|  | /* | 
|  | * sparse memory mappings. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include "internal.h" | 
|  | #include <asm/dma.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | /* | 
|  | * Permanent SPARSEMEM data: | 
|  | * | 
|  | * 1) mem_section	- memory sections, mem_map's for valid memory | 
|  | */ | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | struct mem_section *mem_section[NR_SECTION_ROOTS] | 
|  | ____cacheline_internodealigned_in_smp; | 
|  | #else | 
|  | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] | 
|  | ____cacheline_internodealigned_in_smp; | 
|  | #endif | 
|  | EXPORT_SYMBOL(mem_section); | 
|  |  | 
|  | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|  | /* | 
|  | * If we did not store the node number in the page then we have to | 
|  | * do a lookup in the section_to_node_table in order to find which | 
|  | * node the page belongs to. | 
|  | */ | 
|  | #if MAX_NUMNODES <= 256 | 
|  | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
|  | #else | 
|  | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
|  | #endif | 
|  |  | 
|  | int page_to_nid(const struct page *page) | 
|  | { | 
|  | return section_to_node_table[page_to_section(page)]; | 
|  | } | 
|  | EXPORT_SYMBOL(page_to_nid); | 
|  |  | 
|  | static void set_section_nid(unsigned long section_nr, int nid) | 
|  | { | 
|  | section_to_node_table[section_nr] = nid; | 
|  | } | 
|  | #else /* !NODE_NOT_IN_PAGE_FLAGS */ | 
|  | static inline void set_section_nid(unsigned long section_nr, int nid) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_EXTREME | 
|  | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) | 
|  | { | 
|  | struct mem_section *section = NULL; | 
|  | unsigned long array_size = SECTIONS_PER_ROOT * | 
|  | sizeof(struct mem_section); | 
|  |  | 
|  | if (slab_is_available()) { | 
|  | if (node_state(nid, N_HIGH_MEMORY)) | 
|  | section = kmalloc_node(array_size, GFP_KERNEL, nid); | 
|  | else | 
|  | section = kmalloc(array_size, GFP_KERNEL); | 
|  | } else | 
|  | section = alloc_bootmem_node(NODE_DATA(nid), array_size); | 
|  |  | 
|  | if (section) | 
|  | memset(section, 0, array_size); | 
|  |  | 
|  | return section; | 
|  | } | 
|  |  | 
|  | static int __meminit sparse_index_init(unsigned long section_nr, int nid) | 
|  | { | 
|  | static DEFINE_SPINLOCK(index_init_lock); | 
|  | unsigned long root = SECTION_NR_TO_ROOT(section_nr); | 
|  | struct mem_section *section; | 
|  | int ret = 0; | 
|  |  | 
|  | if (mem_section[root]) | 
|  | return -EEXIST; | 
|  |  | 
|  | section = sparse_index_alloc(nid); | 
|  | if (!section) | 
|  | return -ENOMEM; | 
|  | /* | 
|  | * This lock keeps two different sections from | 
|  | * reallocating for the same index | 
|  | */ | 
|  | spin_lock(&index_init_lock); | 
|  |  | 
|  | if (mem_section[root]) { | 
|  | ret = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mem_section[root] = section; | 
|  | out: | 
|  | spin_unlock(&index_init_lock); | 
|  | return ret; | 
|  | } | 
|  | #else /* !SPARSEMEM_EXTREME */ | 
|  | static inline int sparse_index_init(unsigned long section_nr, int nid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Although written for the SPARSEMEM_EXTREME case, this happens | 
|  | * to also work for the flat array case because | 
|  | * NR_SECTION_ROOTS==NR_MEM_SECTIONS. | 
|  | */ | 
|  | int __section_nr(struct mem_section* ms) | 
|  | { | 
|  | unsigned long root_nr; | 
|  | struct mem_section* root; | 
|  |  | 
|  | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { | 
|  | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); | 
|  | if (!root) | 
|  | continue; | 
|  |  | 
|  | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During early boot, before section_mem_map is used for an actual | 
|  | * mem_map, we use section_mem_map to store the section's NUMA | 
|  | * node.  This keeps us from having to use another data structure.  The | 
|  | * node information is cleared just before we store the real mem_map. | 
|  | */ | 
|  | static inline unsigned long sparse_encode_early_nid(int nid) | 
|  | { | 
|  | return (nid << SECTION_NID_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline int sparse_early_nid(struct mem_section *section) | 
|  | { | 
|  | return (section->section_mem_map >> SECTION_NID_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Validate the physical addressing limitations of the model */ | 
|  | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | 
|  | unsigned long *end_pfn) | 
|  | { | 
|  | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Sanity checks - do not allow an architecture to pass | 
|  | * in larger pfns than the maximum scope of sparsemem: | 
|  | */ | 
|  | if (*start_pfn > max_sparsemem_pfn) { | 
|  | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
|  | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
|  | *start_pfn, *end_pfn, max_sparsemem_pfn); | 
|  | WARN_ON_ONCE(1); | 
|  | *start_pfn = max_sparsemem_pfn; | 
|  | *end_pfn = max_sparsemem_pfn; | 
|  | } else if (*end_pfn > max_sparsemem_pfn) { | 
|  | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
|  | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
|  | *start_pfn, *end_pfn, max_sparsemem_pfn); | 
|  | WARN_ON_ONCE(1); | 
|  | *end_pfn = max_sparsemem_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Record a memory area against a node. */ | 
|  | void __init memory_present(int nid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | start &= PAGE_SECTION_MASK; | 
|  | mminit_validate_memmodel_limits(&start, &end); | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 
|  | unsigned long section = pfn_to_section_nr(pfn); | 
|  | struct mem_section *ms; | 
|  |  | 
|  | sparse_index_init(section, nid); | 
|  | set_section_nid(section, nid); | 
|  |  | 
|  | ms = __nr_to_section(section); | 
|  | if (!ms->section_mem_map) | 
|  | ms->section_mem_map = sparse_encode_early_nid(nid) | | 
|  | SECTION_MARKED_PRESENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only used by the i386 NUMA architecures, but relatively | 
|  | * generic code. | 
|  | */ | 
|  | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | unsigned long nr_pages = 0; | 
|  |  | 
|  | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 
|  | if (nid != early_pfn_to_nid(pfn)) | 
|  | continue; | 
|  |  | 
|  | if (pfn_present(pfn)) | 
|  | nr_pages += PAGES_PER_SECTION; | 
|  | } | 
|  |  | 
|  | return nr_pages * sizeof(struct page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subtle, we encode the real pfn into the mem_map such that | 
|  | * the identity pfn - section_mem_map will return the actual | 
|  | * physical page frame number. | 
|  | */ | 
|  | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) | 
|  | { | 
|  | return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode mem_map from the coded memmap | 
|  | */ | 
|  | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) | 
|  | { | 
|  | /* mask off the extra low bits of information */ | 
|  | coded_mem_map &= SECTION_MAP_MASK; | 
|  | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); | 
|  | } | 
|  |  | 
|  | static int __meminit sparse_init_one_section(struct mem_section *ms, | 
|  | unsigned long pnum, struct page *mem_map, | 
|  | unsigned long *pageblock_bitmap) | 
|  | { | 
|  | if (!present_section(ms)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ms->section_mem_map &= ~SECTION_MAP_MASK; | 
|  | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | | 
|  | SECTION_HAS_MEM_MAP; | 
|  | ms->pageblock_flags = pageblock_bitmap; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned long usemap_size(void) | 
|  | { | 
|  | unsigned long size_bytes; | 
|  | size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; | 
|  | size_bytes = roundup(size_bytes, sizeof(unsigned long)); | 
|  | return size_bytes; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static unsigned long *__kmalloc_section_usemap(void) | 
|  | { | 
|  | return kmalloc(usemap_size(), GFP_KERNEL); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | static unsigned long * __init | 
|  | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, | 
|  | unsigned long count) | 
|  | { | 
|  | unsigned long section_nr; | 
|  |  | 
|  | /* | 
|  | * A page may contain usemaps for other sections preventing the | 
|  | * page being freed and making a section unremovable while | 
|  | * other sections referencing the usemap retmain active. Similarly, | 
|  | * a pgdat can prevent a section being removed. If section A | 
|  | * contains a pgdat and section B contains the usemap, both | 
|  | * sections become inter-dependent. This allocates usemaps | 
|  | * from the same section as the pgdat where possible to avoid | 
|  | * this problem. | 
|  | */ | 
|  | section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | 
|  | return alloc_bootmem_section(usemap_size() * count, section_nr); | 
|  | } | 
|  |  | 
|  | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | 
|  | { | 
|  | unsigned long usemap_snr, pgdat_snr; | 
|  | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | 
|  | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | 
|  | struct pglist_data *pgdat = NODE_DATA(nid); | 
|  | int usemap_nid; | 
|  |  | 
|  | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | 
|  | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | 
|  | if (usemap_snr == pgdat_snr) | 
|  | return; | 
|  |  | 
|  | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | 
|  | /* skip redundant message */ | 
|  | return; | 
|  |  | 
|  | old_usemap_snr = usemap_snr; | 
|  | old_pgdat_snr = pgdat_snr; | 
|  |  | 
|  | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | 
|  | if (usemap_nid != nid) { | 
|  | printk(KERN_INFO | 
|  | "node %d must be removed before remove section %ld\n", | 
|  | nid, usemap_snr); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * There is a circular dependency. | 
|  | * Some platforms allow un-removable section because they will just | 
|  | * gather other removable sections for dynamic partitioning. | 
|  | * Just notify un-removable section's number here. | 
|  | */ | 
|  | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | 
|  | pgdat_snr, nid); | 
|  | printk(KERN_CONT | 
|  | " have a circular dependency on usemap and pgdat allocations\n"); | 
|  | } | 
|  | #else | 
|  | static unsigned long * __init | 
|  | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, | 
|  | unsigned long count) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 
|  |  | 
|  | static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, | 
|  | unsigned long pnum_begin, | 
|  | unsigned long pnum_end, | 
|  | unsigned long usemap_count, int nodeid) | 
|  | { | 
|  | void *usemap; | 
|  | unsigned long pnum; | 
|  | int size = usemap_size(); | 
|  |  | 
|  | usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), | 
|  | usemap_count); | 
|  | if (!usemap) { | 
|  | usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count); | 
|  | if (!usemap) { | 
|  | printk(KERN_WARNING "%s: allocation failed\n", __func__); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | usemap_map[pnum] = usemap; | 
|  | usemap += size; | 
|  | check_usemap_section_nr(nodeid, usemap_map[pnum]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 
|  | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) | 
|  | { | 
|  | struct page *map; | 
|  | unsigned long size; | 
|  |  | 
|  | map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); | 
|  | if (map) | 
|  | return map; | 
|  |  | 
|  | size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); | 
|  | map = __alloc_bootmem_node_high(NODE_DATA(nid), size, | 
|  | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  | return map; | 
|  | } | 
|  | void __init sparse_mem_maps_populate_node(struct page **map_map, | 
|  | unsigned long pnum_begin, | 
|  | unsigned long pnum_end, | 
|  | unsigned long map_count, int nodeid) | 
|  | { | 
|  | void *map; | 
|  | unsigned long pnum; | 
|  | unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; | 
|  |  | 
|  | map = alloc_remap(nodeid, size * map_count); | 
|  | if (map) { | 
|  | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | map_map[pnum] = map; | 
|  | map += size; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, | 
|  | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  | if (map) { | 
|  | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | map_map[pnum] = map; | 
|  | map += size; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* fallback */ | 
|  | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); | 
|  | if (map_map[pnum]) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | printk(KERN_ERR "%s: sparsemem memory map backing failed " | 
|  | "some memory will not be available.\n", __func__); | 
|  | ms->section_mem_map = 0; | 
|  | } | 
|  | } | 
|  | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 
|  | static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, | 
|  | unsigned long pnum_begin, | 
|  | unsigned long pnum_end, | 
|  | unsigned long map_count, int nodeid) | 
|  | { | 
|  | sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, | 
|  | map_count, nodeid); | 
|  | } | 
|  | #else | 
|  | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) | 
|  | { | 
|  | struct page *map; | 
|  | struct mem_section *ms = __nr_to_section(pnum); | 
|  | int nid = sparse_early_nid(ms); | 
|  |  | 
|  | map = sparse_mem_map_populate(pnum, nid); | 
|  | if (map) | 
|  | return map; | 
|  |  | 
|  | printk(KERN_ERR "%s: sparsemem memory map backing failed " | 
|  | "some memory will not be available.\n", __func__); | 
|  | ms->section_mem_map = 0; | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the accumulated non-linear sections, allocate a mem_map | 
|  | * for each and record the physical to section mapping. | 
|  | */ | 
|  | void __init sparse_init(void) | 
|  | { | 
|  | unsigned long pnum; | 
|  | struct page *map; | 
|  | unsigned long *usemap; | 
|  | unsigned long **usemap_map; | 
|  | int size; | 
|  | int nodeid_begin = 0; | 
|  | unsigned long pnum_begin = 0; | 
|  | unsigned long usemap_count; | 
|  | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 
|  | unsigned long map_count; | 
|  | int size2; | 
|  | struct page **map_map; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * map is using big page (aka 2M in x86 64 bit) | 
|  | * usemap is less one page (aka 24 bytes) | 
|  | * so alloc 2M (with 2M align) and 24 bytes in turn will | 
|  | * make next 2M slip to one more 2M later. | 
|  | * then in big system, the memory will have a lot of holes... | 
|  | * here try to allocate 2M pages continuously. | 
|  | * | 
|  | * powerpc need to call sparse_init_one_section right after each | 
|  | * sparse_early_mem_map_alloc, so allocate usemap_map at first. | 
|  | */ | 
|  | size = sizeof(unsigned long *) * NR_MEM_SECTIONS; | 
|  | usemap_map = alloc_bootmem(size); | 
|  | if (!usemap_map) | 
|  | panic("can not allocate usemap_map\n"); | 
|  |  | 
|  | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | nodeid_begin = sparse_early_nid(ms); | 
|  | pnum_begin = pnum; | 
|  | break; | 
|  | } | 
|  | usemap_count = 1; | 
|  | for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { | 
|  | struct mem_section *ms; | 
|  | int nodeid; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | nodeid = sparse_early_nid(ms); | 
|  | if (nodeid == nodeid_begin) { | 
|  | usemap_count++; | 
|  | continue; | 
|  | } | 
|  | /* ok, we need to take cake of from pnum_begin to pnum - 1*/ | 
|  | sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, | 
|  | usemap_count, nodeid_begin); | 
|  | /* new start, update count etc*/ | 
|  | nodeid_begin = nodeid; | 
|  | pnum_begin = pnum; | 
|  | usemap_count = 1; | 
|  | } | 
|  | /* ok, last chunk */ | 
|  | sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, | 
|  | usemap_count, nodeid_begin); | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 
|  | size2 = sizeof(struct page *) * NR_MEM_SECTIONS; | 
|  | map_map = alloc_bootmem(size2); | 
|  | if (!map_map) | 
|  | panic("can not allocate map_map\n"); | 
|  |  | 
|  | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | 
|  | struct mem_section *ms; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | nodeid_begin = sparse_early_nid(ms); | 
|  | pnum_begin = pnum; | 
|  | break; | 
|  | } | 
|  | map_count = 1; | 
|  | for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { | 
|  | struct mem_section *ms; | 
|  | int nodeid; | 
|  |  | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  | ms = __nr_to_section(pnum); | 
|  | nodeid = sparse_early_nid(ms); | 
|  | if (nodeid == nodeid_begin) { | 
|  | map_count++; | 
|  | continue; | 
|  | } | 
|  | /* ok, we need to take cake of from pnum_begin to pnum - 1*/ | 
|  | sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, | 
|  | map_count, nodeid_begin); | 
|  | /* new start, update count etc*/ | 
|  | nodeid_begin = nodeid; | 
|  | pnum_begin = pnum; | 
|  | map_count = 1; | 
|  | } | 
|  | /* ok, last chunk */ | 
|  | sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, | 
|  | map_count, nodeid_begin); | 
|  | #endif | 
|  |  | 
|  | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | 
|  | if (!present_section_nr(pnum)) | 
|  | continue; | 
|  |  | 
|  | usemap = usemap_map[pnum]; | 
|  | if (!usemap) | 
|  | continue; | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 
|  | map = map_map[pnum]; | 
|  | #else | 
|  | map = sparse_early_mem_map_alloc(pnum); | 
|  | #endif | 
|  | if (!map) | 
|  | continue; | 
|  |  | 
|  | sparse_init_one_section(__nr_to_section(pnum), pnum, map, | 
|  | usemap); | 
|  | } | 
|  |  | 
|  | vmemmap_populate_print_last(); | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER | 
|  | free_bootmem(__pa(map_map), size2); | 
|  | #endif | 
|  | free_bootmem(__pa(usemap_map), size); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | /* This will make the necessary allocations eventually. */ | 
|  | return sparse_mem_map_populate(pnum, nid); | 
|  | } | 
|  | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | 
|  | { | 
|  | return; /* XXX: Not implemented yet */ | 
|  | } | 
|  | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | 
|  | { | 
|  | } | 
|  | #else | 
|  | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) | 
|  | { | 
|  | struct page *page, *ret; | 
|  | unsigned long memmap_size = sizeof(struct page) * nr_pages; | 
|  |  | 
|  | page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); | 
|  | if (page) | 
|  | goto got_map_page; | 
|  |  | 
|  | ret = vmalloc(memmap_size); | 
|  | if (ret) | 
|  | goto got_map_ptr; | 
|  |  | 
|  | return NULL; | 
|  | got_map_page: | 
|  | ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); | 
|  | got_map_ptr: | 
|  | memset(ret, 0, memmap_size); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | return __kmalloc_section_memmap(nr_pages); | 
|  | } | 
|  |  | 
|  | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | 
|  | { | 
|  | if (is_vmalloc_addr(memmap)) | 
|  | vfree(memmap); | 
|  | else | 
|  | free_pages((unsigned long)memmap, | 
|  | get_order(sizeof(struct page) * nr_pages)); | 
|  | } | 
|  |  | 
|  | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long maps_section_nr, removing_section_nr, i; | 
|  | unsigned long magic; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++, page++) { | 
|  | magic = (unsigned long) page->lru.next; | 
|  |  | 
|  | BUG_ON(magic == NODE_INFO); | 
|  |  | 
|  | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); | 
|  | removing_section_nr = page->private; | 
|  |  | 
|  | /* | 
|  | * When this function is called, the removing section is | 
|  | * logical offlined state. This means all pages are isolated | 
|  | * from page allocator. If removing section's memmap is placed | 
|  | * on the same section, it must not be freed. | 
|  | * If it is freed, page allocator may allocate it which will | 
|  | * be removed physically soon. | 
|  | */ | 
|  | if (maps_section_nr != removing_section_nr) | 
|  | put_page_bootmem(page); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | static void free_section_usemap(struct page *memmap, unsigned long *usemap) | 
|  | { | 
|  | struct page *usemap_page; | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | if (!usemap) | 
|  | return; | 
|  |  | 
|  | usemap_page = virt_to_page(usemap); | 
|  | /* | 
|  | * Check to see if allocation came from hot-plug-add | 
|  | */ | 
|  | if (PageSlab(usemap_page)) { | 
|  | kfree(usemap); | 
|  | if (memmap) | 
|  | __kfree_section_memmap(memmap, PAGES_PER_SECTION); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The usemap came from bootmem. This is packed with other usemaps | 
|  | * on the section which has pgdat at boot time. Just keep it as is now. | 
|  | */ | 
|  |  | 
|  | if (memmap) { | 
|  | struct page *memmap_page; | 
|  | memmap_page = virt_to_page(memmap); | 
|  |  | 
|  | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) | 
|  | >> PAGE_SHIFT; | 
|  |  | 
|  | free_map_bootmem(memmap_page, nr_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the number of sections whose mem_maps were properly | 
|  | * set.  If this is <=0, then that means that the passed-in | 
|  | * map was not consumed and must be freed. | 
|  | */ | 
|  | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, | 
|  | int nr_pages) | 
|  | { | 
|  | unsigned long section_nr = pfn_to_section_nr(start_pfn); | 
|  | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | struct mem_section *ms; | 
|  | struct page *memmap; | 
|  | unsigned long *usemap; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * no locking for this, because it does its own | 
|  | * plus, it does a kmalloc | 
|  | */ | 
|  | ret = sparse_index_init(section_nr, pgdat->node_id); | 
|  | if (ret < 0 && ret != -EEXIST) | 
|  | return ret; | 
|  | memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); | 
|  | if (!memmap) | 
|  | return -ENOMEM; | 
|  | usemap = __kmalloc_section_usemap(); | 
|  | if (!usemap) { | 
|  | __kfree_section_memmap(memmap, nr_pages); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pgdat_resize_lock(pgdat, &flags); | 
|  |  | 
|  | ms = __pfn_to_section(start_pfn); | 
|  | if (ms->section_mem_map & SECTION_MARKED_PRESENT) { | 
|  | ret = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ms->section_mem_map |= SECTION_MARKED_PRESENT; | 
|  |  | 
|  | ret = sparse_init_one_section(ms, section_nr, memmap, usemap); | 
|  |  | 
|  | out: | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | if (ret <= 0) { | 
|  | kfree(usemap); | 
|  | __kfree_section_memmap(memmap, nr_pages); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) | 
|  | { | 
|  | struct page *memmap = NULL; | 
|  | unsigned long *usemap = NULL; | 
|  |  | 
|  | if (ms->section_mem_map) { | 
|  | usemap = ms->pageblock_flags; | 
|  | memmap = sparse_decode_mem_map(ms->section_mem_map, | 
|  | __section_nr(ms)); | 
|  | ms->section_mem_map = 0; | 
|  | ms->pageblock_flags = NULL; | 
|  | } | 
|  |  | 
|  | free_section_usemap(memmap, usemap); | 
|  | } | 
|  | #endif |