|  | #include <linux/gfp.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/bootmem.h>	/* for max_low_pfn */ | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/init.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/page_types.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h>		/* for MAX_DMA_PFN */ | 
|  | #include <asm/microcode.h> | 
|  |  | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | static unsigned long __initdata pgt_buf_start; | 
|  | static unsigned long __initdata pgt_buf_end; | 
|  | static unsigned long __initdata pgt_buf_top; | 
|  |  | 
|  | static unsigned long min_pfn_mapped; | 
|  |  | 
|  | static bool __initdata can_use_brk_pgt = true; | 
|  |  | 
|  | /* | 
|  | * Pages returned are already directly mapped. | 
|  | * | 
|  | * Changing that is likely to break Xen, see commit: | 
|  | * | 
|  | *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve | 
|  | * | 
|  | * for detailed information. | 
|  | */ | 
|  | __ref void *alloc_low_pages(unsigned int num) | 
|  | { | 
|  | unsigned long pfn; | 
|  | int i; | 
|  |  | 
|  | if (after_bootmem) { | 
|  | unsigned int order; | 
|  |  | 
|  | order = get_order((unsigned long)num << PAGE_SHIFT); | 
|  | return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | | 
|  | __GFP_ZERO, order); | 
|  | } | 
|  |  | 
|  | if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { | 
|  | unsigned long ret; | 
|  | if (min_pfn_mapped >= max_pfn_mapped) | 
|  | panic("alloc_low_page: ran out of memory"); | 
|  | ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, | 
|  | max_pfn_mapped << PAGE_SHIFT, | 
|  | PAGE_SIZE * num , PAGE_SIZE); | 
|  | if (!ret) | 
|  | panic("alloc_low_page: can not alloc memory"); | 
|  | memblock_reserve(ret, PAGE_SIZE * num); | 
|  | pfn = ret >> PAGE_SHIFT; | 
|  | } else { | 
|  | pfn = pgt_buf_end; | 
|  | pgt_buf_end += num; | 
|  | printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", | 
|  | pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | void *adr; | 
|  |  | 
|  | adr = __va((pfn + i) << PAGE_SHIFT); | 
|  | clear_page(adr); | 
|  | } | 
|  |  | 
|  | return __va(pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */ | 
|  | #define INIT_PGT_BUF_SIZE	(5 * PAGE_SIZE) | 
|  | RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); | 
|  | void  __init early_alloc_pgt_buf(void) | 
|  | { | 
|  | unsigned long tables = INIT_PGT_BUF_SIZE; | 
|  | phys_addr_t base; | 
|  |  | 
|  | base = __pa(extend_brk(tables, PAGE_SIZE)); | 
|  |  | 
|  | pgt_buf_start = base >> PAGE_SHIFT; | 
|  | pgt_buf_end = pgt_buf_start; | 
|  | pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | int after_bootmem; | 
|  |  | 
|  | int direct_gbpages | 
|  | #ifdef CONFIG_DIRECT_GBPAGES | 
|  | = 1 | 
|  | #endif | 
|  | ; | 
|  |  | 
|  | static void __init init_gbpages(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (direct_gbpages && cpu_has_gbpages) | 
|  | printk(KERN_INFO "Using GB pages for direct mapping\n"); | 
|  | else | 
|  | direct_gbpages = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct map_range { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | unsigned page_size_mask; | 
|  | }; | 
|  |  | 
|  | static int page_size_mask; | 
|  |  | 
|  | static void __init probe_page_size_mask(void) | 
|  | { | 
|  | init_gbpages(); | 
|  |  | 
|  | #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK) | 
|  | /* | 
|  | * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. | 
|  | * This will simplify cpa(), which otherwise needs to support splitting | 
|  | * large pages into small in interrupt context, etc. | 
|  | */ | 
|  | if (direct_gbpages) | 
|  | page_size_mask |= 1 << PG_LEVEL_1G; | 
|  | if (cpu_has_pse) | 
|  | page_size_mask |= 1 << PG_LEVEL_2M; | 
|  | #endif | 
|  |  | 
|  | /* Enable PSE if available */ | 
|  | if (cpu_has_pse) | 
|  | set_in_cr4(X86_CR4_PSE); | 
|  |  | 
|  | /* Enable PGE if available */ | 
|  | if (cpu_has_pge) { | 
|  | set_in_cr4(X86_CR4_PGE); | 
|  | __supported_pte_mask |= _PAGE_GLOBAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | #define NR_RANGE_MR 3 | 
|  | #else /* CONFIG_X86_64 */ | 
|  | #define NR_RANGE_MR 5 | 
|  | #endif | 
|  |  | 
|  | static int __meminit save_mr(struct map_range *mr, int nr_range, | 
|  | unsigned long start_pfn, unsigned long end_pfn, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | if (start_pfn < end_pfn) { | 
|  | if (nr_range >= NR_RANGE_MR) | 
|  | panic("run out of range for init_memory_mapping\n"); | 
|  | mr[nr_range].start = start_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].end   = end_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].page_size_mask = page_size_mask; | 
|  | nr_range++; | 
|  | } | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjust the page_size_mask for small range to go with | 
|  | *	big page size instead small one if nearby are ram too. | 
|  | */ | 
|  | static void __init_refok adjust_range_page_size_mask(struct map_range *mr, | 
|  | int nr_range) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) { | 
|  | if ((page_size_mask & (1<<PG_LEVEL_2M)) && | 
|  | !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { | 
|  | unsigned long start = round_down(mr[i].start, PMD_SIZE); | 
|  | unsigned long end = round_up(mr[i].end, PMD_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | if ((end >> PAGE_SHIFT) > max_low_pfn) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | if (memblock_is_region_memory(start, end - start)) | 
|  | mr[i].page_size_mask |= 1<<PG_LEVEL_2M; | 
|  | } | 
|  | if ((page_size_mask & (1<<PG_LEVEL_1G)) && | 
|  | !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { | 
|  | unsigned long start = round_down(mr[i].start, PUD_SIZE); | 
|  | unsigned long end = round_up(mr[i].end, PUD_SIZE); | 
|  |  | 
|  | if (memblock_is_region_memory(start, end - start)) | 
|  | mr[i].page_size_mask |= 1<<PG_LEVEL_1G; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __meminit split_mem_range(struct map_range *mr, int nr_range, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn, limit_pfn; | 
|  | unsigned long pfn; | 
|  | int i; | 
|  |  | 
|  | limit_pfn = PFN_DOWN(end); | 
|  |  | 
|  | /* head if not big page alignment ? */ | 
|  | pfn = start_pfn = PFN_DOWN(start); | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Don't use a large page for the first 2/4MB of memory | 
|  | * because there are often fixed size MTRRs in there | 
|  | * and overlapping MTRRs into large pages can cause | 
|  | * slowdowns. | 
|  | */ | 
|  | if (pfn == 0) | 
|  | end_pfn = PFN_DOWN(PMD_SIZE); | 
|  | else | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #endif | 
|  | if (end_pfn > limit_pfn) | 
|  | end_pfn = limit_pfn; | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | /* big page (2M) range */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #ifdef CONFIG_X86_32 | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #else /* CONFIG_X86_64 */ | 
|  | end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|  | if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | #endif | 
|  |  | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* big page (1G) range */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & | 
|  | ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); | 
|  | pfn = end_pfn; | 
|  | } | 
|  |  | 
|  | /* tail is not big page (1G) alignment */ | 
|  | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|  | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|  | if (start_pfn < end_pfn) { | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  | pfn = end_pfn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* tail is not big page (2M) alignment */ | 
|  | start_pfn = pfn; | 
|  | end_pfn = limit_pfn; | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  |  | 
|  | /* try to merge same page size and continuous */ | 
|  | for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { | 
|  | unsigned long old_start; | 
|  | if (mr[i].end != mr[i+1].start || | 
|  | mr[i].page_size_mask != mr[i+1].page_size_mask) | 
|  | continue; | 
|  | /* move it */ | 
|  | old_start = mr[i].start; | 
|  | memmove(&mr[i], &mr[i+1], | 
|  | (nr_range - 1 - i) * sizeof(struct map_range)); | 
|  | mr[i--].start = old_start; | 
|  | nr_range--; | 
|  | } | 
|  |  | 
|  | if (!after_bootmem) | 
|  | adjust_range_page_size_mask(mr, nr_range); | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", | 
|  | mr[i].start, mr[i].end - 1, | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | struct range pfn_mapped[E820_X_MAX]; | 
|  | int nr_pfn_mapped; | 
|  |  | 
|  | static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX, | 
|  | nr_pfn_mapped, start_pfn, end_pfn); | 
|  | nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX); | 
|  |  | 
|  | max_pfn_mapped = max(max_pfn_mapped, end_pfn); | 
|  |  | 
|  | if (start_pfn < (1UL<<(32-PAGE_SHIFT))) | 
|  | max_low_pfn_mapped = max(max_low_pfn_mapped, | 
|  | min(end_pfn, 1UL<<(32-PAGE_SHIFT))); | 
|  | } | 
|  |  | 
|  | bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_pfn_mapped; i++) | 
|  | if ((start_pfn >= pfn_mapped[i].start) && | 
|  | (end_pfn <= pfn_mapped[i].end)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the direct mapping of the physical memory at PAGE_OFFSET. | 
|  | * This runs before bootmem is initialized and gets pages directly from | 
|  | * the physical memory. To access them they are temporarily mapped. | 
|  | */ | 
|  | unsigned long __init_refok init_memory_mapping(unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct map_range mr[NR_RANGE_MR]; | 
|  | unsigned long ret = 0; | 
|  | int nr_range, i; | 
|  |  | 
|  | pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n", | 
|  | start, end - 1); | 
|  |  | 
|  | memset(mr, 0, sizeof(mr)); | 
|  | nr_range = split_mem_range(mr, 0, start, end); | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, | 
|  | mr[i].page_size_mask); | 
|  |  | 
|  | add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); | 
|  |  | 
|  | return ret >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * would have hole in the middle or ends, and only ram parts will be mapped. | 
|  | */ | 
|  | static unsigned long __init init_range_memory_mapping( | 
|  | unsigned long r_start, | 
|  | unsigned long r_end) | 
|  | { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned long mapped_ram_size = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { | 
|  | u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); | 
|  | u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if it is overlapping with brk pgt, we need to | 
|  | * alloc pgt buf from memblock instead. | 
|  | */ | 
|  | can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= | 
|  | min(end, (u64)pgt_buf_top<<PAGE_SHIFT); | 
|  | init_memory_mapping(start, end); | 
|  | mapped_ram_size += end - start; | 
|  | can_use_brk_pgt = true; | 
|  | } | 
|  |  | 
|  | return mapped_ram_size; | 
|  | } | 
|  |  | 
|  | /* (PUD_SHIFT-PMD_SHIFT)/2 */ | 
|  | #define STEP_SIZE_SHIFT 5 | 
|  | void __init init_mem_mapping(void) | 
|  | { | 
|  | unsigned long end, real_end, start, last_start; | 
|  | unsigned long step_size; | 
|  | unsigned long addr; | 
|  | unsigned long mapped_ram_size = 0; | 
|  | unsigned long new_mapped_ram_size; | 
|  |  | 
|  | probe_page_size_mask(); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | end = max_pfn << PAGE_SHIFT; | 
|  | #else | 
|  | end = max_low_pfn << PAGE_SHIFT; | 
|  | #endif | 
|  |  | 
|  | /* the ISA range is always mapped regardless of memory holes */ | 
|  | init_memory_mapping(0, ISA_END_ADDRESS); | 
|  |  | 
|  | /* xen has big range in reserved near end of ram, skip it at first */ | 
|  | addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE, | 
|  | PAGE_SIZE); | 
|  | real_end = addr + PMD_SIZE; | 
|  |  | 
|  | /* step_size need to be small so pgt_buf from BRK could cover it */ | 
|  | step_size = PMD_SIZE; | 
|  | max_pfn_mapped = 0; /* will get exact value next */ | 
|  | min_pfn_mapped = real_end >> PAGE_SHIFT; | 
|  | last_start = start = real_end; | 
|  | while (last_start > ISA_END_ADDRESS) { | 
|  | if (last_start > step_size) { | 
|  | start = round_down(last_start - 1, step_size); | 
|  | if (start < ISA_END_ADDRESS) | 
|  | start = ISA_END_ADDRESS; | 
|  | } else | 
|  | start = ISA_END_ADDRESS; | 
|  | new_mapped_ram_size = init_range_memory_mapping(start, | 
|  | last_start); | 
|  | last_start = start; | 
|  | min_pfn_mapped = last_start >> PAGE_SHIFT; | 
|  | /* only increase step_size after big range get mapped */ | 
|  | if (new_mapped_ram_size > mapped_ram_size) | 
|  | step_size <<= STEP_SIZE_SHIFT; | 
|  | mapped_ram_size += new_mapped_ram_size; | 
|  | } | 
|  |  | 
|  | if (real_end < end) | 
|  | init_range_memory_mapping(real_end, end); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (max_pfn > max_low_pfn) { | 
|  | /* can we preseve max_low_pfn ?*/ | 
|  | max_low_pfn = max_pfn; | 
|  | } | 
|  | #else | 
|  | early_ioremap_page_table_range_init(); | 
|  | #endif | 
|  |  | 
|  | load_cr3(swapper_pg_dir); | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | early_memtest(0, max_pfn_mapped << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|  | * is valid. The argument is a physical page number. | 
|  | * | 
|  | * | 
|  | * On x86, access has to be given to the first megabyte of ram because that area | 
|  | * contains bios code and data regions used by X and dosemu and similar apps. | 
|  | * Access has to be given to non-kernel-ram areas as well, these contain the PCI | 
|  | * mmio resources as well as potential bios/acpi data regions. | 
|  | */ | 
|  | int devmem_is_allowed(unsigned long pagenr) | 
|  | { | 
|  | if (pagenr < 256) | 
|  | return 1; | 
|  | if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) | 
|  | return 0; | 
|  | if (!page_is_ram(pagenr)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void free_init_pages(char *what, unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long addr; | 
|  | unsigned long begin_aligned, end_aligned; | 
|  |  | 
|  | /* Make sure boundaries are page aligned */ | 
|  | begin_aligned = PAGE_ALIGN(begin); | 
|  | end_aligned   = end & PAGE_MASK; | 
|  |  | 
|  | if (WARN_ON(begin_aligned != begin || end_aligned != end)) { | 
|  | begin = begin_aligned; | 
|  | end   = end_aligned; | 
|  | } | 
|  |  | 
|  | if (begin >= end) | 
|  | return; | 
|  |  | 
|  | addr = begin; | 
|  |  | 
|  | /* | 
|  | * If debugging page accesses then do not free this memory but | 
|  | * mark them not present - any buggy init-section access will | 
|  | * create a kernel page fault: | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", | 
|  | begin, end - 1); | 
|  | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | 
|  | #else | 
|  | /* | 
|  | * We just marked the kernel text read only above, now that | 
|  | * we are going to free part of that, we need to make that | 
|  | * writeable and non-executable first. | 
|  | */ | 
|  | set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); | 
|  | set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); | 
|  |  | 
|  | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | ClearPageReserved(virt_to_page(addr)); | 
|  | init_page_count(virt_to_page(addr)); | 
|  | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | 
|  | free_page(addr); | 
|  | totalram_pages++; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | free_init_pages("unused kernel memory", | 
|  | (unsigned long)(&__init_begin), | 
|  | (unsigned long)(&__init_end)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void __init free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | #ifdef CONFIG_MICROCODE_EARLY | 
|  | /* | 
|  | * Remember, initrd memory may contain microcode or other useful things. | 
|  | * Before we lose initrd mem, we need to find a place to hold them | 
|  | * now that normal virtual memory is enabled. | 
|  | */ | 
|  | save_microcode_in_initrd(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * end could be not aligned, and We can not align that, | 
|  | * decompresser could be confused by aligned initrd_end | 
|  | * We already reserve the end partial page before in | 
|  | *   - i386_start_kernel() | 
|  | *   - x86_64_start_kernel() | 
|  | *   - relocate_initrd() | 
|  | * So here We can do PAGE_ALIGN() safely to get partial page to be freed | 
|  | */ | 
|  | free_init_pages("initrd memory", start, PAGE_ALIGN(end)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN; | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN; | 
|  | #endif | 
|  | max_zone_pfns[ZONE_NORMAL]	= max_low_pfn; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | max_zone_pfns[ZONE_HIGHMEM]	= max_pfn; | 
|  | #endif | 
|  |  | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  |  |