| /* | 
 |  *  linux/mm/swap_state.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  * | 
 |  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/page_cgroup.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 |  | 
 | /* | 
 |  * swapper_space is a fiction, retained to simplify the path through | 
 |  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow | 
 |  * future use of radix_tree tags in the swap cache. | 
 |  */ | 
 | static const struct address_space_operations swap_aops = { | 
 | 	.writepage	= swap_writepage, | 
 | 	.sync_page	= block_sync_page, | 
 | 	.set_page_dirty	= __set_page_dirty_nobuffers, | 
 | 	.migratepage	= migrate_page, | 
 | }; | 
 |  | 
 | static struct backing_dev_info swap_backing_dev_info = { | 
 | 	.name		= "swap", | 
 | 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, | 
 | 	.unplug_io_fn	= swap_unplug_io_fn, | 
 | }; | 
 |  | 
 | struct address_space swapper_space = { | 
 | 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), | 
 | 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), | 
 | 	.a_ops		= &swap_aops, | 
 | 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), | 
 | 	.backing_dev_info = &swap_backing_dev_info, | 
 | }; | 
 |  | 
 | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
 |  | 
 | static struct { | 
 | 	unsigned long add_total; | 
 | 	unsigned long del_total; | 
 | 	unsigned long find_success; | 
 | 	unsigned long find_total; | 
 | } swap_cache_info; | 
 |  | 
 | void show_swap_cache_info(void) | 
 | { | 
 | 	printk("%lu pages in swap cache\n", total_swapcache_pages); | 
 | 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
 | 		swap_cache_info.add_total, swap_cache_info.del_total, | 
 | 		swap_cache_info.find_success, swap_cache_info.find_total); | 
 | 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); | 
 | 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
 | } | 
 |  | 
 | /* | 
 |  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
 |  * but sets SwapCache flag and private instead of mapping and index. | 
 |  */ | 
 | static int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 	VM_BUG_ON(PageSwapCache(page)); | 
 | 	VM_BUG_ON(!PageSwapBacked(page)); | 
 |  | 
 | 	page_cache_get(page); | 
 | 	SetPageSwapCache(page); | 
 | 	set_page_private(page, entry.val); | 
 |  | 
 | 	spin_lock_irq(&swapper_space.tree_lock); | 
 | 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); | 
 | 	if (likely(!error)) { | 
 | 		total_swapcache_pages++; | 
 | 		__inc_zone_page_state(page, NR_FILE_PAGES); | 
 | 		INC_CACHE_INFO(add_total); | 
 | 	} | 
 | 	spin_unlock_irq(&swapper_space.tree_lock); | 
 |  | 
 | 	if (unlikely(error)) { | 
 | 		/* | 
 | 		 * Only the context which have set SWAP_HAS_CACHE flag | 
 | 		 * would call add_to_swap_cache(). | 
 | 		 * So add_to_swap_cache() doesn't returns -EEXIST. | 
 | 		 */ | 
 | 		VM_BUG_ON(error == -EEXIST); | 
 | 		set_page_private(page, 0UL); | 
 | 		ClearPageSwapCache(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 |  | 
 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = radix_tree_preload(gfp_mask); | 
 | 	if (!error) { | 
 | 		error = __add_to_swap_cache(page, entry); | 
 | 		radix_tree_preload_end(); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called only on pages that have | 
 |  * been verified to be in the swap cache. | 
 |  */ | 
 | void __delete_from_swap_cache(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 	VM_BUG_ON(!PageSwapCache(page)); | 
 | 	VM_BUG_ON(PageWriteback(page)); | 
 |  | 
 | 	radix_tree_delete(&swapper_space.page_tree, page_private(page)); | 
 | 	set_page_private(page, 0); | 
 | 	ClearPageSwapCache(page); | 
 | 	total_swapcache_pages--; | 
 | 	__dec_zone_page_state(page, NR_FILE_PAGES); | 
 | 	INC_CACHE_INFO(del_total); | 
 | } | 
 |  | 
 | /** | 
 |  * add_to_swap - allocate swap space for a page | 
 |  * @page: page we want to move to swap | 
 |  * | 
 |  * Allocate swap space for the page and add the page to the | 
 |  * swap cache.  Caller needs to hold the page lock.  | 
 |  */ | 
 | int add_to_swap(struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	int err; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 	VM_BUG_ON(!PageUptodate(page)); | 
 |  | 
 | 	entry = get_swap_page(); | 
 | 	if (!entry.val) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(PageTransHuge(page))) | 
 | 		if (unlikely(split_huge_page(page))) { | 
 | 			swapcache_free(entry, NULL); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * Radix-tree node allocations from PF_MEMALLOC contexts could | 
 | 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
 | 	 * stops emergency reserves from being allocated. | 
 | 	 * | 
 | 	 * TODO: this could cause a theoretical memory reclaim | 
 | 	 * deadlock in the swap out path. | 
 | 	 */ | 
 | 	/* | 
 | 	 * Add it to the swap cache and mark it dirty | 
 | 	 */ | 
 | 	err = add_to_swap_cache(page, entry, | 
 | 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
 |  | 
 | 	if (!err) {	/* Success */ | 
 | 		SetPageDirty(page); | 
 | 		return 1; | 
 | 	} else {	/* -ENOMEM radix-tree allocation failure */ | 
 | 		/* | 
 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 		 */ | 
 | 		swapcache_free(entry, NULL); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called only on pages that have | 
 |  * been verified to be in the swap cache and locked. | 
 |  * It will never put the page into the free list, | 
 |  * the caller has a reference on the page. | 
 |  */ | 
 | void delete_from_swap_cache(struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 |  | 
 | 	entry.val = page_private(page); | 
 |  | 
 | 	spin_lock_irq(&swapper_space.tree_lock); | 
 | 	__delete_from_swap_cache(page); | 
 | 	spin_unlock_irq(&swapper_space.tree_lock); | 
 |  | 
 | 	swapcache_free(entry, page); | 
 | 	page_cache_release(page); | 
 | } | 
 |  | 
 | /*  | 
 |  * If we are the only user, then try to free up the swap cache.  | 
 |  *  | 
 |  * Its ok to check for PageSwapCache without the page lock | 
 |  * here because we are going to recheck again inside | 
 |  * try_to_free_swap() _with_ the lock. | 
 |  * 					- Marcelo | 
 |  */ | 
 | static inline void free_swap_cache(struct page *page) | 
 | { | 
 | 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
 | 		try_to_free_swap(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /*  | 
 |  * Perform a free_page(), also freeing any swap cache associated with | 
 |  * this page if it is the last user of the page. | 
 |  */ | 
 | void free_page_and_swap_cache(struct page *page) | 
 | { | 
 | 	free_swap_cache(page); | 
 | 	page_cache_release(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Passed an array of pages, drop them all from swapcache and then release | 
 |  * them.  They are removed from the LRU and freed if this is their last use. | 
 |  */ | 
 | void free_pages_and_swap_cache(struct page **pages, int nr) | 
 | { | 
 | 	struct page **pagep = pages; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	while (nr) { | 
 | 		int todo = min(nr, PAGEVEC_SIZE); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < todo; i++) | 
 | 			free_swap_cache(pagep[i]); | 
 | 		release_pages(pagep, todo, 0); | 
 | 		pagep += todo; | 
 | 		nr -= todo; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Lookup a swap entry in the swap cache. A found page will be returned | 
 |  * unlocked and with its refcount incremented - we rely on the kernel | 
 |  * lock getting page table operations atomic even if we drop the page | 
 |  * lock before returning. | 
 |  */ | 
 | struct page * lookup_swap_cache(swp_entry_t entry) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = find_get_page(&swapper_space, entry.val); | 
 |  | 
 | 	if (page) | 
 | 		INC_CACHE_INFO(find_success); | 
 |  | 
 | 	INC_CACHE_INFO(find_total); | 
 | 	return page; | 
 | } | 
 |  | 
 | /*  | 
 |  * Locate a page of swap in physical memory, reserving swap cache space | 
 |  * and reading the disk if it is not already cached. | 
 |  * A failure return means that either the page allocation failed or that | 
 |  * the swap entry is no longer in use. | 
 |  */ | 
 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct page *found_page, *new_page = NULL; | 
 | 	int err; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * First check the swap cache.  Since this is normally | 
 | 		 * called after lookup_swap_cache() failed, re-calling | 
 | 		 * that would confuse statistics. | 
 | 		 */ | 
 | 		found_page = find_get_page(&swapper_space, entry.val); | 
 | 		if (found_page) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Get a new page to read into from swap. | 
 | 		 */ | 
 | 		if (!new_page) { | 
 | 			new_page = alloc_page_vma(gfp_mask, vma, addr); | 
 | 			if (!new_page) | 
 | 				break;		/* Out of memory */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * call radix_tree_preload() while we can wait. | 
 | 		 */ | 
 | 		err = radix_tree_preload(gfp_mask & GFP_KERNEL); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Swap entry may have been freed since our caller observed it. | 
 | 		 */ | 
 | 		err = swapcache_prepare(entry); | 
 | 		if (err == -EEXIST) {	/* seems racy */ | 
 | 			radix_tree_preload_end(); | 
 | 			continue; | 
 | 		} | 
 | 		if (err) {		/* swp entry is obsolete ? */ | 
 | 			radix_tree_preload_end(); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
 | 		__set_page_locked(new_page); | 
 | 		SetPageSwapBacked(new_page); | 
 | 		err = __add_to_swap_cache(new_page, entry); | 
 | 		if (likely(!err)) { | 
 | 			radix_tree_preload_end(); | 
 | 			/* | 
 | 			 * Initiate read into locked page and return. | 
 | 			 */ | 
 | 			lru_cache_add_anon(new_page); | 
 | 			swap_readpage(new_page); | 
 | 			return new_page; | 
 | 		} | 
 | 		radix_tree_preload_end(); | 
 | 		ClearPageSwapBacked(new_page); | 
 | 		__clear_page_locked(new_page); | 
 | 		/* | 
 | 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
 | 		 * clear SWAP_HAS_CACHE flag. | 
 | 		 */ | 
 | 		swapcache_free(entry, NULL); | 
 | 	} while (err != -ENOMEM); | 
 |  | 
 | 	if (new_page) | 
 | 		page_cache_release(new_page); | 
 | 	return found_page; | 
 | } | 
 |  | 
 | /** | 
 |  * swapin_readahead - swap in pages in hope we need them soon | 
 |  * @entry: swap entry of this memory | 
 |  * @gfp_mask: memory allocation flags | 
 |  * @vma: user vma this address belongs to | 
 |  * @addr: target address for mempolicy | 
 |  * | 
 |  * Returns the struct page for entry and addr, after queueing swapin. | 
 |  * | 
 |  * Primitive swap readahead code. We simply read an aligned block of | 
 |  * (1 << page_cluster) entries in the swap area. This method is chosen | 
 |  * because it doesn't cost us any seek time.  We also make sure to queue | 
 |  * the 'original' request together with the readahead ones... | 
 |  * | 
 |  * This has been extended to use the NUMA policies from the mm triggering | 
 |  * the readahead. | 
 |  * | 
 |  * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
 |  */ | 
 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	int nr_pages; | 
 | 	struct page *page; | 
 | 	unsigned long offset; | 
 | 	unsigned long end_offset; | 
 |  | 
 | 	/* | 
 | 	 * Get starting offset for readaround, and number of pages to read. | 
 | 	 * Adjust starting address by readbehind (for NUMA interleave case)? | 
 | 	 * No, it's very unlikely that swap layout would follow vma layout, | 
 | 	 * more likely that neighbouring swap pages came from the same node: | 
 | 	 * so use the same "addr" to choose the same node for each swap read. | 
 | 	 */ | 
 | 	nr_pages = valid_swaphandles(entry, &offset); | 
 | 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) { | 
 | 		/* Ok, do the async read-ahead now */ | 
 | 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset), | 
 | 						gfp_mask, vma, addr); | 
 | 		if (!page) | 
 | 			break; | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	lru_add_drain();	/* Push any new pages onto the LRU now */ | 
 | 	return read_swap_cache_async(entry, gfp_mask, vma, addr); | 
 | } |