| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2007 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/delay.h> |
| |
| #include "e1000.h" |
| |
| static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
| static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
| static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
| |
| /* Cable length tables */ |
| static const u16 e1000_m88_cable_length_table[] = |
| { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; |
| |
| static const u16 e1000_igp_2_cable_length_table[] = |
| { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, |
| 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, |
| 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, |
| 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, |
| 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, |
| 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, |
| 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, |
| 124}; |
| #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ |
| ARRAY_SIZE(e1000_igp_2_cable_length_table) |
| |
| /** |
| * e1000e_check_reset_block_generic - Check if PHY reset is blocked |
| * @hw: pointer to the HW structure |
| * |
| * Read the PHY management control register and check whether a PHY reset |
| * is blocked. If a reset is not blocked return 0, otherwise |
| * return E1000_BLK_PHY_RESET (12). |
| **/ |
| s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) |
| { |
| u32 manc; |
| |
| manc = er32(MANC); |
| |
| return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| E1000_BLK_PHY_RESET : 0; |
| } |
| |
| /** |
| * e1000e_get_phy_id - Retrieve the PHY ID and revision |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| * revision in the hardware structure. |
| **/ |
| s32 e1000e_get_phy_id(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_id; |
| |
| ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); |
| if (ret_val) |
| return ret_val; |
| |
| phy->id = (u32)(phy_id << 16); |
| udelay(20); |
| ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); |
| if (ret_val) |
| return ret_val; |
| |
| phy->id |= (u32)(phy_id & PHY_REVISION_MASK); |
| phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_phy_reset_dsp - Reset PHY DSP |
| * @hw: pointer to the HW structure |
| * |
| * Reset the digital signal processor. |
| **/ |
| s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); |
| if (ret_val) |
| return ret_val; |
| |
| return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); |
| } |
| |
| /** |
| * e1000_read_phy_reg_mdic - Read MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the MDI control register in the PHY at offset and stores the |
| * information read to data. |
| **/ |
| static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| hw_dbg(hw, "PHY Address %d is out of range\n", offset); |
| return -E1000_ERR_PARAM; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((offset << E1000_MDIC_REG_SHIFT) | |
| (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| ew32(MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(50); |
| mdic = er32(MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| hw_dbg(hw, "MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| hw_dbg(hw, "MDI Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *data = (u16) mdic; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_write_phy_reg_mdic - Write MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write to register at offset |
| * |
| * Writes data to MDI control register in the PHY at offset. |
| **/ |
| static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| hw_dbg(hw, "PHY Address %d is out of range\n", offset); |
| return -E1000_ERR_PARAM; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = (((u32)data) | |
| (offset << E1000_MDIC_REG_SHIFT) | |
| (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| ew32(MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { |
| udelay(5); |
| mdic = er32(MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| hw_dbg(hw, "MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_read_phy_reg_m88 - Read m88 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and storing the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_write_phy_reg_m88 - Write m88 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_read_phy_reg_igp - Read igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and storing the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| IGP01E1000_PHY_PAGE_SELECT, |
| (u16)offset); |
| if (ret_val) { |
| hw->phy.ops.release_phy(hw); |
| return ret_val; |
| } |
| } |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_write_phy_reg_igp - Write igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| IGP01E1000_PHY_PAGE_SELECT, |
| (u16)offset); |
| if (ret_val) { |
| hw->phy.ops.release_phy(hw); |
| return ret_val; |
| } |
| } |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_read_kmrn_reg - Read kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary. Then reads the PHY register at offset |
| * using the kumeran interface. The information retrieved is stored in data. |
| * Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| u32 kmrnctrlsta; |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
| ew32(KMRNCTRLSTA, kmrnctrlsta); |
| |
| udelay(2); |
| |
| kmrnctrlsta = er32(KMRNCTRLSTA); |
| *data = (u16)kmrnctrlsta; |
| |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_write_kmrn_reg - Write kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary. Then write the data to PHY register |
| * at the offset using the kumeran interface. Release any acquired semaphores |
| * before exiting. |
| **/ |
| s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| u32 kmrnctrlsta; |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | data; |
| ew32(KMRNCTRLSTA, kmrnctrlsta); |
| |
| udelay(2); |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock |
| * and downshift values are set also. |
| **/ |
| s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| |
| /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (phy->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (phy->disable_polarity_correction == 1) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| |
| ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->revision < 4) { |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| |
| if ((phy->revision == 2) && |
| (phy->id == M88E1111_I_PHY_ID)) { |
| /* 82573L PHY - set the downshift counter to 5x. */ |
| phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; |
| phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| } else { |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| } |
| ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Commit the changes. */ |
| ret_val = e1000e_commit_phy(hw); |
| if (ret_val) |
| hw_dbg(hw, "Error committing the PHY changes\n"); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for |
| * igp PHY's. |
| **/ |
| s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error resetting the PHY.\n"); |
| return ret_val; |
| } |
| |
| /* Wait 15ms for MAC to configure PHY from NVM settings. */ |
| msleep(15); |
| |
| /* disable lplu d0 during driver init */ |
| ret_val = e1000_set_d0_lplu_state(hw, 0); |
| if (ret_val) { |
| hw_dbg(hw, "Error Disabling LPLU D0\n"); |
| return ret_val; |
| } |
| /* Configure mdi-mdix settings */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| |
| switch (phy->mdix) { |
| case 1: |
| data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 2: |
| data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 0: |
| default: |
| data |= IGP01E1000_PSCR_AUTO_MDIX; |
| break; |
| } |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* set auto-master slave resolution settings */ |
| if (hw->mac.autoneg) { |
| /* when autonegotiation advertisement is only 1000Mbps then we |
| * should disable SmartSpeed and enable Auto MasterSlave |
| * resolution as hardware default. */ |
| if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { |
| /* Disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set auto Master/Slave resolution process */ |
| ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~CR_1000T_MS_ENABLE; |
| ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| /* load defaults for future use */ |
| phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? |
| ((data & CR_1000T_MS_VALUE) ? |
| e1000_ms_force_master : |
| e1000_ms_force_slave) : |
| e1000_ms_auto; |
| |
| switch (phy->ms_type) { |
| case e1000_ms_force_master: |
| data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_force_slave: |
| data |= CR_1000T_MS_ENABLE; |
| data &= ~(CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_auto: |
| data &= ~CR_1000T_MS_ENABLE; |
| default: |
| break; |
| } |
| ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation |
| * @hw: pointer to the HW structure |
| * |
| * Reads the MII auto-neg advertisement register and/or the 1000T control |
| * register and if the PHY is already setup for auto-negotiation, then |
| * return successful. Otherwise, setup advertisement and flow control to |
| * the appropriate values for the wanted auto-negotiation. |
| **/ |
| static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 mii_autoneg_adv_reg; |
| u16 mii_1000t_ctrl_reg = 0; |
| |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | |
| NWAY_AR_100TX_HD_CAPS | |
| NWAY_AR_10T_FD_CAPS | |
| NWAY_AR_10T_HD_CAPS); |
| mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); |
| |
| hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_HALF) { |
| hw_dbg(hw, "Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_FULL) { |
| hw_dbg(hw, "Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_HALF) { |
| hw_dbg(hw, "Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_FULL) { |
| hw_dbg(hw, "Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_HALF) |
| hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { |
| hw_dbg(hw, "Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- |
| * negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->mac.fc) { |
| case e1000_fc_none: |
| /* Flow control (RX & TX) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_rx_pause: |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| /* Since there really isn't a way to advertise that we are |
| * capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later |
| * (in e1000e_config_fc_after_link_up) we will disable the |
| * hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_tx_pause: |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case e1000_fc_full: |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| hw_dbg(hw, "Flow control param set incorrectly\n"); |
| ret_val = -E1000_ERR_CONFIG; |
| return ret_val; |
| } |
| |
| ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Performs initial bounds checking on autoneg advertisement parameter, then |
| * configure to advertise the full capability. Setup the PHY to autoneg |
| * and restart the negotiation process between the link partner. If |
| * wait_for_link, then wait for autoneg to complete before exiting. |
| **/ |
| static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_ctrl; |
| |
| /* Perform some bounds checking on the autoneg advertisement |
| * parameter. |
| */ |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (phy->autoneg_advertised == 0) |
| phy->autoneg_advertised = phy->autoneg_mask; |
| |
| hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| hw_dbg(hw, "Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (phy->wait_for_link) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error while waiting for " |
| "autoneg to complete\n"); |
| return ret_val; |
| } |
| } |
| |
| hw->mac.get_link_status = 1; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_setup_copper_link - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Calls the appropriate function to configure the link for auto-neg or forced |
| * speed and duplex. Then we check for link, once link is established calls |
| * to configure collision distance and flow control are called. If link is |
| * not established, we return -E1000_ERR_PHY (-2). |
| **/ |
| s32 e1000e_setup_copper_link(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| bool link; |
| |
| if (hw->mac.autoneg) { |
| /* Setup autoneg and flow control advertisement and perform |
| * autonegotiation. */ |
| ret_val = e1000_copper_link_autoneg(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* PHY will be set to 10H, 10F, 100H or 100F |
| * depending on user settings. */ |
| hw_dbg(hw, "Forcing Speed and Duplex\n"); |
| ret_val = e1000_phy_force_speed_duplex(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error Forcing Speed and Duplex\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, |
| COPPER_LINK_UP_LIMIT, |
| 10, |
| &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (link) { |
| hw_dbg(hw, "Valid link established!!!\n"); |
| e1000e_config_collision_dist(hw); |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| } else { |
| hw_dbg(hw, "Unable to establish link!!!\n"); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY |
| * @hw: pointer to the HW structure |
| * |
| * Calls the PHY setup function to force speed and duplex. Clears the |
| * auto-crossover to force MDI manually. Waits for link and returns |
| * successful if link up is successful, else -E1000_ERR_PHY (-2). |
| **/ |
| s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| * forced whenever speed and duplex are forced. |
| */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg(hw, "IGP PSCR: %X\n", phy_data); |
| |
| udelay(1); |
| |
| if (phy->wait_for_link) { |
| hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n"); |
| |
| ret_val = e1000e_phy_has_link_generic(hw, |
| PHY_FORCE_LIMIT, |
| 100000, |
| &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| hw_dbg(hw, "Link taking longer than expected.\n"); |
| |
| /* Try once more */ |
| ret_val = e1000e_phy_has_link_generic(hw, |
| PHY_FORCE_LIMIT, |
| 100000, |
| &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Calls the PHY setup function to force speed and duplex. Clears the |
| * auto-crossover to force MDI manually. Resets the PHY to commit the |
| * changes. If time expires while waiting for link up, we reset the DSP. |
| * After reset, TX_CLK and CRS on TX must be set. Return successful upon |
| * successful completion, else return corresponding error code. |
| **/ |
| s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| * forced whenever speed and duplex are forced. |
| */ |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); |
| |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| /* Reset the phy to commit changes. */ |
| phy_data |= MII_CR_RESET; |
| |
| ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| |
| if (phy->wait_for_link) { |
| hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n"); |
| |
| ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| /* We didn't get link. |
| * Reset the DSP and cross our fingers. |
| */ |
| ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_phy_reset_dsp(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Try once more */ |
| ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Resetting the phy means we need to re-force TX_CLK in the |
| * Extended PHY Specific Control Register to 25MHz clock from |
| * the reset value of 2.5MHz. |
| */ |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* In addition, we must re-enable CRS on Tx for both half and full |
| * duplex. |
| */ |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex |
| * @hw: pointer to the HW structure |
| * @phy_ctrl: pointer to current value of PHY_CONTROL |
| * |
| * Forces speed and duplex on the PHY by doing the following: disable flow |
| * control, force speed/duplex on the MAC, disable auto speed detection, |
| * disable auto-negotiation, configure duplex, configure speed, configure |
| * the collision distance, write configuration to CTRL register. The |
| * caller must write to the PHY_CONTROL register for these settings to |
| * take affect. |
| **/ |
| void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 ctrl; |
| |
| /* Turn off flow control when forcing speed/duplex */ |
| mac->fc = e1000_fc_none; |
| |
| /* Force speed/duplex on the mac */ |
| ctrl = er32(CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~E1000_CTRL_SPD_SEL; |
| |
| /* Disable Auto Speed Detection */ |
| ctrl &= ~E1000_CTRL_ASDE; |
| |
| /* Disable autoneg on the phy */ |
| *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; |
| |
| /* Forcing Full or Half Duplex? */ |
| if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { |
| ctrl &= ~E1000_CTRL_FD; |
| *phy_ctrl &= ~MII_CR_FULL_DUPLEX; |
| hw_dbg(hw, "Half Duplex\n"); |
| } else { |
| ctrl |= E1000_CTRL_FD; |
| *phy_ctrl |= MII_CR_FULL_DUPLEX; |
| hw_dbg(hw, "Full Duplex\n"); |
| } |
| |
| /* Forcing 10mb or 100mb? */ |
| if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { |
| ctrl |= E1000_CTRL_SPD_100; |
| *phy_ctrl |= MII_CR_SPEED_100; |
| *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
| hw_dbg(hw, "Forcing 100mb\n"); |
| } else { |
| ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| *phy_ctrl |= MII_CR_SPEED_10; |
| *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| hw_dbg(hw, "Forcing 10mb\n"); |
| } |
| |
| e1000e_config_collision_dist(hw); |
| |
| ew32(CTRL, ctrl); |
| } |
| |
| /** |
| * e1000e_set_d3_lplu_state - Sets low power link up state for D3 |
| * @hw: pointer to the HW structure |
| * @active: boolean used to enable/disable lplu |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * The low power link up (lplu) state is set to the power management level D3 |
| * and SmartSpeed is disabled when active is true, else clear lplu for D3 |
| * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| * is used during Dx states where the power conservation is most important. |
| * During driver activity, SmartSpeed should be enabled so performance is |
| * maintained. |
| **/ |
| s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!active) { |
| data &= ~IGP02E1000_PM_D3_LPLU; |
| ret_val = e1e_wphy(hw, |
| IGP02E1000_PHY_POWER_MGMT, |
| data); |
| if (ret_val) |
| return ret_val; |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| data |= IGP02E1000_PM_D3_LPLU; |
| ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_check_downshift - Checks whether a downshift in speed occurred |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * A downshift is detected by querying the PHY link health. |
| **/ |
| s32 e1000e_check_downshift(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, offset, mask; |
| |
| switch (phy->type) { |
| case e1000_phy_m88: |
| case e1000_phy_gg82563: |
| offset = M88E1000_PHY_SPEC_STATUS; |
| mask = M88E1000_PSSR_DOWNSHIFT; |
| break; |
| case e1000_phy_igp_2: |
| case e1000_phy_igp_3: |
| offset = IGP01E1000_PHY_LINK_HEALTH; |
| mask = IGP01E1000_PLHR_SS_DOWNGRADE; |
| break; |
| default: |
| /* speed downshift not supported */ |
| phy->speed_downgraded = 0; |
| return 0; |
| } |
| |
| ret_val = e1e_rphy(hw, offset, &phy_data); |
| |
| if (!ret_val) |
| phy->speed_downgraded = (phy_data & mask); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_polarity_m88 - Checks the polarity. |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| * |
| * Polarity is determined based on the PHY specific status register. |
| **/ |
| static s32 e1000_check_polarity_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); |
| |
| if (!ret_val) |
| phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_polarity_igp - Checks the polarity. |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| * |
| * Polarity is determined based on the PHY port status register, and the |
| * current speed (since there is no polarity at 100Mbps). |
| **/ |
| static s32 e1000_check_polarity_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data, offset, mask; |
| |
| /* Polarity is determined based on the speed of |
| * our connection. */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| offset = IGP01E1000_PHY_PCS_INIT_REG; |
| mask = IGP01E1000_PHY_POLARITY_MASK; |
| } else { |
| /* This really only applies to 10Mbps since |
| * there is no polarity for 100Mbps (always 0). |
| */ |
| offset = IGP01E1000_PHY_PORT_STATUS; |
| mask = IGP01E1000_PSSR_POLARITY_REVERSED; |
| } |
| |
| ret_val = e1e_rphy(hw, offset, &data); |
| |
| if (!ret_val) |
| phy->cable_polarity = (data & mask) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_wait_autoneg - Wait for auto-neg compeletion |
| * @hw: pointer to the HW structure |
| * |
| * Waits for auto-negotiation to complete or for the auto-negotiation time |
| * limit to expire, which ever happens first. |
| **/ |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 i, phy_status; |
| |
| /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ |
| for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { |
| ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_AUTONEG_COMPLETE) |
| break; |
| msleep(100); |
| } |
| |
| /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation |
| * has completed. |
| */ |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_has_link_generic - Polls PHY for link |
| * @hw: pointer to the HW structure |
| * @iterations: number of times to poll for link |
| * @usec_interval: delay between polling attempts |
| * @success: pointer to whether polling was successful or not |
| * |
| * Polls the PHY status register for link, 'iterations' number of times. |
| **/ |
| s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, |
| u32 usec_interval, bool *success) |
| { |
| s32 ret_val = 0; |
| u16 i, phy_status; |
| |
| for (i = 0; i < iterations; i++) { |
| /* Some PHYs require the PHY_STATUS register to be read |
| * twice due to the link bit being sticky. No harm doing |
| * it across the board. |
| */ |
| ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_LINK_STATUS) |
| break; |
| if (usec_interval >= 1000) |
| mdelay(usec_interval/1000); |
| else |
| udelay(usec_interval); |
| } |
| |
| *success = (i < iterations); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY specific status register to retrieve the cable length |
| * information. The cable length is determined by averaging the minimum and |
| * maximum values to get the "average" cable length. The m88 PHY has four |
| * possible cable length values, which are: |
| * Register Value Cable Length |
| * 0 < 50 meters |
| * 1 50 - 80 meters |
| * 2 80 - 110 meters |
| * 3 110 - 140 meters |
| * 4 > 140 meters |
| **/ |
| s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, index; |
| |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| phy->min_cable_length = e1000_m88_cable_length_table[index]; |
| phy->max_cable_length = e1000_m88_cable_length_table[index+1]; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY |
| * @hw: pointer to the HW structure |
| * |
| * The automatic gain control (agc) normalizes the amplitude of the |
| * received signal, adjusting for the attenuation produced by the |
| * cable. By reading the AGC registers, which represent the |
| * combination of course and fine gain value, the value can be put |
| * into a lookup table to obtain the approximate cable length |
| * for each channel. |
| **/ |
| s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, i, agc_value = 0; |
| u16 cur_agc_index, max_agc_index = 0; |
| u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; |
| u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
| {IGP02E1000_PHY_AGC_A, |
| IGP02E1000_PHY_AGC_B, |
| IGP02E1000_PHY_AGC_C, |
| IGP02E1000_PHY_AGC_D}; |
| |
| /* Read the AGC registers for all channels */ |
| for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Getting bits 15:9, which represent the combination of |
| * course and fine gain values. The result is a number |
| * that can be put into the lookup table to obtain the |
| * approximate cable length. */ |
| cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| IGP02E1000_AGC_LENGTH_MASK; |
| |
| /* Array index bound check. */ |
| if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || |
| (cur_agc_index == 0)) |
| return -E1000_ERR_PHY; |
| |
| /* Remove min & max AGC values from calculation. */ |
| if (e1000_igp_2_cable_length_table[min_agc_index] > |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| min_agc_index = cur_agc_index; |
| if (e1000_igp_2_cable_length_table[max_agc_index] < |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| max_agc_index = cur_agc_index; |
| |
| agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; |
| } |
| |
| agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
| e1000_igp_2_cable_length_table[max_agc_index]); |
| agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| |
| /* Calculate cable length with the error range of +/- 10 meters. */ |
| phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
| (agc_value - IGP02E1000_AGC_RANGE) : 0; |
| phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_get_phy_info_m88 - Retrieve PHY information |
| * @hw: pointer to the HW structure |
| * |
| * Valid for only copper links. Read the PHY status register (sticky read) |
| * to verify that link is up. Read the PHY special control register to |
| * determine the polarity and 10base-T extended distance. Read the PHY |
| * special status register to determine MDI/MDIx and current speed. If |
| * speed is 1000, then determine cable length, local and remote receiver. |
| **/ |
| s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| if (hw->media_type != e1000_media_type_copper) { |
| hw_dbg(hw, "Phy info is only valid for copper media\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->polarity_correction = (phy_data & |
| M88E1000_PSCR_POLARITY_REVERSAL); |
| |
| ret_val = e1000_check_polarity_m88(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); |
| |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| ret_val = e1000_get_cable_length(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| |
| phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| } else { |
| /* Set values to "undefined" */ |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_get_phy_info_igp - Retrieve igp PHY information |
| * @hw: pointer to the HW structure |
| * |
| * Read PHY status to determine if link is up. If link is up, then |
| * set/determine 10base-T extended distance and polarity correction. Read |
| * PHY port status to determine MDI/MDIx and speed. Based on the speed, |
| * determine on the cable length, local and remote receiver. |
| **/ |
| s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| phy->polarity_correction = 1; |
| |
| ret_val = e1000_check_polarity_igp(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); |
| |
| if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| ret_val = e1000_get_cable_length(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| |
| phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| } else { |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_sw_reset - PHY software reset |
| * @hw: pointer to the HW structure |
| * |
| * Does a software reset of the PHY by reading the PHY control register and |
| * setting/write the control register reset bit to the PHY. |
| **/ |
| s32 e1000e_phy_sw_reset(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_ctrl; |
| |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| phy_ctrl |= MII_CR_RESET; |
| ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000e_phy_hw_reset_generic - PHY hardware reset |
| * @hw: pointer to the HW structure |
| * |
| * Verify the reset block is not blocking us from resetting. Acquire |
| * semaphore (if necessary) and read/set/write the device control reset |
| * bit in the PHY. Wait the appropriate delay time for the device to |
| * reset and release the semaphore (if necessary). |
| **/ |
| s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u32 ctrl; |
| |
| ret_val = e1000_check_reset_block(hw); |
| if (ret_val) |
| return 0; |
| |
| ret_val = phy->ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ctrl = er32(CTRL); |
| ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
| e1e_flush(); |
| |
| udelay(phy->reset_delay_us); |
| |
| ew32(CTRL, ctrl); |
| e1e_flush(); |
| |
| udelay(150); |
| |
| phy->ops.release_phy(hw); |
| |
| return e1000_get_phy_cfg_done(hw); |
| } |
| |
| /** |
| * e1000e_get_cfg_done - Generic configuration done |
| * @hw: pointer to the HW structure |
| * |
| * Generic function to wait 10 milli-seconds for configuration to complete |
| * and return success. |
| **/ |
| s32 e1000e_get_cfg_done(struct e1000_hw *hw) |
| { |
| mdelay(10); |
| return 0; |
| } |
| |
| /* Internal function pointers */ |
| |
| /** |
| * e1000_get_phy_cfg_done - Generic PHY configuration done |
| * @hw: pointer to the HW structure |
| * |
| * Return success if silicon family did not implement a family specific |
| * get_cfg_done function. |
| **/ |
| static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| { |
| if (hw->phy.ops.get_cfg_done) |
| return hw->phy.ops.get_cfg_done(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex |
| * @hw: pointer to the HW structure |
| * |
| * When the silicon family has not implemented a forced speed/duplex |
| * function for the PHY, simply return 0. |
| **/ |
| static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
| { |
| if (hw->phy.ops.force_speed_duplex) |
| return hw->phy.ops.force_speed_duplex(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_get_phy_type_from_id - Get PHY type from id |
| * @phy_id: phy_id read from the phy |
| * |
| * Returns the phy type from the id. |
| **/ |
| enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) |
| { |
| enum e1000_phy_type phy_type = e1000_phy_unknown; |
| |
| switch (phy_id) { |
| case M88E1000_I_PHY_ID: |
| case M88E1000_E_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ |
| phy_type = e1000_phy_igp_2; |
| break; |
| case GG82563_E_PHY_ID: |
| phy_type = e1000_phy_gg82563; |
| break; |
| case IGP03E1000_E_PHY_ID: |
| phy_type = e1000_phy_igp_3; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| phy_type = e1000_phy_ife; |
| break; |
| default: |
| phy_type = e1000_phy_unknown; |
| break; |
| } |
| return phy_type; |
| } |
| |
| /** |
| * e1000e_commit_phy - Soft PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Performs a soft PHY reset on those that apply. This is a function pointer |
| * entry point called by drivers. |
| **/ |
| s32 e1000e_commit_phy(struct e1000_hw *hw) |
| { |
| if (hw->phy.ops.commit_phy) |
| return hw->phy.ops.commit_phy(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state - Sets low power link up state for D0 |
| * @hw: pointer to the HW structure |
| * @active: boolean used to enable/disable lplu |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * The low power link up (lplu) state is set to the power management level D0 |
| * and SmartSpeed is disabled when active is true, else clear lplu for D0 |
| * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| * is used during Dx states where the power conservation is most important. |
| * During driver activity, SmartSpeed should be enabled so performance is |
| * maintained. This is a function pointer entry point called by drivers. |
| **/ |
| static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) |
| { |
| if (hw->phy.ops.set_d0_lplu_state) |
| return hw->phy.ops.set_d0_lplu_state(hw, active); |
| |
| return 0; |
| } |