| /* | 
 |  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_log.h" | 
 |  | 
 |  | 
 | kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */ | 
 |  | 
 | static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) | 
 | { | 
 | 	return container_of(lip, struct xfs_inode_log_item, ili_item); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_item_data_fork_size( | 
 | 	struct xfs_inode_log_item *iip, | 
 | 	int			*nvecs, | 
 | 	int			*nbytes) | 
 | { | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 |  | 
 | 	switch (ip->i_d.di_format) { | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		if ((iip->ili_fields & XFS_ILOG_DEXT) && | 
 | 		    ip->i_d.di_nextents > 0 && | 
 | 		    ip->i_df.if_bytes > 0) { | 
 | 			/* worst case, doesn't subtract delalloc extents */ | 
 | 			*nbytes += XFS_IFORK_DSIZE(ip); | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		if ((iip->ili_fields & XFS_ILOG_DBROOT) && | 
 | 		    ip->i_df.if_broot_bytes > 0) { | 
 | 			*nbytes += ip->i_df.if_broot_bytes; | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		if ((iip->ili_fields & XFS_ILOG_DDATA) && | 
 | 		    ip->i_df.if_bytes > 0) { | 
 | 			*nbytes += roundup(ip->i_df.if_bytes, 4); | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case XFS_DINODE_FMT_DEV: | 
 | 	case XFS_DINODE_FMT_UUID: | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_item_attr_fork_size( | 
 | 	struct xfs_inode_log_item *iip, | 
 | 	int			*nvecs, | 
 | 	int			*nbytes) | 
 | { | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 |  | 
 | 	switch (ip->i_d.di_aformat) { | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		if ((iip->ili_fields & XFS_ILOG_AEXT) && | 
 | 		    ip->i_d.di_anextents > 0 && | 
 | 		    ip->i_afp->if_bytes > 0) { | 
 | 			/* worst case, doesn't subtract unused space */ | 
 | 			*nbytes += XFS_IFORK_ASIZE(ip); | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		if ((iip->ili_fields & XFS_ILOG_ABROOT) && | 
 | 		    ip->i_afp->if_broot_bytes > 0) { | 
 | 			*nbytes += ip->i_afp->if_broot_bytes; | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		if ((iip->ili_fields & XFS_ILOG_ADATA) && | 
 | 		    ip->i_afp->if_bytes > 0) { | 
 | 			*nbytes += roundup(ip->i_afp->if_bytes, 4); | 
 | 			*nvecs += 1; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This returns the number of iovecs needed to log the given inode item. | 
 |  * | 
 |  * We need one iovec for the inode log format structure, one for the | 
 |  * inode core, and possibly one for the inode data/extents/b-tree root | 
 |  * and one for the inode attribute data/extents/b-tree root. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_size( | 
 | 	struct xfs_log_item	*lip, | 
 | 	int			*nvecs, | 
 | 	int			*nbytes) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = INODE_ITEM(lip); | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 |  | 
 | 	*nvecs += 2; | 
 | 	*nbytes += sizeof(struct xfs_inode_log_format) + | 
 | 		   xfs_icdinode_size(ip->i_d.di_version); | 
 |  | 
 | 	xfs_inode_item_data_fork_size(iip, nvecs, nbytes); | 
 | 	if (XFS_IFORK_Q(ip)) | 
 | 		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_item_format_data_fork( | 
 | 	struct xfs_inode_log_item *iip, | 
 | 	struct xfs_inode_log_format *ilf, | 
 | 	struct xfs_log_vec	*lv, | 
 | 	struct xfs_log_iovec	**vecp) | 
 | { | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 | 	size_t			data_bytes; | 
 |  | 
 | 	switch (ip->i_d.di_format) { | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
 | 			  XFS_ILOG_DEV | XFS_ILOG_UUID); | 
 |  | 
 | 		if ((iip->ili_fields & XFS_ILOG_DEXT) && | 
 | 		    ip->i_d.di_nextents > 0 && | 
 | 		    ip->i_df.if_bytes > 0) { | 
 | 			struct xfs_bmbt_rec *p; | 
 |  | 
 | 			ASSERT(ip->i_df.if_u1.if_extents != NULL); | 
 | 			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); | 
 |  | 
 | 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); | 
 | 			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); | 
 | 			xlog_finish_iovec(lv, *vecp, data_bytes); | 
 |  | 
 | 			ASSERT(data_bytes <= ip->i_df.if_bytes); | 
 |  | 
 | 			ilf->ilf_dsize = data_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			iip->ili_fields &= ~XFS_ILOG_DEXT; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | | 
 | 			  XFS_ILOG_DEV | XFS_ILOG_UUID); | 
 |  | 
 | 		if ((iip->ili_fields & XFS_ILOG_DBROOT) && | 
 | 		    ip->i_df.if_broot_bytes > 0) { | 
 | 			ASSERT(ip->i_df.if_broot != NULL); | 
 | 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, | 
 | 					ip->i_df.if_broot, | 
 | 					ip->i_df.if_broot_bytes); | 
 | 			ilf->ilf_dsize = ip->i_df.if_broot_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			ASSERT(!(iip->ili_fields & | 
 | 				 XFS_ILOG_DBROOT)); | 
 | 			iip->ili_fields &= ~XFS_ILOG_DBROOT; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | | 
 | 			  XFS_ILOG_DEV | XFS_ILOG_UUID); | 
 | 		if ((iip->ili_fields & XFS_ILOG_DDATA) && | 
 | 		    ip->i_df.if_bytes > 0) { | 
 | 			/* | 
 | 			 * Round i_bytes up to a word boundary. | 
 | 			 * The underlying memory is guaranteed to | 
 | 			 * to be there by xfs_idata_realloc(). | 
 | 			 */ | 
 | 			data_bytes = roundup(ip->i_df.if_bytes, 4); | 
 | 			ASSERT(ip->i_df.if_real_bytes == 0 || | 
 | 			       ip->i_df.if_real_bytes == data_bytes); | 
 | 			ASSERT(ip->i_df.if_u1.if_data != NULL); | 
 | 			ASSERT(ip->i_d.di_size > 0); | 
 | 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, | 
 | 					ip->i_df.if_u1.if_data, data_bytes); | 
 | 			ilf->ilf_dsize = (unsigned)data_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			iip->ili_fields &= ~XFS_ILOG_DDATA; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_DEV: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
 | 			  XFS_ILOG_DEXT | XFS_ILOG_UUID); | 
 | 		if (iip->ili_fields & XFS_ILOG_DEV) | 
 | 			ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_UUID: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
 | 			  XFS_ILOG_DEXT | XFS_ILOG_DEV); | 
 | 		if (iip->ili_fields & XFS_ILOG_UUID) | 
 | 			ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_item_format_attr_fork( | 
 | 	struct xfs_inode_log_item *iip, | 
 | 	struct xfs_inode_log_format *ilf, | 
 | 	struct xfs_log_vec	*lv, | 
 | 	struct xfs_log_iovec	**vecp) | 
 | { | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 | 	size_t			data_bytes; | 
 |  | 
 | 	switch (ip->i_d.di_aformat) { | 
 | 	case XFS_DINODE_FMT_EXTENTS: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); | 
 |  | 
 | 		if ((iip->ili_fields & XFS_ILOG_AEXT) && | 
 | 		    ip->i_d.di_anextents > 0 && | 
 | 		    ip->i_afp->if_bytes > 0) { | 
 | 			struct xfs_bmbt_rec *p; | 
 |  | 
 | 			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == | 
 | 				ip->i_d.di_anextents); | 
 | 			ASSERT(ip->i_afp->if_u1.if_extents != NULL); | 
 |  | 
 | 			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); | 
 | 			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); | 
 | 			xlog_finish_iovec(lv, *vecp, data_bytes); | 
 |  | 
 | 			ilf->ilf_asize = data_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			iip->ili_fields &= ~XFS_ILOG_AEXT; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_BTREE: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); | 
 |  | 
 | 		if ((iip->ili_fields & XFS_ILOG_ABROOT) && | 
 | 		    ip->i_afp->if_broot_bytes > 0) { | 
 | 			ASSERT(ip->i_afp->if_broot != NULL); | 
 |  | 
 | 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, | 
 | 					ip->i_afp->if_broot, | 
 | 					ip->i_afp->if_broot_bytes); | 
 | 			ilf->ilf_asize = ip->i_afp->if_broot_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			iip->ili_fields &= ~XFS_ILOG_ABROOT; | 
 | 		} | 
 | 		break; | 
 | 	case XFS_DINODE_FMT_LOCAL: | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); | 
 |  | 
 | 		if ((iip->ili_fields & XFS_ILOG_ADATA) && | 
 | 		    ip->i_afp->if_bytes > 0) { | 
 | 			/* | 
 | 			 * Round i_bytes up to a word boundary. | 
 | 			 * The underlying memory is guaranteed to | 
 | 			 * to be there by xfs_idata_realloc(). | 
 | 			 */ | 
 | 			data_bytes = roundup(ip->i_afp->if_bytes, 4); | 
 | 			ASSERT(ip->i_afp->if_real_bytes == 0 || | 
 | 			       ip->i_afp->if_real_bytes == data_bytes); | 
 | 			ASSERT(ip->i_afp->if_u1.if_data != NULL); | 
 | 			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, | 
 | 					ip->i_afp->if_u1.if_data, | 
 | 					data_bytes); | 
 | 			ilf->ilf_asize = (unsigned)data_bytes; | 
 | 			ilf->ilf_size++; | 
 | 		} else { | 
 | 			iip->ili_fields &= ~XFS_ILOG_ADATA; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to fill in the vector of log iovecs for the given inode | 
 |  * log item.  It fills the first item with an inode log format structure, | 
 |  * the second with the on-disk inode structure, and a possible third and/or | 
 |  * fourth with the inode data/extents/b-tree root and inode attributes | 
 |  * data/extents/b-tree root. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_format( | 
 | 	struct xfs_log_item	*lip, | 
 | 	struct xfs_log_vec	*lv) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = INODE_ITEM(lip); | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 | 	struct xfs_inode_log_format *ilf; | 
 | 	struct xfs_log_iovec	*vecp = NULL; | 
 |  | 
 | 	ASSERT(ip->i_d.di_version > 1); | 
 |  | 
 | 	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); | 
 | 	ilf->ilf_type = XFS_LI_INODE; | 
 | 	ilf->ilf_ino = ip->i_ino; | 
 | 	ilf->ilf_blkno = ip->i_imap.im_blkno; | 
 | 	ilf->ilf_len = ip->i_imap.im_len; | 
 | 	ilf->ilf_boffset = ip->i_imap.im_boffset; | 
 | 	ilf->ilf_fields = XFS_ILOG_CORE; | 
 | 	ilf->ilf_size = 2; /* format + core */ | 
 | 	xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format)); | 
 |  | 
 | 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE, | 
 | 			&ip->i_d, | 
 | 			xfs_icdinode_size(ip->i_d.di_version)); | 
 |  | 
 | 	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); | 
 | 	if (XFS_IFORK_Q(ip)) { | 
 | 		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); | 
 | 	} else { | 
 | 		iip->ili_fields &= | 
 | 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); | 
 | 	} | 
 |  | 
 | 	/* update the format with the exact fields we actually logged */ | 
 | 	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to pin the inode associated with the inode log | 
 |  * item in memory so it cannot be written out. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_pin( | 
 | 	struct xfs_log_item	*lip) | 
 | { | 
 | 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 |  | 
 | 	trace_xfs_inode_pin(ip, _RET_IP_); | 
 | 	atomic_inc(&ip->i_pincount); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is called to unpin the inode associated with the inode log | 
 |  * item which was previously pinned with a call to xfs_inode_item_pin(). | 
 |  * | 
 |  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_unpin( | 
 | 	struct xfs_log_item	*lip, | 
 | 	int			remove) | 
 | { | 
 | 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode; | 
 |  | 
 | 	trace_xfs_inode_unpin(ip, _RET_IP_); | 
 | 	ASSERT(atomic_read(&ip->i_pincount) > 0); | 
 | 	if (atomic_dec_and_test(&ip->i_pincount)) | 
 | 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); | 
 | } | 
 |  | 
 | STATIC uint | 
 | xfs_inode_item_push( | 
 | 	struct xfs_log_item	*lip, | 
 | 	struct list_head	*buffer_list) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = INODE_ITEM(lip); | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 | 	struct xfs_buf		*bp = NULL; | 
 | 	uint			rval = XFS_ITEM_SUCCESS; | 
 | 	int			error; | 
 |  | 
 | 	if (xfs_ipincount(ip) > 0) | 
 | 		return XFS_ITEM_PINNED; | 
 |  | 
 | 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) | 
 | 		return XFS_ITEM_LOCKED; | 
 |  | 
 | 	/* | 
 | 	 * Re-check the pincount now that we stabilized the value by | 
 | 	 * taking the ilock. | 
 | 	 */ | 
 | 	if (xfs_ipincount(ip) > 0) { | 
 | 		rval = XFS_ITEM_PINNED; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Stale inode items should force out the iclog. | 
 | 	 */ | 
 | 	if (ip->i_flags & XFS_ISTALE) { | 
 | 		rval = XFS_ITEM_PINNED; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Someone else is already flushing the inode.  Nothing we can do | 
 | 	 * here but wait for the flush to finish and remove the item from | 
 | 	 * the AIL. | 
 | 	 */ | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		rval = XFS_ITEM_FLUSHING; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
 | 	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
 |  | 
 | 	spin_unlock(&lip->li_ailp->xa_lock); | 
 |  | 
 | 	error = xfs_iflush(ip, &bp); | 
 | 	if (!error) { | 
 | 		if (!xfs_buf_delwri_queue(bp, buffer_list)) | 
 | 			rval = XFS_ITEM_FLUSHING; | 
 | 		xfs_buf_relse(bp); | 
 | 	} | 
 |  | 
 | 	spin_lock(&lip->li_ailp->xa_lock); | 
 | out_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 	return rval; | 
 | } | 
 |  | 
 | /* | 
 |  * Unlock the inode associated with the inode log item. | 
 |  * Clear the fields of the inode and inode log item that | 
 |  * are specific to the current transaction.  If the | 
 |  * hold flags is set, do not unlock the inode. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_unlock( | 
 | 	struct xfs_log_item	*lip) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = INODE_ITEM(lip); | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 | 	unsigned short		lock_flags; | 
 |  | 
 | 	ASSERT(ip->i_itemp != NULL); | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 |  | 
 | 	lock_flags = iip->ili_lock_flags; | 
 | 	iip->ili_lock_flags = 0; | 
 | 	if (lock_flags) | 
 | 		xfs_iunlock(ip, lock_flags); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called to find out where the oldest active copy of the inode log | 
 |  * item in the on disk log resides now that the last log write of it completed | 
 |  * at the given lsn.  Since we always re-log all dirty data in an inode, the | 
 |  * latest copy in the on disk log is the only one that matters.  Therefore, | 
 |  * simply return the given lsn. | 
 |  * | 
 |  * If the inode has been marked stale because the cluster is being freed, we | 
 |  * don't want to (re-)insert this inode into the AIL. There is a race condition | 
 |  * where the cluster buffer may be unpinned before the inode is inserted into | 
 |  * the AIL during transaction committed processing. If the buffer is unpinned | 
 |  * before the inode item has been committed and inserted, then it is possible | 
 |  * for the buffer to be written and IO completes before the inode is inserted | 
 |  * into the AIL. In that case, we'd be inserting a clean, stale inode into the | 
 |  * AIL which will never get removed. It will, however, get reclaimed which | 
 |  * triggers an assert in xfs_inode_free() complaining about freein an inode | 
 |  * still in the AIL. | 
 |  * | 
 |  * To avoid this, just unpin the inode directly and return a LSN of -1 so the | 
 |  * transaction committed code knows that it does not need to do any further | 
 |  * processing on the item. | 
 |  */ | 
 | STATIC xfs_lsn_t | 
 | xfs_inode_item_committed( | 
 | 	struct xfs_log_item	*lip, | 
 | 	xfs_lsn_t		lsn) | 
 | { | 
 | 	struct xfs_inode_log_item *iip = INODE_ITEM(lip); | 
 | 	struct xfs_inode	*ip = iip->ili_inode; | 
 |  | 
 | 	if (xfs_iflags_test(ip, XFS_ISTALE)) { | 
 | 		xfs_inode_item_unpin(lip, 0); | 
 | 		return -1; | 
 | 	} | 
 | 	return lsn; | 
 | } | 
 |  | 
 | /* | 
 |  * XXX rcc - this one really has to do something.  Probably needs | 
 |  * to stamp in a new field in the incore inode. | 
 |  */ | 
 | STATIC void | 
 | xfs_inode_item_committing( | 
 | 	struct xfs_log_item	*lip, | 
 | 	xfs_lsn_t		lsn) | 
 | { | 
 | 	INODE_ITEM(lip)->ili_last_lsn = lsn; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the ops vector shared by all buf log items. | 
 |  */ | 
 | static const struct xfs_item_ops xfs_inode_item_ops = { | 
 | 	.iop_size	= xfs_inode_item_size, | 
 | 	.iop_format	= xfs_inode_item_format, | 
 | 	.iop_pin	= xfs_inode_item_pin, | 
 | 	.iop_unpin	= xfs_inode_item_unpin, | 
 | 	.iop_unlock	= xfs_inode_item_unlock, | 
 | 	.iop_committed	= xfs_inode_item_committed, | 
 | 	.iop_push	= xfs_inode_item_push, | 
 | 	.iop_committing = xfs_inode_item_committing | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize the inode log item for a newly allocated (in-core) inode. | 
 |  */ | 
 | void | 
 | xfs_inode_item_init( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_inode_log_item *iip; | 
 |  | 
 | 	ASSERT(ip->i_itemp == NULL); | 
 | 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); | 
 |  | 
 | 	iip->ili_inode = ip; | 
 | 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, | 
 | 						&xfs_inode_item_ops); | 
 | } | 
 |  | 
 | /* | 
 |  * Free the inode log item and any memory hanging off of it. | 
 |  */ | 
 | void | 
 | xfs_inode_item_destroy( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	kmem_zone_free(xfs_ili_zone, ip->i_itemp); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This is the inode flushing I/O completion routine.  It is called | 
 |  * from interrupt level when the buffer containing the inode is | 
 |  * flushed to disk.  It is responsible for removing the inode item | 
 |  * from the AIL if it has not been re-logged, and unlocking the inode's | 
 |  * flush lock. | 
 |  * | 
 |  * To reduce AIL lock traffic as much as possible, we scan the buffer log item | 
 |  * list for other inodes that will run this function. We remove them from the | 
 |  * buffer list so we can process all the inode IO completions in one AIL lock | 
 |  * traversal. | 
 |  */ | 
 | void | 
 | xfs_iflush_done( | 
 | 	struct xfs_buf		*bp, | 
 | 	struct xfs_log_item	*lip) | 
 | { | 
 | 	struct xfs_inode_log_item *iip; | 
 | 	struct xfs_log_item	*blip; | 
 | 	struct xfs_log_item	*next; | 
 | 	struct xfs_log_item	*prev; | 
 | 	struct xfs_ail		*ailp = lip->li_ailp; | 
 | 	int			need_ail = 0; | 
 |  | 
 | 	/* | 
 | 	 * Scan the buffer IO completions for other inodes being completed and | 
 | 	 * attach them to the current inode log item. | 
 | 	 */ | 
 | 	blip = bp->b_fspriv; | 
 | 	prev = NULL; | 
 | 	while (blip != NULL) { | 
 | 		if (lip->li_cb != xfs_iflush_done) { | 
 | 			prev = blip; | 
 | 			blip = blip->li_bio_list; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* remove from list */ | 
 | 		next = blip->li_bio_list; | 
 | 		if (!prev) { | 
 | 			bp->b_fspriv = next; | 
 | 		} else { | 
 | 			prev->li_bio_list = next; | 
 | 		} | 
 |  | 
 | 		/* add to current list */ | 
 | 		blip->li_bio_list = lip->li_bio_list; | 
 | 		lip->li_bio_list = blip; | 
 |  | 
 | 		/* | 
 | 		 * while we have the item, do the unlocked check for needing | 
 | 		 * the AIL lock. | 
 | 		 */ | 
 | 		iip = INODE_ITEM(blip); | 
 | 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) | 
 | 			need_ail++; | 
 |  | 
 | 		blip = next; | 
 | 	} | 
 |  | 
 | 	/* make sure we capture the state of the initial inode. */ | 
 | 	iip = INODE_ITEM(lip); | 
 | 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) | 
 | 		need_ail++; | 
 |  | 
 | 	/* | 
 | 	 * We only want to pull the item from the AIL if it is | 
 | 	 * actually there and its location in the log has not | 
 | 	 * changed since we started the flush.  Thus, we only bother | 
 | 	 * if the ili_logged flag is set and the inode's lsn has not | 
 | 	 * changed.  First we check the lsn outside | 
 | 	 * the lock since it's cheaper, and then we recheck while | 
 | 	 * holding the lock before removing the inode from the AIL. | 
 | 	 */ | 
 | 	if (need_ail) { | 
 | 		struct xfs_log_item *log_items[need_ail]; | 
 | 		int i = 0; | 
 | 		spin_lock(&ailp->xa_lock); | 
 | 		for (blip = lip; blip; blip = blip->li_bio_list) { | 
 | 			iip = INODE_ITEM(blip); | 
 | 			if (iip->ili_logged && | 
 | 			    blip->li_lsn == iip->ili_flush_lsn) { | 
 | 				log_items[i++] = blip; | 
 | 			} | 
 | 			ASSERT(i <= need_ail); | 
 | 		} | 
 | 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */ | 
 | 		xfs_trans_ail_delete_bulk(ailp, log_items, i, | 
 | 					  SHUTDOWN_CORRUPT_INCORE); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * clean up and unlock the flush lock now we are done. We can clear the | 
 | 	 * ili_last_fields bits now that we know that the data corresponding to | 
 | 	 * them is safely on disk. | 
 | 	 */ | 
 | 	for (blip = lip; blip; blip = next) { | 
 | 		next = blip->li_bio_list; | 
 | 		blip->li_bio_list = NULL; | 
 |  | 
 | 		iip = INODE_ITEM(blip); | 
 | 		iip->ili_logged = 0; | 
 | 		iip->ili_last_fields = 0; | 
 | 		xfs_ifunlock(iip->ili_inode); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is the inode flushing abort routine.  It is called from xfs_iflush when | 
 |  * the filesystem is shutting down to clean up the inode state.  It is | 
 |  * responsible for removing the inode item from the AIL if it has not been | 
 |  * re-logged, and unlocking the inode's flush lock. | 
 |  */ | 
 | void | 
 | xfs_iflush_abort( | 
 | 	xfs_inode_t		*ip, | 
 | 	bool			stale) | 
 | { | 
 | 	xfs_inode_log_item_t	*iip = ip->i_itemp; | 
 |  | 
 | 	if (iip) { | 
 | 		struct xfs_ail	*ailp = iip->ili_item.li_ailp; | 
 | 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
 | 			spin_lock(&ailp->xa_lock); | 
 | 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
 | 				/* xfs_trans_ail_delete() drops the AIL lock. */ | 
 | 				xfs_trans_ail_delete(ailp, &iip->ili_item, | 
 | 						stale ? | 
 | 						     SHUTDOWN_LOG_IO_ERROR : | 
 | 						     SHUTDOWN_CORRUPT_INCORE); | 
 | 			} else | 
 | 				spin_unlock(&ailp->xa_lock); | 
 | 		} | 
 | 		iip->ili_logged = 0; | 
 | 		/* | 
 | 		 * Clear the ili_last_fields bits now that we know that the | 
 | 		 * data corresponding to them is safely on disk. | 
 | 		 */ | 
 | 		iip->ili_last_fields = 0; | 
 | 		/* | 
 | 		 * Clear the inode logging fields so no more flushes are | 
 | 		 * attempted. | 
 | 		 */ | 
 | 		iip->ili_fields = 0; | 
 | 	} | 
 | 	/* | 
 | 	 * Release the inode's flush lock since we're done with it. | 
 | 	 */ | 
 | 	xfs_ifunlock(ip); | 
 | } | 
 |  | 
 | void | 
 | xfs_istale_done( | 
 | 	struct xfs_buf		*bp, | 
 | 	struct xfs_log_item	*lip) | 
 | { | 
 | 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); | 
 | } | 
 |  | 
 | /* | 
 |  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions | 
 |  * (which can have different field alignments) to the native version | 
 |  */ | 
 | int | 
 | xfs_inode_item_format_convert( | 
 | 	xfs_log_iovec_t		*buf, | 
 | 	xfs_inode_log_format_t	*in_f) | 
 | { | 
 | 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { | 
 | 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr; | 
 |  | 
 | 		in_f->ilf_type = in_f32->ilf_type; | 
 | 		in_f->ilf_size = in_f32->ilf_size; | 
 | 		in_f->ilf_fields = in_f32->ilf_fields; | 
 | 		in_f->ilf_asize = in_f32->ilf_asize; | 
 | 		in_f->ilf_dsize = in_f32->ilf_dsize; | 
 | 		in_f->ilf_ino = in_f32->ilf_ino; | 
 | 		/* copy biggest field of ilf_u */ | 
 | 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, | 
 | 		       in_f32->ilf_u.ilfu_uuid.__u_bits, | 
 | 		       sizeof(uuid_t)); | 
 | 		in_f->ilf_blkno = in_f32->ilf_blkno; | 
 | 		in_f->ilf_len = in_f32->ilf_len; | 
 | 		in_f->ilf_boffset = in_f32->ilf_boffset; | 
 | 		return 0; | 
 | 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ | 
 | 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr; | 
 |  | 
 | 		in_f->ilf_type = in_f64->ilf_type; | 
 | 		in_f->ilf_size = in_f64->ilf_size; | 
 | 		in_f->ilf_fields = in_f64->ilf_fields; | 
 | 		in_f->ilf_asize = in_f64->ilf_asize; | 
 | 		in_f->ilf_dsize = in_f64->ilf_dsize; | 
 | 		in_f->ilf_ino = in_f64->ilf_ino; | 
 | 		/* copy biggest field of ilf_u */ | 
 | 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, | 
 | 		       in_f64->ilf_u.ilfu_uuid.__u_bits, | 
 | 		       sizeof(uuid_t)); | 
 | 		in_f->ilf_blkno = in_f64->ilf_blkno; | 
 | 		in_f->ilf_len = in_f64->ilf_len; | 
 | 		in_f->ilf_boffset = in_f64->ilf_boffset; | 
 | 		return 0; | 
 | 	} | 
 | 	return EFSCORRUPTED; | 
 | } |