool elf32; | 
|  | u32 flags; | 
|  | int ret; | 
|  |  | 
|  | elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | 
|  | flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; | 
|  |  | 
|  | /* Let's see if this is an O32 ELF */ | 
|  | if (elf32) { | 
|  | if (flags & EF_MIPS_FP64) { | 
|  | /* | 
|  | * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it | 
|  | * later if needed | 
|  | */ | 
|  | if (is_interp) | 
|  | state->interp_fp_abi = MIPS_ABI_FP_OLD_64; | 
|  | else | 
|  | state->fp_abi = MIPS_ABI_FP_OLD_64; | 
|  | } | 
|  | if (phdr32->p_type != PT_MIPS_ABIFLAGS) | 
|  | return 0; | 
|  |  | 
|  | if (phdr32->p_filesz < sizeof(abiflags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kernel_read(elf, phdr32->p_offset, | 
|  | (char *)&abiflags, | 
|  | sizeof(abiflags)); | 
|  | } else { | 
|  | if (phdr64->p_type != PT_MIPS_ABIFLAGS) | 
|  | return 0; | 
|  | if (phdr64->p_filesz < sizeof(abiflags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kernel_read(elf, phdr64->p_offset, | 
|  | (char *)&abiflags, | 
|  | sizeof(abiflags)); | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret != sizeof(abiflags)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Record the required FP ABIs for use by mips_check_elf */ | 
|  | if (is_interp) | 
|  | state->interp_fp_abi = abiflags.fp_abi; | 
|  | else | 
|  | state->fp_abi = abiflags.fp_abi; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, | 
|  | struct arch_elf_state *state) | 
|  | { | 
|  | union { | 
|  | struct elf32_hdr e32; | 
|  | struct elf64_hdr e64; | 
|  | } *ehdr = _ehdr; | 
|  | union { | 
|  | struct elf32_hdr e32; | 
|  | struct elf64_hdr e64; | 
|  | } *iehdr = _interp_ehdr; | 
|  | struct mode_req prog_req, interp_req; | 
|  | int fp_abi, interp_fp_abi, abi0, abi1, max_abi; | 
|  | bool elf32; | 
|  | u32 flags; | 
|  |  | 
|  | elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | 
|  | flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; | 
|  |  | 
|  | /* | 
|  | * Determine the NaN personality, reject the binary if not allowed. | 
|  | * Also ensure that any interpreter matches the executable. | 
|  | */ | 
|  | if (flags & EF_MIPS_NAN2008) { | 
|  | if (mips_use_nan_2008) | 
|  | state->nan_2008 = 1; | 
|  | else | 
|  | return -ENOEXEC; | 
|  | } else { | 
|  | if (mips_use_nan_legacy) | 
|  | state->nan_2008 = 0; | 
|  | else | 
|  | return -ENOEXEC; | 
|  | } | 
|  | if (has_interpreter) { | 
|  | bool ielf32; | 
|  | u32 iflags; | 
|  |  | 
|  | ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | 
|  | iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; | 
|  |  | 
|  | if ((flags ^ iflags) & EF_MIPS_NAN2008) | 
|  | return -ELIBBAD; | 
|  | } | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) | 
|  | return 0; | 
|  |  | 
|  | fp_abi = state->fp_abi; | 
|  |  | 
|  | if (has_interpreter) { | 
|  | interp_fp_abi = state->interp_fp_abi; | 
|  |  | 
|  | abi0 = min(fp_abi, interp_fp_abi); | 
|  | abi1 = max(fp_abi, interp_fp_abi); | 
|  | } else { | 
|  | abi0 = abi1 = fp_abi; | 
|  | } | 
|  |  | 
|  | if (elf32 && !(flags & EF_MIPS_ABI2)) { | 
|  | /* Default to a mode capable of running code expecting FR=0 */ | 
|  | state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; | 
|  |  | 
|  | /* Allow all ABIs we know about */ | 
|  | max_abi = MIPS_ABI_FP_64A; | 
|  | } else { | 
|  | /* MIPS64 code always uses FR=1, thus the default is easy */ | 
|  | state->overall_fp_mode = FP_FR1; | 
|  |  | 
|  | /* Disallow access to the various FPXX & FP64 ABIs */ | 
|  | max_abi = MIPS_ABI_FP_SOFT; | 
|  | } | 
|  |  | 
|  | if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || | 
|  | (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) | 
|  | return -ELIBBAD; | 
|  |  | 
|  | /* It's time to determine the FPU mode requirements */ | 
|  | prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; | 
|  | interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; | 
|  |  | 
|  | /* | 
|  | * Check whether the program's and interp's ABIs have a matching FPU | 
|  | * mode requirement. | 
|  | */ | 
|  | prog_req.single = interp_req.single && prog_req.single; | 
|  | prog_req.soft = interp_req.soft && prog_req.soft; | 
|  | prog_req.fr1 = interp_req.fr1 && prog_req.fr1; | 
|  | prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; | 
|  | prog_req.fre = interp_req.fre && prog_req.fre; | 
|  |  | 
|  | /* | 
|  | * Determine the desired FPU mode | 
|  | * | 
|  | * Decision making: | 
|  | * | 
|  | * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This | 
|  | *   means that we have a combination of program and interpreter | 
|  | *   that inherently require the hybrid FP mode. | 
|  | * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or | 
|  | *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU | 
|  | *   instructions so we don't care about the mode. We will simply use | 
|  | *   the one preferred by the hardware. In fpxx case, that ABI can | 
|  | *   handle both FR=1 and FR=0, so, again, we simply choose the one | 
|  | *   preferred by the hardware. Next, if we only use single-precision | 
|  | *   FPU instructions, and the default ABI FPU mode is not good | 
|  | *   (ie single + any ABI combination), we set again the FPU mode to the | 
|  | *   one is preferred by the hardware. Next, if we know that the code | 
|  | *   will only use single-precision instructions, shown by single being | 
|  | *   true but frdefault being false, then we again set the FPU mode to | 
|  | *   the one that is preferred by the hardware. | 
|  | * - We want FP_FR1 if that's the only matching mode and the default one | 
|  | *   is not good. | 
|  | * - Return with -ELIBADD if we can't find a matching FPU mode. | 
|  | */ | 
|  | if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) | 
|  | state->overall_fp_mode = FP_FRE; | 
|  | else if ((prog_req.fr1 && prog_req.frdefault) || | 
|  | (prog_req.single && !prog_req.frdefault)) | 
|  | /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ | 
|  | state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && | 
|  | cpu_has_mips_r2_r6) ? | 
|  | FP_FR1 : FP_FR0; | 
|  | else if (prog_req.fr1) | 
|  | state->overall_fp_mode = FP_FR1; | 
|  | else  if (!prog_req.fre && !prog_req.frdefault && | 
|  | !prog_req.fr1 && !prog_req.single && !prog_req.soft) | 
|  | return -ELIBBAD; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void set_thread_fp_mode(int hybrid, int regs32) | 
|  | { | 
|  | if (hybrid) | 
|  | set_thread_flag(TIF_HYBRID_FPREGS); | 
|  | else | 
|  | clear_thread_flag(TIF_HYBRID_FPREGS); | 
|  | if (regs32) | 
|  | set_thread_flag(TIF_32BIT_FPREGS); | 
|  | else | 
|  | clear_thread_flag(TIF_32BIT_FPREGS); | 
|  | } | 
|  |  | 
|  | void mips_set_personality_fp(struct arch_elf_state *state) | 
|  | { | 
|  | /* | 
|  | * This function is only ever called for O32 ELFs so we should | 
|  | * not be worried about N32/N64 binaries. | 
|  | */ | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) | 
|  | return; | 
|  |  | 
|  | switch (state->overall_fp_mode) { | 
|  | case FP_FRE: | 
|  | set_thread_fp_mode(1, 0); | 
|  | break; | 
|  | case FP_FR0: | 
|  | set_thread_fp_mode(0, 1); | 
|  | break; | 
|  | case FP_FR1: | 
|  | set_thread_fp_mode(0, 0); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode | 
|  | * in FCSR according to the ELF NaN personality. | 
|  | */ | 
|  | void mips_set_personality_nan(struct arch_elf_state *state) | 
|  | { | 
|  | struct cpuinfo_mips *c = &boot_cpu_data; | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | t->thread.fpu.fcr31 = c->fpu_csr31; | 
|  | switch (state->nan_2008) { | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) | 
|  | t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; | 
|  | if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) | 
|  | t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int mips_elf_read_implies_exec(void *elf_ex, int exstack) | 
|  | { | 
|  | if (exstack != EXSTACK_DISABLE_X) { | 
|  | /* The binary doesn't request a non-executable stack */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!cpu_has_rixi) { | 
|  | /* The CPU doesn't support non-executable memory */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(mips_elf_read_implies_exec); |