| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2022-2023 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <djwong@kernel.org> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_btree.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_inode.h" |
| #include "xfs_alloc.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_ag.h" |
| #include "xfs_ag_resv.h" |
| #include "xfs_quota.h" |
| #include "xfs_qm.h" |
| #include "xfs_bmap.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_remote.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/trace.h" |
| #include "scrub/repair.h" |
| #include "scrub/bitmap.h" |
| #include "scrub/reap.h" |
| |
| /* |
| * Disposal of Blocks from Old Metadata |
| * |
| * Now that we've constructed a new btree to replace the damaged one, we want |
| * to dispose of the blocks that (we think) the old btree was using. |
| * Previously, we used the rmapbt to collect the extents (bitmap) with the |
| * rmap owner corresponding to the tree we rebuilt, collected extents for any |
| * blocks with the same rmap owner that are owned by another data structure |
| * (sublist), and subtracted sublist from bitmap. In theory the extents |
| * remaining in bitmap are the old btree's blocks. |
| * |
| * Unfortunately, it's possible that the btree was crosslinked with other |
| * blocks on disk. The rmap data can tell us if there are multiple owners, so |
| * if the rmapbt says there is an owner of this block other than @oinfo, then |
| * the block is crosslinked. Remove the reverse mapping and continue. |
| * |
| * If there is one rmap record, we can free the block, which removes the |
| * reverse mapping but doesn't add the block to the free space. Our repair |
| * strategy is to hope the other metadata objects crosslinked on this block |
| * will be rebuilt (atop different blocks), thereby removing all the cross |
| * links. |
| * |
| * If there are no rmap records at all, we also free the block. If the btree |
| * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't |
| * supposed to be a rmap record and everything is ok. For other btrees there |
| * had to have been an rmap entry for the block to have ended up on @bitmap, |
| * so if it's gone now there's something wrong and the fs will shut down. |
| * |
| * Note: If there are multiple rmap records with only the same rmap owner as |
| * the btree we're trying to rebuild and the block is indeed owned by another |
| * data structure with the same rmap owner, then the block will be in sublist |
| * and therefore doesn't need disposal. If there are multiple rmap records |
| * with only the same rmap owner but the block is not owned by something with |
| * the same rmap owner, the block will be freed. |
| * |
| * The caller is responsible for locking the AG headers for the entire rebuild |
| * operation so that nothing else can sneak in and change the AG state while |
| * we're not looking. We must also invalidate any buffers associated with |
| * @bitmap. |
| */ |
| |
| /* Information about reaping extents after a repair. */ |
| struct xreap_state { |
| struct xfs_scrub *sc; |
| |
| /* Reverse mapping owner and metadata reservation type. */ |
| const struct xfs_owner_info *oinfo; |
| enum xfs_ag_resv_type resv; |
| |
| /* If true, roll the transaction before reaping the next extent. */ |
| bool force_roll; |
| |
| /* Number of deferred reaps attached to the current transaction. */ |
| unsigned int deferred; |
| |
| /* Number of invalidated buffers logged to the current transaction. */ |
| unsigned int invalidated; |
| |
| /* Number of deferred reaps queued during the whole reap sequence. */ |
| unsigned long long total_deferred; |
| }; |
| |
| /* Put a block back on the AGFL. */ |
| STATIC int |
| xreap_put_freelist( |
| struct xfs_scrub *sc, |
| xfs_agblock_t agbno) |
| { |
| struct xfs_buf *agfl_bp; |
| int error; |
| |
| /* Make sure there's space on the freelist. */ |
| error = xrep_fix_freelist(sc, true); |
| if (error) |
| return error; |
| |
| /* |
| * Since we're "freeing" a lost block onto the AGFL, we have to |
| * create an rmap for the block prior to merging it or else other |
| * parts will break. |
| */ |
| error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1, |
| &XFS_RMAP_OINFO_AG); |
| if (error) |
| return error; |
| |
| /* Put the block on the AGFL. */ |
| error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); |
| if (error) |
| return error; |
| |
| error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp, |
| agfl_bp, agbno, 0); |
| if (error) |
| return error; |
| xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1, |
| XFS_EXTENT_BUSY_SKIP_DISCARD); |
| |
| return 0; |
| } |
| |
| /* Are there any uncommitted reap operations? */ |
| static inline bool xreap_dirty(const struct xreap_state *rs) |
| { |
| if (rs->force_roll) |
| return true; |
| if (rs->deferred) |
| return true; |
| if (rs->invalidated) |
| return true; |
| if (rs->total_deferred) |
| return true; |
| return false; |
| } |
| |
| #define XREAP_MAX_BINVAL (2048) |
| |
| /* |
| * Decide if we want to roll the transaction after reaping an extent. We don't |
| * want to overrun the transaction reservation, so we prohibit more than |
| * 128 EFIs per transaction. For the same reason, we limit the number |
| * of buffer invalidations to 2048. |
| */ |
| static inline bool xreap_want_roll(const struct xreap_state *rs) |
| { |
| if (rs->force_roll) |
| return true; |
| if (rs->deferred > XREP_MAX_ITRUNCATE_EFIS) |
| return true; |
| if (rs->invalidated > XREAP_MAX_BINVAL) |
| return true; |
| return false; |
| } |
| |
| static inline void xreap_reset(struct xreap_state *rs) |
| { |
| rs->total_deferred += rs->deferred; |
| rs->deferred = 0; |
| rs->invalidated = 0; |
| rs->force_roll = false; |
| } |
| |
| #define XREAP_MAX_DEFER_CHAIN (2048) |
| |
| /* |
| * Decide if we want to finish the deferred ops that are attached to the scrub |
| * transaction. We don't want to queue huge chains of deferred ops because |
| * that can consume a lot of log space and kernel memory. Hence we trigger a |
| * xfs_defer_finish if there are more than 2048 deferred reap operations or the |
| * caller did some real work. |
| */ |
| static inline bool |
| xreap_want_defer_finish(const struct xreap_state *rs) |
| { |
| if (rs->force_roll) |
| return true; |
| if (rs->total_deferred > XREAP_MAX_DEFER_CHAIN) |
| return true; |
| return false; |
| } |
| |
| static inline void xreap_defer_finish_reset(struct xreap_state *rs) |
| { |
| rs->total_deferred = 0; |
| rs->deferred = 0; |
| rs->invalidated = 0; |
| rs->force_roll = false; |
| } |
| |
| /* Try to invalidate the incore buffers for an extent that we're freeing. */ |
| STATIC void |
| xreap_agextent_binval( |
| struct xreap_state *rs, |
| xfs_agblock_t agbno, |
| xfs_extlen_t *aglenp) |
| { |
| struct xfs_scrub *sc = rs->sc; |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_mount *mp = sc->mp; |
| xfs_agnumber_t agno = sc->sa.pag->pag_agno; |
| xfs_agblock_t agbno_next = agbno + *aglenp; |
| xfs_agblock_t bno = agbno; |
| |
| /* |
| * Avoid invalidating AG headers and post-EOFS blocks because we never |
| * own those. |
| */ |
| if (!xfs_verify_agbno(pag, agbno) || |
| !xfs_verify_agbno(pag, agbno_next - 1)) |
| return; |
| |
| /* |
| * If there are incore buffers for these blocks, invalidate them. We |
| * assume that the lack of any other known owners means that the buffer |
| * can be locked without risk of deadlocking. The buffer cache cannot |
| * detect aliasing, so employ nested loops to scan for incore buffers |
| * of any plausible size. |
| */ |
| while (bno < agbno_next) { |
| xfs_agblock_t fsbcount; |
| xfs_agblock_t max_fsbs; |
| |
| /* |
| * Max buffer size is the max remote xattr buffer size, which |
| * is one fs block larger than 64k. |
| */ |
| max_fsbs = min_t(xfs_agblock_t, agbno_next - bno, |
| xfs_attr3_rmt_blocks(mp, XFS_XATTR_SIZE_MAX)); |
| |
| for (fsbcount = 1; fsbcount < max_fsbs; fsbcount++) { |
| struct xfs_buf *bp = NULL; |
| xfs_daddr_t daddr; |
| int error; |
| |
| daddr = XFS_AGB_TO_DADDR(mp, agno, bno); |
| error = xfs_buf_incore(mp->m_ddev_targp, daddr, |
| XFS_FSB_TO_BB(mp, fsbcount), |
| XBF_LIVESCAN, &bp); |
| if (error) |
| continue; |
| |
| xfs_trans_bjoin(sc->tp, bp); |
| xfs_trans_binval(sc->tp, bp); |
| rs->invalidated++; |
| |
| /* |
| * Stop invalidating if we've hit the limit; we should |
| * still have enough reservation left to free however |
| * far we've gotten. |
| */ |
| if (rs->invalidated > XREAP_MAX_BINVAL) { |
| *aglenp -= agbno_next - bno; |
| goto out; |
| } |
| } |
| |
| bno++; |
| } |
| |
| out: |
| trace_xreap_agextent_binval(sc->sa.pag, agbno, *aglenp); |
| } |
| |
| /* |
| * Figure out the longest run of blocks that we can dispose of with a single |
| * call. Cross-linked blocks should have their reverse mappings removed, but |
| * single-owner extents can be freed. AGFL blocks can only be put back one at |
| * a time. |
| */ |
| STATIC int |
| xreap_agextent_select( |
| struct xreap_state *rs, |
| xfs_agblock_t agbno, |
| xfs_agblock_t agbno_next, |
| bool *crosslinked, |
| xfs_extlen_t *aglenp) |
| { |
| struct xfs_scrub *sc = rs->sc; |
| struct xfs_btree_cur *cur; |
| xfs_agblock_t bno = agbno + 1; |
| xfs_extlen_t len = 1; |
| int error; |
| |
| /* |
| * Determine if there are any other rmap records covering the first |
| * block of this extent. If so, the block is crosslinked. |
| */ |
| cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, |
| sc->sa.pag); |
| error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo, |
| crosslinked); |
| if (error) |
| goto out_cur; |
| |
| /* AGFL blocks can only be deal with one at a time. */ |
| if (rs->resv == XFS_AG_RESV_AGFL) |
| goto out_found; |
| |
| /* |
| * Figure out how many of the subsequent blocks have the same crosslink |
| * status. |
| */ |
| while (bno < agbno_next) { |
| bool also_crosslinked; |
| |
| error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo, |
| &also_crosslinked); |
| if (error) |
| goto out_cur; |
| |
| if (*crosslinked != also_crosslinked) |
| break; |
| |
| len++; |
| bno++; |
| } |
| |
| out_found: |
| *aglenp = len; |
| trace_xreap_agextent_select(sc->sa.pag, agbno, len, *crosslinked); |
| out_cur: |
| xfs_btree_del_cursor(cur, error); |
| return error; |
| } |
| |
| /* |
| * Dispose of as much of the beginning of this AG extent as possible. The |
| * number of blocks disposed of will be returned in @aglenp. |
| */ |
| STATIC int |
| xreap_agextent_iter( |
| struct xreap_state *rs, |
| xfs_agblock_t agbno, |
| xfs_extlen_t *aglenp, |
| bool crosslinked) |
| { |
| struct xfs_scrub *sc = rs->sc; |
| xfs_fsblock_t fsbno; |
| int error = 0; |
| |
| fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, agbno); |
| |
| /* |
| * If there are other rmappings, this block is cross linked and must |
| * not be freed. Remove the reverse mapping and move on. Otherwise, |
| * we were the only owner of the block, so free the extent, which will |
| * also remove the rmap. |
| * |
| * XXX: XFS doesn't support detecting the case where a single block |
| * metadata structure is crosslinked with a multi-block structure |
| * because the buffer cache doesn't detect aliasing problems, so we |
| * can't fix 100% of crosslinking problems (yet). The verifiers will |
| * blow on writeout, the filesystem will shut down, and the admin gets |
| * to run xfs_repair. |
| */ |
| if (crosslinked) { |
| trace_xreap_dispose_unmap_extent(sc->sa.pag, agbno, *aglenp); |
| |
| rs->force_roll = true; |
| return xfs_rmap_free(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, |
| *aglenp, rs->oinfo); |
| } |
| |
| trace_xreap_dispose_free_extent(sc->sa.pag, agbno, *aglenp); |
| |
| /* |
| * Invalidate as many buffers as we can, starting at agbno. If this |
| * function sets *aglenp to zero, the transaction is full of logged |
| * buffer invalidations, so we need to return early so that we can |
| * roll and retry. |
| */ |
| xreap_agextent_binval(rs, agbno, aglenp); |
| if (*aglenp == 0) { |
| ASSERT(xreap_want_roll(rs)); |
| return 0; |
| } |
| |
| /* Put blocks back on the AGFL one at a time. */ |
| if (rs->resv == XFS_AG_RESV_AGFL) { |
| ASSERT(*aglenp == 1); |
| error = xreap_put_freelist(sc, agbno); |
| if (error) |
| return error; |
| |
| rs->force_roll = true; |
| return 0; |
| } |
| |
| /* |
| * Use deferred frees to get rid of the old btree blocks to try to |
| * minimize the window in which we could crash and lose the old blocks. |
| */ |
| error = __xfs_free_extent_later(sc->tp, fsbno, *aglenp, rs->oinfo, |
| rs->resv, true); |
| if (error) |
| return error; |
| |
| rs->deferred++; |
| return 0; |
| } |
| |
| /* |
| * Break an AG metadata extent into sub-extents by fate (crosslinked, not |
| * crosslinked), and dispose of each sub-extent separately. |
| */ |
| STATIC int |
| xreap_agmeta_extent( |
| uint64_t fsbno, |
| uint64_t len, |
| void *priv) |
| { |
| struct xreap_state *rs = priv; |
| struct xfs_scrub *sc = rs->sc; |
| xfs_agblock_t agbno = fsbno; |
| xfs_agblock_t agbno_next = agbno + len; |
| int error = 0; |
| |
| ASSERT(len <= XFS_MAX_BMBT_EXTLEN); |
| ASSERT(sc->ip == NULL); |
| |
| while (agbno < agbno_next) { |
| xfs_extlen_t aglen; |
| bool crosslinked; |
| |
| error = xreap_agextent_select(rs, agbno, agbno_next, |
| &crosslinked, &aglen); |
| if (error) |
| return error; |
| |
| error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked); |
| if (error) |
| return error; |
| |
| if (xreap_want_defer_finish(rs)) { |
| error = xrep_defer_finish(sc); |
| if (error) |
| return error; |
| xreap_defer_finish_reset(rs); |
| } else if (xreap_want_roll(rs)) { |
| error = xrep_roll_ag_trans(sc); |
| if (error) |
| return error; |
| xreap_reset(rs); |
| } |
| |
| agbno += aglen; |
| } |
| |
| return 0; |
| } |
| |
| /* Dispose of every block of every AG metadata extent in the bitmap. */ |
| int |
| xrep_reap_agblocks( |
| struct xfs_scrub *sc, |
| struct xagb_bitmap *bitmap, |
| const struct xfs_owner_info *oinfo, |
| enum xfs_ag_resv_type type) |
| { |
| struct xreap_state rs = { |
| .sc = sc, |
| .oinfo = oinfo, |
| .resv = type, |
| }; |
| int error; |
| |
| ASSERT(xfs_has_rmapbt(sc->mp)); |
| ASSERT(sc->ip == NULL); |
| |
| error = xagb_bitmap_walk(bitmap, xreap_agmeta_extent, &rs); |
| if (error) |
| return error; |
| |
| if (xreap_dirty(&rs)) |
| return xrep_defer_finish(sc); |
| |
| return 0; |
| } |