| /* | 
 |  *  linux/kernel/fork.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  *  'fork.c' contains the help-routines for the 'fork' system call | 
 |  * (see also entry.S and others). | 
 |  * Fork is rather simple, once you get the hang of it, but the memory | 
 |  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/sched/autogroup.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/sched/user.h> | 
 | #include <linux/sched/numa_balancing.h> | 
 | #include <linux/sched/stat.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/sched/cputime.h> | 
 | #include <linux/rtmutex.h> | 
 | #include <linux/init.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/module.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/sem.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/key.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/hmm.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/vmacache.h> | 
 | #include <linux/nsproxy.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/security.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/seccomp.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/futex.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/acct.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/taskstats_kern.h> | 
 | #include <linux/random.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/fs_struct.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/user-return-notifier.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/khugepaged.h> | 
 | #include <linux/signalfd.h> | 
 | #include <linux/uprobes.h> | 
 | #include <linux/aio.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/kcov.h> | 
 | #include <linux/livepatch.h> | 
 | #include <linux/thread_info.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <linux/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include <trace/events/sched.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/task.h> | 
 |  | 
 | /* | 
 |  * Minimum number of threads to boot the kernel | 
 |  */ | 
 | #define MIN_THREADS 20 | 
 |  | 
 | /* | 
 |  * Maximum number of threads | 
 |  */ | 
 | #define MAX_THREADS FUTEX_TID_MASK | 
 |  | 
 | /* | 
 |  * Protected counters by write_lock_irq(&tasklist_lock) | 
 |  */ | 
 | unsigned long total_forks;	/* Handle normal Linux uptimes. */ | 
 | int nr_threads;			/* The idle threads do not count.. */ | 
 |  | 
 | int max_threads;		/* tunable limit on nr_threads */ | 
 |  | 
 | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | 
 |  | 
 | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */ | 
 |  | 
 | #ifdef CONFIG_PROVE_RCU | 
 | int lockdep_tasklist_lock_is_held(void) | 
 | { | 
 | 	return lockdep_is_held(&tasklist_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); | 
 | #endif /* #ifdef CONFIG_PROVE_RCU */ | 
 |  | 
 | int nr_processes(void) | 
 | { | 
 | 	int cpu; | 
 | 	int total = 0; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		total += per_cpu(process_counts, cpu); | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | void __weak arch_release_task_struct(struct task_struct *tsk) | 
 | { | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR | 
 | static struct kmem_cache *task_struct_cachep; | 
 |  | 
 | static inline struct task_struct *alloc_task_struct_node(int node) | 
 | { | 
 | 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); | 
 | } | 
 |  | 
 | static inline void free_task_struct(struct task_struct *tsk) | 
 | { | 
 | 	kmem_cache_free(task_struct_cachep, tsk); | 
 | } | 
 | #endif | 
 |  | 
 | void __weak arch_release_thread_stack(unsigned long *stack) | 
 | { | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR | 
 |  | 
 | /* | 
 |  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a | 
 |  * kmemcache based allocator. | 
 |  */ | 
 | # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) | 
 |  | 
 | #ifdef CONFIG_VMAP_STACK | 
 | /* | 
 |  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB | 
 |  * flush.  Try to minimize the number of calls by caching stacks. | 
 |  */ | 
 | #define NR_CACHED_STACKS 2 | 
 | static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); | 
 |  | 
 | static int free_vm_stack_cache(unsigned int cpu) | 
 | { | 
 | 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_CACHED_STACKS; i++) { | 
 | 		struct vm_struct *vm_stack = cached_vm_stacks[i]; | 
 |  | 
 | 		if (!vm_stack) | 
 | 			continue; | 
 |  | 
 | 		vfree(vm_stack->addr); | 
 | 		cached_vm_stacks[i] = NULL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) | 
 | { | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	void *stack; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_CACHED_STACKS; i++) { | 
 | 		struct vm_struct *s; | 
 |  | 
 | 		s = this_cpu_xchg(cached_stacks[i], NULL); | 
 |  | 
 | 		if (!s) | 
 | 			continue; | 
 |  | 
 | #ifdef CONFIG_DEBUG_KMEMLEAK | 
 | 		/* Clear stale pointers from reused stack. */ | 
 | 		memset(s->addr, 0, THREAD_SIZE); | 
 | #endif | 
 | 		tsk->stack_vm_area = s; | 
 | 		return s->addr; | 
 | 	} | 
 |  | 
 | 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, | 
 | 				     VMALLOC_START, VMALLOC_END, | 
 | 				     THREADINFO_GFP, | 
 | 				     PAGE_KERNEL, | 
 | 				     0, node, __builtin_return_address(0)); | 
 |  | 
 | 	/* | 
 | 	 * We can't call find_vm_area() in interrupt context, and | 
 | 	 * free_thread_stack() can be called in interrupt context, | 
 | 	 * so cache the vm_struct. | 
 | 	 */ | 
 | 	if (stack) | 
 | 		tsk->stack_vm_area = find_vm_area(stack); | 
 | 	return stack; | 
 | #else | 
 | 	struct page *page = alloc_pages_node(node, THREADINFO_GFP, | 
 | 					     THREAD_SIZE_ORDER); | 
 |  | 
 | 	return page ? page_address(page) : NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void free_thread_stack(struct task_struct *tsk) | 
 | { | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	if (task_stack_vm_area(tsk)) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < NR_CACHED_STACKS; i++) { | 
 | 			if (this_cpu_cmpxchg(cached_stacks[i], | 
 | 					NULL, tsk->stack_vm_area) != NULL) | 
 | 				continue; | 
 |  | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		vfree_atomic(tsk->stack); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); | 
 | } | 
 | # else | 
 | static struct kmem_cache *thread_stack_cache; | 
 |  | 
 | static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, | 
 | 						  int node) | 
 | { | 
 | 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); | 
 | } | 
 |  | 
 | static void free_thread_stack(struct task_struct *tsk) | 
 | { | 
 | 	kmem_cache_free(thread_stack_cache, tsk->stack); | 
 | } | 
 |  | 
 | void thread_stack_cache_init(void) | 
 | { | 
 | 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack", | 
 | 					THREAD_SIZE, THREAD_SIZE, 0, 0, | 
 | 					THREAD_SIZE, NULL); | 
 | 	BUG_ON(thread_stack_cache == NULL); | 
 | } | 
 | # endif | 
 | #endif | 
 |  | 
 | /* SLAB cache for signal_struct structures (tsk->signal) */ | 
 | static struct kmem_cache *signal_cachep; | 
 |  | 
 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 
 | struct kmem_cache *sighand_cachep; | 
 |  | 
 | /* SLAB cache for files_struct structures (tsk->files) */ | 
 | struct kmem_cache *files_cachep; | 
 |  | 
 | /* SLAB cache for fs_struct structures (tsk->fs) */ | 
 | struct kmem_cache *fs_cachep; | 
 |  | 
 | /* SLAB cache for vm_area_struct structures */ | 
 | struct kmem_cache *vm_area_cachep; | 
 |  | 
 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 
 | static struct kmem_cache *mm_cachep; | 
 |  | 
 | static void account_kernel_stack(struct task_struct *tsk, int account) | 
 | { | 
 | 	void *stack = task_stack_page(tsk); | 
 | 	struct vm_struct *vm = task_stack_vm_area(tsk); | 
 |  | 
 | 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); | 
 |  | 
 | 	if (vm) { | 
 | 		int i; | 
 |  | 
 | 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); | 
 |  | 
 | 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { | 
 | 			mod_zone_page_state(page_zone(vm->pages[i]), | 
 | 					    NR_KERNEL_STACK_KB, | 
 | 					    PAGE_SIZE / 1024 * account); | 
 | 		} | 
 |  | 
 | 		/* All stack pages belong to the same memcg. */ | 
 | 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB, | 
 | 				     account * (THREAD_SIZE / 1024)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * All stack pages are in the same zone and belong to the | 
 | 		 * same memcg. | 
 | 		 */ | 
 | 		struct page *first_page = virt_to_page(stack); | 
 |  | 
 | 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, | 
 | 				    THREAD_SIZE / 1024 * account); | 
 |  | 
 | 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, | 
 | 				     account * (THREAD_SIZE / 1024)); | 
 | 	} | 
 | } | 
 |  | 
 | static void release_task_stack(struct task_struct *tsk) | 
 | { | 
 | 	if (WARN_ON(tsk->state != TASK_DEAD)) | 
 | 		return;  /* Better to leak the stack than to free prematurely */ | 
 |  | 
 | 	account_kernel_stack(tsk, -1); | 
 | 	arch_release_thread_stack(tsk->stack); | 
 | 	free_thread_stack(tsk); | 
 | 	tsk->stack = NULL; | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	tsk->stack_vm_area = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
 | void put_task_stack(struct task_struct *tsk) | 
 | { | 
 | 	if (atomic_dec_and_test(&tsk->stack_refcount)) | 
 | 		release_task_stack(tsk); | 
 | } | 
 | #endif | 
 |  | 
 | void free_task(struct task_struct *tsk) | 
 | { | 
 | #ifndef CONFIG_THREAD_INFO_IN_TASK | 
 | 	/* | 
 | 	 * The task is finally done with both the stack and thread_info, | 
 | 	 * so free both. | 
 | 	 */ | 
 | 	release_task_stack(tsk); | 
 | #else | 
 | 	/* | 
 | 	 * If the task had a separate stack allocation, it should be gone | 
 | 	 * by now. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0); | 
 | #endif | 
 | 	rt_mutex_debug_task_free(tsk); | 
 | 	ftrace_graph_exit_task(tsk); | 
 | 	put_seccomp_filter(tsk); | 
 | 	arch_release_task_struct(tsk); | 
 | 	if (tsk->flags & PF_KTHREAD) | 
 | 		free_kthread_struct(tsk); | 
 | 	free_task_struct(tsk); | 
 | } | 
 | EXPORT_SYMBOL(free_task); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static __latent_entropy int dup_mmap(struct mm_struct *mm, | 
 | 					struct mm_struct *oldmm) | 
 | { | 
 | 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev; | 
 | 	struct rb_node **rb_link, *rb_parent; | 
 | 	int retval; | 
 | 	unsigned long charge; | 
 | 	LIST_HEAD(uf); | 
 |  | 
 | 	uprobe_start_dup_mmap(); | 
 | 	if (down_write_killable(&oldmm->mmap_sem)) { | 
 | 		retval = -EINTR; | 
 | 		goto fail_uprobe_end; | 
 | 	} | 
 | 	flush_cache_dup_mm(oldmm); | 
 | 	uprobe_dup_mmap(oldmm, mm); | 
 | 	/* | 
 | 	 * Not linked in yet - no deadlock potential: | 
 | 	 */ | 
 | 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	/* No ordering required: file already has been exposed. */ | 
 | 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); | 
 |  | 
 | 	mm->total_vm = oldmm->total_vm; | 
 | 	mm->data_vm = oldmm->data_vm; | 
 | 	mm->exec_vm = oldmm->exec_vm; | 
 | 	mm->stack_vm = oldmm->stack_vm; | 
 |  | 
 | 	rb_link = &mm->mm_rb.rb_node; | 
 | 	rb_parent = NULL; | 
 | 	pprev = &mm->mmap; | 
 | 	retval = ksm_fork(mm, oldmm); | 
 | 	if (retval) | 
 | 		goto out; | 
 | 	retval = khugepaged_fork(mm, oldmm); | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	prev = NULL; | 
 | 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 
 | 		struct file *file; | 
 |  | 
 | 		if (mpnt->vm_flags & VM_DONTCOPY) { | 
 | 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); | 
 | 			continue; | 
 | 		} | 
 | 		charge = 0; | 
 | 		if (mpnt->vm_flags & VM_ACCOUNT) { | 
 | 			unsigned long len = vma_pages(mpnt); | 
 |  | 
 | 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ | 
 | 				goto fail_nomem; | 
 | 			charge = len; | 
 | 		} | 
 | 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
 | 		if (!tmp) | 
 | 			goto fail_nomem; | 
 | 		*tmp = *mpnt; | 
 | 		INIT_LIST_HEAD(&tmp->anon_vma_chain); | 
 | 		retval = vma_dup_policy(mpnt, tmp); | 
 | 		if (retval) | 
 | 			goto fail_nomem_policy; | 
 | 		tmp->vm_mm = mm; | 
 | 		retval = dup_userfaultfd(tmp, &uf); | 
 | 		if (retval) | 
 | 			goto fail_nomem_anon_vma_fork; | 
 | 		if (tmp->vm_flags & VM_WIPEONFORK) { | 
 | 			/* VM_WIPEONFORK gets a clean slate in the child. */ | 
 | 			tmp->anon_vma = NULL; | 
 | 			if (anon_vma_prepare(tmp)) | 
 | 				goto fail_nomem_anon_vma_fork; | 
 | 		} else if (anon_vma_fork(tmp, mpnt)) | 
 | 			goto fail_nomem_anon_vma_fork; | 
 | 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); | 
 | 		tmp->vm_next = tmp->vm_prev = NULL; | 
 | 		file = tmp->vm_file; | 
 | 		if (file) { | 
 | 			struct inode *inode = file_inode(file); | 
 | 			struct address_space *mapping = file->f_mapping; | 
 |  | 
 | 			get_file(file); | 
 | 			if (tmp->vm_flags & VM_DENYWRITE) | 
 | 				atomic_dec(&inode->i_writecount); | 
 | 			i_mmap_lock_write(mapping); | 
 | 			if (tmp->vm_flags & VM_SHARED) | 
 | 				atomic_inc(&mapping->i_mmap_writable); | 
 | 			flush_dcache_mmap_lock(mapping); | 
 | 			/* insert tmp into the share list, just after mpnt */ | 
 | 			vma_interval_tree_insert_after(tmp, mpnt, | 
 | 					&mapping->i_mmap); | 
 | 			flush_dcache_mmap_unlock(mapping); | 
 | 			i_mmap_unlock_write(mapping); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Clear hugetlb-related page reserves for children. This only | 
 | 		 * affects MAP_PRIVATE mappings. Faults generated by the child | 
 | 		 * are not guaranteed to succeed, even if read-only | 
 | 		 */ | 
 | 		if (is_vm_hugetlb_page(tmp)) | 
 | 			reset_vma_resv_huge_pages(tmp); | 
 |  | 
 | 		/* | 
 | 		 * Link in the new vma and copy the page table entries. | 
 | 		 */ | 
 | 		*pprev = tmp; | 
 | 		pprev = &tmp->vm_next; | 
 | 		tmp->vm_prev = prev; | 
 | 		prev = tmp; | 
 |  | 
 | 		__vma_link_rb(mm, tmp, rb_link, rb_parent); | 
 | 		rb_link = &tmp->vm_rb.rb_right; | 
 | 		rb_parent = &tmp->vm_rb; | 
 |  | 
 | 		mm->map_count++; | 
 | 		if (!(tmp->vm_flags & VM_WIPEONFORK)) | 
 | 			retval = copy_page_range(mm, oldmm, mpnt); | 
 |  | 
 | 		if (tmp->vm_ops && tmp->vm_ops->open) | 
 | 			tmp->vm_ops->open(tmp); | 
 |  | 
 | 		if (retval) | 
 | 			goto out; | 
 | 	} | 
 | 	/* a new mm has just been created */ | 
 | 	arch_dup_mmap(oldmm, mm); | 
 | 	retval = 0; | 
 | out: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	flush_tlb_mm(oldmm); | 
 | 	up_write(&oldmm->mmap_sem); | 
 | 	dup_userfaultfd_complete(&uf); | 
 | fail_uprobe_end: | 
 | 	uprobe_end_dup_mmap(); | 
 | 	return retval; | 
 | fail_nomem_anon_vma_fork: | 
 | 	mpol_put(vma_policy(tmp)); | 
 | fail_nomem_policy: | 
 | 	kmem_cache_free(vm_area_cachep, tmp); | 
 | fail_nomem: | 
 | 	retval = -ENOMEM; | 
 | 	vm_unacct_memory(charge); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static inline int mm_alloc_pgd(struct mm_struct *mm) | 
 | { | 
 | 	mm->pgd = pgd_alloc(mm); | 
 | 	if (unlikely(!mm->pgd)) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void mm_free_pgd(struct mm_struct *mm) | 
 | { | 
 | 	pgd_free(mm, mm->pgd); | 
 | } | 
 | #else | 
 | static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | 
 | { | 
 | 	down_write(&oldmm->mmap_sem); | 
 | 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); | 
 | 	up_write(&oldmm->mmap_sem); | 
 | 	return 0; | 
 | } | 
 | #define mm_alloc_pgd(mm)	(0) | 
 | #define mm_free_pgd(mm) | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | static void check_mm(struct mm_struct *mm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_MM_COUNTERS; i++) { | 
 | 		long x = atomic_long_read(&mm->rss_stat.count[i]); | 
 |  | 
 | 		if (unlikely(x)) | 
 | 			printk(KERN_ALERT "BUG: Bad rss-counter state " | 
 | 					  "mm:%p idx:%d val:%ld\n", mm, i, x); | 
 | 	} | 
 |  | 
 | 	if (mm_pgtables_bytes(mm)) | 
 | 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", | 
 | 				mm_pgtables_bytes(mm)); | 
 |  | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS | 
 | 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm); | 
 | #endif | 
 | } | 
 |  | 
 | #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL)) | 
 | #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm))) | 
 |  | 
 | /* | 
 |  * Called when the last reference to the mm | 
 |  * is dropped: either by a lazy thread or by | 
 |  * mmput. Free the page directory and the mm. | 
 |  */ | 
 | void __mmdrop(struct mm_struct *mm) | 
 | { | 
 | 	BUG_ON(mm == &init_mm); | 
 | 	mm_free_pgd(mm); | 
 | 	destroy_context(mm); | 
 | 	hmm_mm_destroy(mm); | 
 | 	mmu_notifier_mm_destroy(mm); | 
 | 	check_mm(mm); | 
 | 	put_user_ns(mm->user_ns); | 
 | 	free_mm(mm); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__mmdrop); | 
 |  | 
 | static void mmdrop_async_fn(struct work_struct *work) | 
 | { | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	mm = container_of(work, struct mm_struct, async_put_work); | 
 | 	__mmdrop(mm); | 
 | } | 
 |  | 
 | static void mmdrop_async(struct mm_struct *mm) | 
 | { | 
 | 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) { | 
 | 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn); | 
 | 		schedule_work(&mm->async_put_work); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void free_signal_struct(struct signal_struct *sig) | 
 | { | 
 | 	taskstats_tgid_free(sig); | 
 | 	sched_autogroup_exit(sig); | 
 | 	/* | 
 | 	 * __mmdrop is not safe to call from softirq context on x86 due to | 
 | 	 * pgd_dtor so postpone it to the async context | 
 | 	 */ | 
 | 	if (sig->oom_mm) | 
 | 		mmdrop_async(sig->oom_mm); | 
 | 	kmem_cache_free(signal_cachep, sig); | 
 | } | 
 |  | 
 | static inline void put_signal_struct(struct signal_struct *sig) | 
 | { | 
 | 	if (atomic_dec_and_test(&sig->sigcnt)) | 
 | 		free_signal_struct(sig); | 
 | } | 
 |  | 
 | void __put_task_struct(struct task_struct *tsk) | 
 | { | 
 | 	WARN_ON(!tsk->exit_state); | 
 | 	WARN_ON(atomic_read(&tsk->usage)); | 
 | 	WARN_ON(tsk == current); | 
 |  | 
 | 	cgroup_free(tsk); | 
 | 	task_numa_free(tsk); | 
 | 	security_task_free(tsk); | 
 | 	exit_creds(tsk); | 
 | 	delayacct_tsk_free(tsk); | 
 | 	put_signal_struct(tsk->signal); | 
 |  | 
 | 	if (!profile_handoff_task(tsk)) | 
 | 		free_task(tsk); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__put_task_struct); | 
 |  | 
 | void __init __weak arch_task_cache_init(void) { } | 
 |  | 
 | /* | 
 |  * set_max_threads | 
 |  */ | 
 | static void set_max_threads(unsigned int max_threads_suggested) | 
 | { | 
 | 	u64 threads; | 
 |  | 
 | 	/* | 
 | 	 * The number of threads shall be limited such that the thread | 
 | 	 * structures may only consume a small part of the available memory. | 
 | 	 */ | 
 | 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64) | 
 | 		threads = MAX_THREADS; | 
 | 	else | 
 | 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, | 
 | 				    (u64) THREAD_SIZE * 8UL); | 
 |  | 
 | 	if (threads > max_threads_suggested) | 
 | 		threads = max_threads_suggested; | 
 |  | 
 | 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT | 
 | /* Initialized by the architecture: */ | 
 | int arch_task_struct_size __read_mostly; | 
 | #endif | 
 |  | 
 | static void task_struct_whitelist(unsigned long *offset, unsigned long *size) | 
 | { | 
 | 	/* Fetch thread_struct whitelist for the architecture. */ | 
 | 	arch_thread_struct_whitelist(offset, size); | 
 |  | 
 | 	/* | 
 | 	 * Handle zero-sized whitelist or empty thread_struct, otherwise | 
 | 	 * adjust offset to position of thread_struct in task_struct. | 
 | 	 */ | 
 | 	if (unlikely(*size == 0)) | 
 | 		*offset = 0; | 
 | 	else | 
 | 		*offset += offsetof(struct task_struct, thread); | 
 | } | 
 |  | 
 | void __init fork_init(void) | 
 | { | 
 | 	int i; | 
 | #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR | 
 | #ifndef ARCH_MIN_TASKALIGN | 
 | #define ARCH_MIN_TASKALIGN	0 | 
 | #endif | 
 | 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); | 
 | 	unsigned long useroffset, usersize; | 
 |  | 
 | 	/* create a slab on which task_structs can be allocated */ | 
 | 	task_struct_whitelist(&useroffset, &usersize); | 
 | 	task_struct_cachep = kmem_cache_create_usercopy("task_struct", | 
 | 			arch_task_struct_size, align, | 
 | 			SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			useroffset, usersize, NULL); | 
 | #endif | 
 |  | 
 | 	/* do the arch specific task caches init */ | 
 | 	arch_task_cache_init(); | 
 |  | 
 | 	set_max_threads(MAX_THREADS); | 
 |  | 
 | 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | 
 | 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | 
 | 	init_task.signal->rlim[RLIMIT_SIGPENDING] = | 
 | 		init_task.signal->rlim[RLIMIT_NPROC]; | 
 |  | 
 | 	for (i = 0; i < UCOUNT_COUNTS; i++) { | 
 | 		init_user_ns.ucount_max[i] = max_threads/2; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", | 
 | 			  NULL, free_vm_stack_cache); | 
 | #endif | 
 |  | 
 | 	lockdep_init_task(&init_task); | 
 | } | 
 |  | 
 | int __weak arch_dup_task_struct(struct task_struct *dst, | 
 | 					       struct task_struct *src) | 
 | { | 
 | 	*dst = *src; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void set_task_stack_end_magic(struct task_struct *tsk) | 
 | { | 
 | 	unsigned long *stackend; | 
 |  | 
 | 	stackend = end_of_stack(tsk); | 
 | 	*stackend = STACK_END_MAGIC;	/* for overflow detection */ | 
 | } | 
 |  | 
 | static struct task_struct *dup_task_struct(struct task_struct *orig, int node) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	unsigned long *stack; | 
 | 	struct vm_struct *stack_vm_area; | 
 | 	int err; | 
 |  | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		node = tsk_fork_get_node(orig); | 
 | 	tsk = alloc_task_struct_node(node); | 
 | 	if (!tsk) | 
 | 		return NULL; | 
 |  | 
 | 	stack = alloc_thread_stack_node(tsk, node); | 
 | 	if (!stack) | 
 | 		goto free_tsk; | 
 |  | 
 | 	stack_vm_area = task_stack_vm_area(tsk); | 
 |  | 
 | 	err = arch_dup_task_struct(tsk, orig); | 
 |  | 
 | 	/* | 
 | 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make | 
 | 	 * sure they're properly initialized before using any stack-related | 
 | 	 * functions again. | 
 | 	 */ | 
 | 	tsk->stack = stack; | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	tsk->stack_vm_area = stack_vm_area; | 
 | #endif | 
 | #ifdef CONFIG_THREAD_INFO_IN_TASK | 
 | 	atomic_set(&tsk->stack_refcount, 1); | 
 | #endif | 
 |  | 
 | 	if (err) | 
 | 		goto free_stack; | 
 |  | 
 | #ifdef CONFIG_SECCOMP | 
 | 	/* | 
 | 	 * We must handle setting up seccomp filters once we're under | 
 | 	 * the sighand lock in case orig has changed between now and | 
 | 	 * then. Until then, filter must be NULL to avoid messing up | 
 | 	 * the usage counts on the error path calling free_task. | 
 | 	 */ | 
 | 	tsk->seccomp.filter = NULL; | 
 | #endif | 
 |  | 
 | 	setup_thread_stack(tsk, orig); | 
 | 	clear_user_return_notifier(tsk); | 
 | 	clear_tsk_need_resched(tsk); | 
 | 	set_task_stack_end_magic(tsk); | 
 |  | 
 | #ifdef CONFIG_CC_STACKPROTECTOR | 
 | 	tsk->stack_canary = get_random_canary(); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * One for us, one for whoever does the "release_task()" (usually | 
 | 	 * parent) | 
 | 	 */ | 
 | 	atomic_set(&tsk->usage, 2); | 
 | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
 | 	tsk->btrace_seq = 0; | 
 | #endif | 
 | 	tsk->splice_pipe = NULL; | 
 | 	tsk->task_frag.page = NULL; | 
 | 	tsk->wake_q.next = NULL; | 
 |  | 
 | 	account_kernel_stack(tsk, 1); | 
 |  | 
 | 	kcov_task_init(tsk); | 
 |  | 
 | #ifdef CONFIG_FAULT_INJECTION | 
 | 	tsk->fail_nth = 0; | 
 | #endif | 
 |  | 
 | 	return tsk; | 
 |  | 
 | free_stack: | 
 | 	free_thread_stack(tsk); | 
 | free_tsk: | 
 | 	free_task_struct(tsk); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | 
 |  | 
 | static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; | 
 |  | 
 | static int __init coredump_filter_setup(char *s) | 
 | { | 
 | 	default_dump_filter = | 
 | 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & | 
 | 		MMF_DUMP_FILTER_MASK; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("coredump_filter=", coredump_filter_setup); | 
 |  | 
 | #include <linux/init_task.h> | 
 |  | 
 | static void mm_init_aio(struct mm_struct *mm) | 
 | { | 
 | #ifdef CONFIG_AIO | 
 | 	spin_lock_init(&mm->ioctx_lock); | 
 | 	mm->ioctx_table = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_MEMCG | 
 | 	mm->owner = p; | 
 | #endif | 
 | } | 
 |  | 
 | static void mm_init_uprobes_state(struct mm_struct *mm) | 
 | { | 
 | #ifdef CONFIG_UPROBES | 
 | 	mm->uprobes_state.xol_area = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, | 
 | 	struct user_namespace *user_ns) | 
 | { | 
 | 	mm->mmap = NULL; | 
 | 	mm->mm_rb = RB_ROOT; | 
 | 	mm->vmacache_seqnum = 0; | 
 | 	atomic_set(&mm->mm_users, 1); | 
 | 	atomic_set(&mm->mm_count, 1); | 
 | 	init_rwsem(&mm->mmap_sem); | 
 | 	INIT_LIST_HEAD(&mm->mmlist); | 
 | 	mm->core_state = NULL; | 
 | 	mm_pgtables_bytes_init(mm); | 
 | 	mm->map_count = 0; | 
 | 	mm->locked_vm = 0; | 
 | 	mm->pinned_vm = 0; | 
 | 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); | 
 | 	spin_lock_init(&mm->page_table_lock); | 
 | 	mm_init_cpumask(mm); | 
 | 	mm_init_aio(mm); | 
 | 	mm_init_owner(mm, p); | 
 | 	RCU_INIT_POINTER(mm->exe_file, NULL); | 
 | 	mmu_notifier_mm_init(mm); | 
 | 	hmm_mm_init(mm); | 
 | 	init_tlb_flush_pending(mm); | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS | 
 | 	mm->pmd_huge_pte = NULL; | 
 | #endif | 
 | 	mm_init_uprobes_state(mm); | 
 |  | 
 | 	if (current->mm) { | 
 | 		mm->flags = current->mm->flags & MMF_INIT_MASK; | 
 | 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; | 
 | 	} else { | 
 | 		mm->flags = default_dump_filter; | 
 | 		mm->def_flags = 0; | 
 | 	} | 
 |  | 
 | 	if (mm_alloc_pgd(mm)) | 
 | 		goto fail_nopgd; | 
 |  | 
 | 	if (init_new_context(p, mm)) | 
 | 		goto fail_nocontext; | 
 |  | 
 | 	mm->user_ns = get_user_ns(user_ns); | 
 | 	return mm; | 
 |  | 
 | fail_nocontext: | 
 | 	mm_free_pgd(mm); | 
 | fail_nopgd: | 
 | 	free_mm(mm); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialize an mm_struct. | 
 |  */ | 
 | struct mm_struct *mm_alloc(void) | 
 | { | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	mm = allocate_mm(); | 
 | 	if (!mm) | 
 | 		return NULL; | 
 |  | 
 | 	memset(mm, 0, sizeof(*mm)); | 
 | 	return mm_init(mm, current, current_user_ns()); | 
 | } | 
 |  | 
 | static inline void __mmput(struct mm_struct *mm) | 
 | { | 
 | 	VM_BUG_ON(atomic_read(&mm->mm_users)); | 
 |  | 
 | 	uprobe_clear_state(mm); | 
 | 	exit_aio(mm); | 
 | 	ksm_exit(mm); | 
 | 	khugepaged_exit(mm); /* must run before exit_mmap */ | 
 | 	exit_mmap(mm); | 
 | 	mm_put_huge_zero_page(mm); | 
 | 	set_mm_exe_file(mm, NULL); | 
 | 	if (!list_empty(&mm->mmlist)) { | 
 | 		spin_lock(&mmlist_lock); | 
 | 		list_del(&mm->mmlist); | 
 | 		spin_unlock(&mmlist_lock); | 
 | 	} | 
 | 	if (mm->binfmt) | 
 | 		module_put(mm->binfmt->module); | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Decrement the use count and release all resources for an mm. | 
 |  */ | 
 | void mmput(struct mm_struct *mm) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	if (atomic_dec_and_test(&mm->mm_users)) | 
 | 		__mmput(mm); | 
 | } | 
 | EXPORT_SYMBOL_GPL(mmput); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static void mmput_async_fn(struct work_struct *work) | 
 | { | 
 | 	struct mm_struct *mm = container_of(work, struct mm_struct, | 
 | 					    async_put_work); | 
 |  | 
 | 	__mmput(mm); | 
 | } | 
 |  | 
 | void mmput_async(struct mm_struct *mm) | 
 | { | 
 | 	if (atomic_dec_and_test(&mm->mm_users)) { | 
 | 		INIT_WORK(&mm->async_put_work, mmput_async_fn); | 
 | 		schedule_work(&mm->async_put_work); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * set_mm_exe_file - change a reference to the mm's executable file | 
 |  * | 
 |  * This changes mm's executable file (shown as symlink /proc/[pid]/exe). | 
 |  * | 
 |  * Main users are mmput() and sys_execve(). Callers prevent concurrent | 
 |  * invocations: in mmput() nobody alive left, in execve task is single | 
 |  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the | 
 |  * mm->exe_file, but does so without using set_mm_exe_file() in order | 
 |  * to do avoid the need for any locks. | 
 |  */ | 
 | void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) | 
 | { | 
 | 	struct file *old_exe_file; | 
 |  | 
 | 	/* | 
 | 	 * It is safe to dereference the exe_file without RCU as | 
 | 	 * this function is only called if nobody else can access | 
 | 	 * this mm -- see comment above for justification. | 
 | 	 */ | 
 | 	old_exe_file = rcu_dereference_raw(mm->exe_file); | 
 |  | 
 | 	if (new_exe_file) | 
 | 		get_file(new_exe_file); | 
 | 	rcu_assign_pointer(mm->exe_file, new_exe_file); | 
 | 	if (old_exe_file) | 
 | 		fput(old_exe_file); | 
 | } | 
 |  | 
 | /** | 
 |  * get_mm_exe_file - acquire a reference to the mm's executable file | 
 |  * | 
 |  * Returns %NULL if mm has no associated executable file. | 
 |  * User must release file via fput(). | 
 |  */ | 
 | struct file *get_mm_exe_file(struct mm_struct *mm) | 
 | { | 
 | 	struct file *exe_file; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	exe_file = rcu_dereference(mm->exe_file); | 
 | 	if (exe_file && !get_file_rcu(exe_file)) | 
 | 		exe_file = NULL; | 
 | 	rcu_read_unlock(); | 
 | 	return exe_file; | 
 | } | 
 | EXPORT_SYMBOL(get_mm_exe_file); | 
 |  | 
 | /** | 
 |  * get_task_exe_file - acquire a reference to the task's executable file | 
 |  * | 
 |  * Returns %NULL if task's mm (if any) has no associated executable file or | 
 |  * this is a kernel thread with borrowed mm (see the comment above get_task_mm). | 
 |  * User must release file via fput(). | 
 |  */ | 
 | struct file *get_task_exe_file(struct task_struct *task) | 
 | { | 
 | 	struct file *exe_file = NULL; | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	task_lock(task); | 
 | 	mm = task->mm; | 
 | 	if (mm) { | 
 | 		if (!(task->flags & PF_KTHREAD)) | 
 | 			exe_file = get_mm_exe_file(mm); | 
 | 	} | 
 | 	task_unlock(task); | 
 | 	return exe_file; | 
 | } | 
 | EXPORT_SYMBOL(get_task_exe_file); | 
 |  | 
 | /** | 
 |  * get_task_mm - acquire a reference to the task's mm | 
 |  * | 
 |  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning | 
 |  * this kernel workthread has transiently adopted a user mm with use_mm, | 
 |  * to do its AIO) is not set and if so returns a reference to it, after | 
 |  * bumping up the use count.  User must release the mm via mmput() | 
 |  * after use.  Typically used by /proc and ptrace. | 
 |  */ | 
 | struct mm_struct *get_task_mm(struct task_struct *task) | 
 | { | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	task_lock(task); | 
 | 	mm = task->mm; | 
 | 	if (mm) { | 
 | 		if (task->flags & PF_KTHREAD) | 
 | 			mm = NULL; | 
 | 		else | 
 | 			mmget(mm); | 
 | 	} | 
 | 	task_unlock(task); | 
 | 	return mm; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_task_mm); | 
 |  | 
 | struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	int err; | 
 |  | 
 | 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	mm = get_task_mm(task); | 
 | 	if (mm && mm != current->mm && | 
 | 			!ptrace_may_access(task, mode)) { | 
 | 		mmput(mm); | 
 | 		mm = ERR_PTR(-EACCES); | 
 | 	} | 
 | 	mutex_unlock(&task->signal->cred_guard_mutex); | 
 |  | 
 | 	return mm; | 
 | } | 
 |  | 
 | static void complete_vfork_done(struct task_struct *tsk) | 
 | { | 
 | 	struct completion *vfork; | 
 |  | 
 | 	task_lock(tsk); | 
 | 	vfork = tsk->vfork_done; | 
 | 	if (likely(vfork)) { | 
 | 		tsk->vfork_done = NULL; | 
 | 		complete(vfork); | 
 | 	} | 
 | 	task_unlock(tsk); | 
 | } | 
 |  | 
 | static int wait_for_vfork_done(struct task_struct *child, | 
 | 				struct completion *vfork) | 
 | { | 
 | 	int killed; | 
 |  | 
 | 	freezer_do_not_count(); | 
 | 	killed = wait_for_completion_killable(vfork); | 
 | 	freezer_count(); | 
 |  | 
 | 	if (killed) { | 
 | 		task_lock(child); | 
 | 		child->vfork_done = NULL; | 
 | 		task_unlock(child); | 
 | 	} | 
 |  | 
 | 	put_task_struct(child); | 
 | 	return killed; | 
 | } | 
 |  | 
 | /* Please note the differences between mmput and mm_release. | 
 |  * mmput is called whenever we stop holding onto a mm_struct, | 
 |  * error success whatever. | 
 |  * | 
 |  * mm_release is called after a mm_struct has been removed | 
 |  * from the current process. | 
 |  * | 
 |  * This difference is important for error handling, when we | 
 |  * only half set up a mm_struct for a new process and need to restore | 
 |  * the old one.  Because we mmput the new mm_struct before | 
 |  * restoring the old one. . . | 
 |  * Eric Biederman 10 January 1998 | 
 |  */ | 
 | void mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
 | { | 
 | 	/* Get rid of any futexes when releasing the mm */ | 
 | #ifdef CONFIG_FUTEX | 
 | 	if (unlikely(tsk->robust_list)) { | 
 | 		exit_robust_list(tsk); | 
 | 		tsk->robust_list = NULL; | 
 | 	} | 
 | #ifdef CONFIG_COMPAT | 
 | 	if (unlikely(tsk->compat_robust_list)) { | 
 | 		compat_exit_robust_list(tsk); | 
 | 		tsk->compat_robust_list = NULL; | 
 | 	} | 
 | #endif | 
 | 	if (unlikely(!list_empty(&tsk->pi_state_list))) | 
 | 		exit_pi_state_list(tsk); | 
 | #endif | 
 |  | 
 | 	uprobe_free_utask(tsk); | 
 |  | 
 | 	/* Get rid of any cached register state */ | 
 | 	deactivate_mm(tsk, mm); | 
 |  | 
 | 	/* | 
 | 	 * Signal userspace if we're not exiting with a core dump | 
 | 	 * because we want to leave the value intact for debugging | 
 | 	 * purposes. | 
 | 	 */ | 
 | 	if (tsk->clear_child_tid) { | 
 | 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && | 
 | 		    atomic_read(&mm->mm_users) > 1) { | 
 | 			/* | 
 | 			 * We don't check the error code - if userspace has | 
 | 			 * not set up a proper pointer then tough luck. | 
 | 			 */ | 
 | 			put_user(0, tsk->clear_child_tid); | 
 | 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE, | 
 | 					1, NULL, NULL, 0); | 
 | 		} | 
 | 		tsk->clear_child_tid = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All done, finally we can wake up parent and return this mm to him. | 
 | 	 * Also kthread_stop() uses this completion for synchronization. | 
 | 	 */ | 
 | 	if (tsk->vfork_done) | 
 | 		complete_vfork_done(tsk); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new mm structure and copy contents from the | 
 |  * mm structure of the passed in task structure. | 
 |  */ | 
 | static struct mm_struct *dup_mm(struct task_struct *tsk) | 
 | { | 
 | 	struct mm_struct *mm, *oldmm = current->mm; | 
 | 	int err; | 
 |  | 
 | 	mm = allocate_mm(); | 
 | 	if (!mm) | 
 | 		goto fail_nomem; | 
 |  | 
 | 	memcpy(mm, oldmm, sizeof(*mm)); | 
 |  | 
 | 	if (!mm_init(mm, tsk, mm->user_ns)) | 
 | 		goto fail_nomem; | 
 |  | 
 | 	err = dup_mmap(mm, oldmm); | 
 | 	if (err) | 
 | 		goto free_pt; | 
 |  | 
 | 	mm->hiwater_rss = get_mm_rss(mm); | 
 | 	mm->hiwater_vm = mm->total_vm; | 
 |  | 
 | 	if (mm->binfmt && !try_module_get(mm->binfmt->module)) | 
 | 		goto free_pt; | 
 |  | 
 | 	return mm; | 
 |  | 
 | free_pt: | 
 | 	/* don't put binfmt in mmput, we haven't got module yet */ | 
 | 	mm->binfmt = NULL; | 
 | 	mmput(mm); | 
 |  | 
 | fail_nomem: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | 	struct mm_struct *mm, *oldmm; | 
 | 	int retval; | 
 |  | 
 | 	tsk->min_flt = tsk->maj_flt = 0; | 
 | 	tsk->nvcsw = tsk->nivcsw = 0; | 
 | #ifdef CONFIG_DETECT_HUNG_TASK | 
 | 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; | 
 | #endif | 
 |  | 
 | 	tsk->mm = NULL; | 
 | 	tsk->active_mm = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Are we cloning a kernel thread? | 
 | 	 * | 
 | 	 * We need to steal a active VM for that.. | 
 | 	 */ | 
 | 	oldmm = current->mm; | 
 | 	if (!oldmm) | 
 | 		return 0; | 
 |  | 
 | 	/* initialize the new vmacache entries */ | 
 | 	vmacache_flush(tsk); | 
 |  | 
 | 	if (clone_flags & CLONE_VM) { | 
 | 		mmget(oldmm); | 
 | 		mm = oldmm; | 
 | 		goto good_mm; | 
 | 	} | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	mm = dup_mm(tsk); | 
 | 	if (!mm) | 
 | 		goto fail_nomem; | 
 |  | 
 | good_mm: | 
 | 	tsk->mm = mm; | 
 | 	tsk->active_mm = mm; | 
 | 	return 0; | 
 |  | 
 | fail_nomem: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | 	struct fs_struct *fs = current->fs; | 
 | 	if (clone_flags & CLONE_FS) { | 
 | 		/* tsk->fs is already what we want */ | 
 | 		spin_lock(&fs->lock); | 
 | 		if (fs->in_exec) { | 
 | 			spin_unlock(&fs->lock); | 
 | 			return -EAGAIN; | 
 | 		} | 
 | 		fs->users++; | 
 | 		spin_unlock(&fs->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	tsk->fs = copy_fs_struct(fs); | 
 | 	if (!tsk->fs) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int copy_files(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | 	struct files_struct *oldf, *newf; | 
 | 	int error = 0; | 
 |  | 
 | 	/* | 
 | 	 * A background process may not have any files ... | 
 | 	 */ | 
 | 	oldf = current->files; | 
 | 	if (!oldf) | 
 | 		goto out; | 
 |  | 
 | 	if (clone_flags & CLONE_FILES) { | 
 | 		atomic_inc(&oldf->count); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	newf = dup_fd(oldf, &error); | 
 | 	if (!newf) | 
 | 		goto out; | 
 |  | 
 | 	tsk->files = newf; | 
 | 	error = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | static int copy_io(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | #ifdef CONFIG_BLOCK | 
 | 	struct io_context *ioc = current->io_context; | 
 | 	struct io_context *new_ioc; | 
 |  | 
 | 	if (!ioc) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Share io context with parent, if CLONE_IO is set | 
 | 	 */ | 
 | 	if (clone_flags & CLONE_IO) { | 
 | 		ioc_task_link(ioc); | 
 | 		tsk->io_context = ioc; | 
 | 	} else if (ioprio_valid(ioc->ioprio)) { | 
 | 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); | 
 | 		if (unlikely(!new_ioc)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		new_ioc->ioprio = ioc->ioprio; | 
 | 		put_io_context(new_ioc); | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | 	struct sighand_struct *sig; | 
 |  | 
 | 	if (clone_flags & CLONE_SIGHAND) { | 
 | 		atomic_inc(¤t->sighand->count); | 
 | 		return 0; | 
 | 	} | 
 | 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
 | 	rcu_assign_pointer(tsk->sighand, sig); | 
 | 	if (!sig) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	atomic_set(&sig->count, 1); | 
 | 	memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cleanup_sighand(struct sighand_struct *sighand) | 
 | { | 
 | 	if (atomic_dec_and_test(&sighand->count)) { | 
 | 		signalfd_cleanup(sighand); | 
 | 		/* | 
 | 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it | 
 | 		 * without an RCU grace period, see __lock_task_sighand(). | 
 | 		 */ | 
 | 		kmem_cache_free(sighand_cachep, sighand); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_POSIX_TIMERS | 
 | /* | 
 |  * Initialize POSIX timer handling for a thread group. | 
 |  */ | 
 | static void posix_cpu_timers_init_group(struct signal_struct *sig) | 
 | { | 
 | 	unsigned long cpu_limit; | 
 |  | 
 | 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); | 
 | 	if (cpu_limit != RLIM_INFINITY) { | 
 | 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; | 
 | 		sig->cputimer.running = true; | 
 | 	} | 
 |  | 
 | 	/* The timer lists. */ | 
 | 	INIT_LIST_HEAD(&sig->cpu_timers[0]); | 
 | 	INIT_LIST_HEAD(&sig->cpu_timers[1]); | 
 | 	INIT_LIST_HEAD(&sig->cpu_timers[2]); | 
 | } | 
 | #else | 
 | static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } | 
 | #endif | 
 |  | 
 | static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | 
 | { | 
 | 	struct signal_struct *sig; | 
 |  | 
 | 	if (clone_flags & CLONE_THREAD) | 
 | 		return 0; | 
 |  | 
 | 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); | 
 | 	tsk->signal = sig; | 
 | 	if (!sig) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sig->nr_threads = 1; | 
 | 	atomic_set(&sig->live, 1); | 
 | 	atomic_set(&sig->sigcnt, 1); | 
 |  | 
 | 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ | 
 | 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); | 
 | 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); | 
 |  | 
 | 	init_waitqueue_head(&sig->wait_chldexit); | 
 | 	sig->curr_target = tsk; | 
 | 	init_sigpending(&sig->shared_pending); | 
 | 	seqlock_init(&sig->stats_lock); | 
 | 	prev_cputime_init(&sig->prev_cputime); | 
 |  | 
 | #ifdef CONFIG_POSIX_TIMERS | 
 | 	INIT_LIST_HEAD(&sig->posix_timers); | 
 | 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	sig->real_timer.function = it_real_fn; | 
 | #endif | 
 |  | 
 | 	task_lock(current->group_leader); | 
 | 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | 
 | 	task_unlock(current->group_leader); | 
 |  | 
 | 	posix_cpu_timers_init_group(sig); | 
 |  | 
 | 	tty_audit_fork(sig); | 
 | 	sched_autogroup_fork(sig); | 
 |  | 
 | 	sig->oom_score_adj = current->signal->oom_score_adj; | 
 | 	sig->oom_score_adj_min = current->signal->oom_score_adj_min; | 
 |  | 
 | 	mutex_init(&sig->cred_guard_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void copy_seccomp(struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_SECCOMP | 
 | 	/* | 
 | 	 * Must be called with sighand->lock held, which is common to | 
 | 	 * all threads in the group. Holding cred_guard_mutex is not | 
 | 	 * needed because this new task is not yet running and cannot | 
 | 	 * be racing exec. | 
 | 	 */ | 
 | 	assert_spin_locked(¤t->sighand->siglock); | 
 |  | 
 | 	/* Ref-count the new filter user, and assign it. */ | 
 | 	get_seccomp_filter(current); | 
 | 	p->seccomp = current->seccomp; | 
 |  | 
 | 	/* | 
 | 	 * Explicitly enable no_new_privs here in case it got set | 
 | 	 * between the task_struct being duplicated and holding the | 
 | 	 * sighand lock. The seccomp state and nnp must be in sync. | 
 | 	 */ | 
 | 	if (task_no_new_privs(current)) | 
 | 		task_set_no_new_privs(p); | 
 |  | 
 | 	/* | 
 | 	 * If the parent gained a seccomp mode after copying thread | 
 | 	 * flags and between before we held the sighand lock, we have | 
 | 	 * to manually enable the seccomp thread flag here. | 
 | 	 */ | 
 | 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED) | 
 | 		set_tsk_thread_flag(p, TIF_SECCOMP); | 
 | #endif | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) | 
 | { | 
 | 	current->clear_child_tid = tidptr; | 
 |  | 
 | 	return task_pid_vnr(current); | 
 | } | 
 |  | 
 | static void rt_mutex_init_task(struct task_struct *p) | 
 | { | 
 | 	raw_spin_lock_init(&p->pi_lock); | 
 | #ifdef CONFIG_RT_MUTEXES | 
 | 	p->pi_waiters = RB_ROOT_CACHED; | 
 | 	p->pi_top_task = NULL; | 
 | 	p->pi_blocked_on = NULL; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_POSIX_TIMERS | 
 | /* | 
 |  * Initialize POSIX timer handling for a single task. | 
 |  */ | 
 | static void posix_cpu_timers_init(struct task_struct *tsk) | 
 | { | 
 | 	tsk->cputime_expires.prof_exp = 0; | 
 | 	tsk->cputime_expires.virt_exp = 0; | 
 | 	tsk->cputime_expires.sched_exp = 0; | 
 | 	INIT_LIST_HEAD(&tsk->cpu_timers[0]); | 
 | 	INIT_LIST_HEAD(&tsk->cpu_timers[1]); | 
 | 	INIT_LIST_HEAD(&tsk->cpu_timers[2]); | 
 | } | 
 | #else | 
 | static inline void posix_cpu_timers_init(struct task_struct *tsk) { } | 
 | #endif | 
 |  | 
 | static inline void | 
 | init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) | 
 | { | 
 | 	 task->pids[type].pid = pid; | 
 | } | 
 |  | 
 | static inline void rcu_copy_process(struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_PREEMPT_RCU | 
 | 	p->rcu_read_lock_nesting = 0; | 
 | 	p->rcu_read_unlock_special.s = 0; | 
 | 	p->rcu_blocked_node = NULL; | 
 | 	INIT_LIST_HEAD(&p->rcu_node_entry); | 
 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
 | #ifdef CONFIG_TASKS_RCU | 
 | 	p->rcu_tasks_holdout = false; | 
 | 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); | 
 | 	p->rcu_tasks_idle_cpu = -1; | 
 | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
 | } | 
 |  | 
 | /* | 
 |  * This creates a new process as a copy of the old one, | 
 |  * but does not actually start it yet. | 
 |  * | 
 |  * It copies the registers, and all the appropriate | 
 |  * parts of the process environment (as per the clone | 
 |  * flags). The actual kick-off is left to the caller. | 
 |  */ | 
 | static __latent_entropy struct task_struct *copy_process( | 
 | 					unsigned long clone_flags, | 
 | 					unsigned long stack_start, | 
 | 					unsigned long stack_size, | 
 | 					int __user *child_tidptr, | 
 | 					struct pid *pid, | 
 | 					int trace, | 
 | 					unsigned long tls, | 
 | 					int node) | 
 | { | 
 | 	int retval; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow sharing the root directory with processes in a different | 
 | 	 * namespace | 
 | 	 */ | 
 | 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* | 
 | 	 * Thread groups must share signals as well, and detached threads | 
 | 	 * can only be started up within the thread group. | 
 | 	 */ | 
 | 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* | 
 | 	 * Shared signal handlers imply shared VM. By way of the above, | 
 | 	 * thread groups also imply shared VM. Blocking this case allows | 
 | 	 * for various simplifications in other code. | 
 | 	 */ | 
 | 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* | 
 | 	 * Siblings of global init remain as zombies on exit since they are | 
 | 	 * not reaped by their parent (swapper). To solve this and to avoid | 
 | 	 * multi-rooted process trees, prevent global and container-inits | 
 | 	 * from creating siblings. | 
 | 	 */ | 
 | 	if ((clone_flags & CLONE_PARENT) && | 
 | 				current->signal->flags & SIGNAL_UNKILLABLE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	/* | 
 | 	 * If the new process will be in a different pid or user namespace | 
 | 	 * do not allow it to share a thread group with the forking task. | 
 | 	 */ | 
 | 	if (clone_flags & CLONE_THREAD) { | 
 | 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || | 
 | 		    (task_active_pid_ns(current) != | 
 | 				current->nsproxy->pid_ns_for_children)) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	p = dup_task_struct(current, node); | 
 | 	if (!p) | 
 | 		goto fork_out; | 
 |  | 
 | 	/* | 
 | 	 * This _must_ happen before we call free_task(), i.e. before we jump | 
 | 	 * to any of the bad_fork_* labels. This is to avoid freeing | 
 | 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for | 
 | 	 * kernel threads (PF_KTHREAD). | 
 | 	 */ | 
 | 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; | 
 | 	/* | 
 | 	 * Clear TID on mm_release()? | 
 | 	 */ | 
 | 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; | 
 |  | 
 | 	ftrace_graph_init_task(p); | 
 |  | 
 | 	rt_mutex_init_task(p); | 
 |  | 
 | #ifdef CONFIG_PROVE_LOCKING | 
 | 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); | 
 | 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); | 
 | #endif | 
 | 	retval = -EAGAIN; | 
 | 	if (atomic_read(&p->real_cred->user->processes) >= | 
 | 			task_rlimit(p, RLIMIT_NPROC)) { | 
 | 		if (p->real_cred->user != INIT_USER && | 
 | 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) | 
 | 			goto bad_fork_free; | 
 | 	} | 
 | 	current->flags &= ~PF_NPROC_EXCEEDED; | 
 |  | 
 | 	retval = copy_creds(p, clone_flags); | 
 | 	if (retval < 0) | 
 | 		goto bad_fork_free; | 
 |  | 
 | 	/* | 
 | 	 * If multiple threads are within copy_process(), then this check | 
 | 	 * triggers too late. This doesn't hurt, the check is only there | 
 | 	 * to stop root fork bombs. | 
 | 	 */ | 
 | 	retval = -EAGAIN; | 
 | 	if (nr_threads >= max_threads) | 
 | 		goto bad_fork_cleanup_count; | 
 |  | 
 | 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */ | 
 | 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); | 
 | 	p->flags |= PF_FORKNOEXEC; | 
 | 	INIT_LIST_HEAD(&p->children); | 
 | 	INIT_LIST_HEAD(&p->sibling); | 
 | 	rcu_copy_process(p); | 
 | 	p->vfork_done = NULL; | 
 | 	spin_lock_init(&p->alloc_lock); | 
 |  | 
 | 	init_sigpending(&p->pending); | 
 |  | 
 | 	p->utime = p->stime = p->gtime = 0; | 
 | #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME | 
 | 	p->utimescaled = p->stimescaled = 0; | 
 | #endif | 
 | 	prev_cputime_init(&p->prev_cputime); | 
 |  | 
 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN | 
 | 	seqcount_init(&p->vtime.seqcount); | 
 | 	p->vtime.starttime = 0; | 
 | 	p->vtime.state = VTIME_INACTIVE; | 
 | #endif | 
 |  | 
 | #if defined(SPLIT_RSS_COUNTING) | 
 | 	memset(&p->rss_stat, 0, sizeof(p->rss_stat)); | 
 | #endif | 
 |  | 
 | 	p->default_timer_slack_ns = current->timer_slack_ns; | 
 |  | 
 | 	task_io_accounting_init(&p->ioac); | 
 | 	acct_clear_integrals(p); | 
 |  | 
 | 	posix_cpu_timers_init(p); | 
 |  | 
 | 	p->start_time = ktime_get_ns(); | 
 | 	p->real_start_time = ktime_get_boot_ns(); | 
 | 	p->io_context = NULL; | 
 | 	p->audit_context = NULL; | 
 | 	cgroup_fork(p); | 
 | #ifdef CONFIG_NUMA | 
 | 	p->mempolicy = mpol_dup(p->mempolicy); | 
 | 	if (IS_ERR(p->mempolicy)) { | 
 | 		retval = PTR_ERR(p->mempolicy); | 
 | 		p->mempolicy = NULL; | 
 | 		goto bad_fork_cleanup_threadgroup_lock; | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_CPUSETS | 
 | 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE; | 
 | 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE; | 
 | 	seqcount_init(&p->mems_allowed_seq); | 
 | #endif | 
 | #ifdef CONFIG_TRACE_IRQFLAGS | 
 | 	p->irq_events = 0; | 
 | 	p->hardirqs_enabled = 0; | 
 | 	p->hardirq_enable_ip = 0; | 
 | 	p->hardirq_enable_event = 0; | 
 | 	p->hardirq_disable_ip = _THIS_IP_; | 
 | 	p->hardirq_disable_event = 0; | 
 | 	p->softirqs_enabled = 1; | 
 | 	p->softirq_enable_ip = _THIS_IP_; | 
 | 	p->softirq_enable_event = 0; | 
 | 	p->softirq_disable_ip = 0; | 
 | 	p->softirq_disable_event = 0; | 
 | 	p->hardirq_context = 0; | 
 | 	p->softirq_context = 0; | 
 | #endif | 
 |  | 
 | 	p->pagefault_disabled = 0; | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | 	p->lockdep_depth = 0; /* no locks held yet */ | 
 | 	p->curr_chain_key = 0; | 
 | 	p->lockdep_recursion = 0; | 
 | 	lockdep_init_task(p); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DEBUG_MUTEXES | 
 | 	p->blocked_on = NULL; /* not blocked yet */ | 
 | #endif | 
 | #ifdef CONFIG_BCACHE | 
 | 	p->sequential_io	= 0; | 
 | 	p->sequential_io_avg	= 0; | 
 | #endif | 
 |  | 
 | 	/* Perform scheduler related setup. Assign this task to a CPU. */ | 
 | 	retval = sched_fork(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_policy; | 
 |  | 
 | 	retval = perf_event_init_task(p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_policy; | 
 | 	retval = audit_alloc(p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_perf; | 
 | 	/* copy all the process information */ | 
 | 	shm_init_task(p); | 
 | 	retval = security_task_alloc(p, clone_flags); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_audit; | 
 | 	retval = copy_semundo(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_security; | 
 | 	retval = copy_files(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_semundo; | 
 | 	retval = copy_fs(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_files; | 
 | 	retval = copy_sighand(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_fs; | 
 | 	retval = copy_signal(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_sighand; | 
 | 	retval = copy_mm(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_signal; | 
 | 	retval = copy_namespaces(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_mm; | 
 | 	retval = copy_io(clone_flags, p); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_namespaces; | 
 | 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); | 
 | 	if (retval) | 
 | 		goto bad_fork_cleanup_io; | 
 |  | 
 | 	if (pid != &init_struct_pid) { | 
 | 		pid = alloc_pid(p->nsproxy->pid_ns_for_children); | 
 | 		if (IS_ERR(pid)) { | 
 | 			retval = PTR_ERR(pid); | 
 | 			goto bad_fork_cleanup_thread; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_BLOCK | 
 | 	p->plug = NULL; | 
 | #endif | 
 | #ifdef CONFIG_FUTEX | 
 | 	p->robust_list = NULL; | 
 | #ifdef CONFIG_COMPAT | 
 | 	p->compat_robust_list = NULL; | 
 | #endif | 
 | 	INIT_LIST_HEAD(&p->pi_state_list); | 
 | 	p->pi_state_cache = NULL; | 
 | #endif | 
 | 	/* | 
 | 	 * sigaltstack should be cleared when sharing the same VM | 
 | 	 */ | 
 | 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) | 
 | 		sas_ss_reset(p); | 
 |  | 
 | 	/* | 
 | 	 * Syscall tracing and stepping should be turned off in the | 
 | 	 * child regardless of CLONE_PTRACE. | 
 | 	 */ | 
 | 	user_disable_single_step(p); | 
 | 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); | 
 | #ifdef TIF_SYSCALL_EMU | 
 | 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); | 
 | #endif | 
 | 	clear_all_latency_tracing(p); | 
 |  | 
 | 	/* ok, now we should be set up.. */ | 
 | 	p->pid = pid_nr(pid); | 
 | 	if (clone_flags & CLONE_THREAD) { | 
 | 		p->exit_signal = -1; | 
 | 		p->group_leader = current->group_leader; | 
 | 		p->tgid = current->tgid; | 
 | 	} else { | 
 | 		if (clone_flags & CLONE_PARENT) | 
 | 			p->exit_signal = current->group_leader->exit_signal; | 
 | 		else | 
 | 			p->exit_signal = (clone_flags & CSIGNAL); | 
 | 		p->group_leader = p; | 
 | 		p->tgid = p->pid; | 
 | 	} | 
 |  | 
 | 	p->nr_dirtied = 0; | 
 | 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); | 
 | 	p->dirty_paused_when = 0; | 
 |  | 
 | 	p->pdeath_signal = 0; | 
 | 	INIT_LIST_HEAD(&p->thread_group); | 
 | 	p->task_works = NULL; | 
 |  | 
 | 	cgroup_threadgroup_change_begin(current); | 
 | 	/* | 
 | 	 * Ensure that the cgroup subsystem policies allow the new process to be | 
 | 	 * forked. It should be noted the the new process's css_set can be changed | 
 | 	 * between here and cgroup_post_fork() if an organisation operation is in | 
 | 	 * progress. | 
 | 	 */ | 
 | 	retval = cgroup_can_fork(p); | 
 | 	if (retval) | 
 | 		goto bad_fork_free_pid; | 
 |  | 
 | 	/* | 
 | 	 * Make it visible to the rest of the system, but dont wake it up yet. | 
 | 	 * Need tasklist lock for parent etc handling! | 
 | 	 */ | 
 | 	write_lock_irq(&tasklist_lock); | 
 |  | 
 | 	/* CLONE_PARENT re-uses the old parent */ | 
 | 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { | 
 | 		p->real_parent = current->real_parent; | 
 | 		p->parent_exec_id = current->parent_exec_id; | 
 | 	} else { | 
 | 		p->real_parent = current; | 
 | 		p->parent_exec_id = current->self_exec_id; | 
 | 	} | 
 |  | 
 | 	klp_copy_process(p); | 
 |  | 
 | 	spin_lock(¤t->sighand->siglock); | 
 |  | 
 | 	/* | 
 | 	 * Copy seccomp details explicitly here, in case they were changed | 
 | 	 * before holding sighand lock. | 
 | 	 */ | 
 | 	copy_seccomp(p); | 
 |  | 
 | 	/* | 
 | 	 * Process group and session signals need to be delivered to just the | 
 | 	 * parent before the fork or both the parent and the child after the | 
 | 	 * fork. Restart if a signal comes in before we add the new process to | 
 | 	 * it's process group. | 
 | 	 * A fatal signal pending means that current will exit, so the new | 
 | 	 * thread can't slip out of an OOM kill (or normal SIGKILL). | 
 | 	*/ | 
 | 	recalc_sigpending(); | 
 | 	if (signal_pending(current)) { | 
 | 		retval = -ERESTARTNOINTR; | 
 | 		goto bad_fork_cancel_cgroup; | 
 | 	} | 
 | 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { | 
 | 		retval = -ENOMEM; | 
 | 		goto bad_fork_cancel_cgroup; | 
 | 	} | 
 |  | 
 | 	if (likely(p->pid)) { | 
 | 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); | 
 |  | 
 | 		init_task_pid(p, PIDTYPE_PID, pid); | 
 | 		if (thread_group_leader(p)) { | 
 | 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); | 
 | 			init_task_pid(p, PIDTYPE_SID, task_session(current)); | 
 |  | 
 | 			if (is_child_reaper(pid)) { | 
 | 				ns_of_pid(pid)->child_reaper = p; | 
 | 				p->signal->flags |= SIGNAL_UNKILLABLE; | 
 | 			} | 
 |  | 
 | 			p->signal->leader_pid = pid; | 
 | 			p->signal->tty = tty_kref_get(current->signal->tty); | 
 | 			/* | 
 | 			 * Inherit has_child_subreaper flag under the same | 
 | 			 * tasklist_lock with adding child to the process tree | 
 | 			 * for propagate_has_child_subreaper optimization. | 
 | 			 */ | 
 | 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || | 
 | 							 p->real_parent->signal->is_child_subreaper; | 
 | 			list_add_tail(&p->sibling, &p->real_parent->children); | 
 | 			list_add_tail_rcu(&p->tasks, &init_task.tasks); | 
 | 			attach_pid(p, PIDTYPE_PGID); | 
 | 			attach_pid(p, PIDTYPE_SID); | 
 | 			__this_cpu_inc(process_counts); | 
 | 		} else { | 
 | 			current->signal->nr_threads++; | 
 | 			atomic_inc(¤t->signal->live); | 
 | 			atomic_inc(¤t->signal->sigcnt); | 
 | 			list_add_tail_rcu(&p->thread_group, | 
 | 					  &p->group_leader->thread_group); | 
 | 			list_add_tail_rcu(&p->thread_node, | 
 | 					  &p->signal->thread_head); | 
 | 		} | 
 | 		attach_pid(p, PIDTYPE_PID); | 
 | 		nr_threads++; | 
 | 	} | 
 |  | 
 | 	total_forks++; | 
 | 	spin_unlock(¤t->sighand->siglock); | 
 | 	syscall_tracepoint_update(p); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 |  | 
 | 	proc_fork_connector(p); | 
 | 	cgroup_post_fork(p); | 
 | 	cgroup_threadgroup_change_end(current); | 
 | 	perf_event_fork(p); | 
 |  | 
 | 	trace_task_newtask(p, clone_flags); | 
 | 	uprobe_copy_process(p, clone_flags); | 
 |  | 
 | 	return p; | 
 |  | 
 | bad_fork_cancel_cgroup: | 
 | 	spin_unlock(¤t->sighand->siglock); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | 	cgroup_cancel_fork(p); | 
 | bad_fork_free_pid: | 
 | 	cgroup_threadgroup_change_end(current); | 
 | 	if (pid != &init_struct_pid) | 
 | 		free_pid(pid); | 
 | bad_fork_cleanup_thread: | 
 | 	exit_thread(p); | 
 | bad_fork_cleanup_io: | 
 | 	if (p->io_context) | 
 | 		exit_io_context(p); | 
 | bad_fork_cleanup_namespaces: | 
 | 	exit_task_namespaces(p); | 
 | bad_fork_cleanup_mm: | 
 | 	if (p->mm) | 
 | 		mmput(p->mm); | 
 | bad_fork_cleanup_signal: | 
 | 	if (!(clone_flags & CLONE_THREAD)) | 
 | 		free_signal_struct(p->signal); | 
 | bad_fork_cleanup_sighand: | 
 | 	__cleanup_sighand(p->sighand); | 
 | bad_fork_cleanup_fs: | 
 | 	exit_fs(p); /* blocking */ | 
 | bad_fork_cleanup_files: | 
 | 	exit_files(p); /* blocking */ | 
 | bad_fork_cleanup_semundo: | 
 | 	exit_sem(p); | 
 | bad_fork_cleanup_security: | 
 | 	security_task_free(p); | 
 | bad_fork_cleanup_audit: | 
 | 	audit_free(p); | 
 | bad_fork_cleanup_perf: | 
 | 	perf_event_free_task(p); | 
 | bad_fork_cleanup_policy: | 
 | 	lockdep_free_task(p); | 
 | #ifdef CONFIG_NUMA | 
 | 	mpol_put(p->mempolicy); | 
 | bad_fork_cleanup_threadgroup_lock: | 
 | #endif | 
 | 	delayacct_tsk_free(p); | 
 | bad_fork_cleanup_count: | 
 | 	atomic_dec(&p->cred->user->processes); | 
 | 	exit_creds(p); | 
 | bad_fork_free: | 
 | 	p->state = TASK_DEAD; | 
 | 	put_task_stack(p); | 
 | 	free_task(p); | 
 | fork_out: | 
 | 	return ERR_PTR(retval); | 
 | } | 
 |  | 
 | static inline void init_idle_pids(struct pid_link *links) | 
 | { | 
 | 	enum pid_type type; | 
 |  | 
 | 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { | 
 | 		INIT_HLIST_NODE(&links[type].node); /* not really needed */ | 
 | 		links[type].pid = &init_struct_pid; | 
 | 	} | 
 | } | 
 |  | 
 | struct task_struct *fork_idle(int cpu) | 
 | { | 
 | 	struct task_struct *task; | 
 | 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0, | 
 | 			    cpu_to_node(cpu)); | 
 | 	if (!IS_ERR(task)) { | 
 | 		init_idle_pids(task->pids); | 
 | 		init_idle(task, cpu); | 
 | 	} | 
 |  | 
 | 	return task; | 
 | } | 
 |  | 
 | /* | 
 |  *  Ok, this is the main fork-routine. | 
 |  * | 
 |  * It copies the process, and if successful kick-starts | 
 |  * it and waits for it to finish using the VM if required. | 
 |  */ | 
 | long _do_fork(unsigned long clone_flags, | 
 | 	      unsigned long stack_start, | 
 | 	      unsigned long stack_size, | 
 | 	      int __user *parent_tidptr, | 
 | 	      int __user *child_tidptr, | 
 | 	      unsigned long tls) | 
 | { | 
 | 	struct completion vfork; | 
 | 	struct pid *pid; | 
 | 	struct task_struct *p; | 
 | 	int trace = 0; | 
 | 	long nr; | 
 |  | 
 | 	/* | 
 | 	 * Determine whether and which event to report to ptracer.  When | 
 | 	 * called from kernel_thread or CLONE_UNTRACED is explicitly | 
 | 	 * requested, no event is reported; otherwise, report if the event | 
 | 	 * for the type of forking is enabled. | 
 | 	 */ | 
 | 	if (!(clone_flags & CLONE_UNTRACED)) { | 
 | 		if (clone_flags & CLONE_VFORK) | 
 | 			trace = PTRACE_EVENT_VFORK; | 
 | 		else if ((clone_flags & CSIGNAL) != SIGCHLD) | 
 | 			trace = PTRACE_EVENT_CLONE; | 
 | 		else | 
 | 			trace = PTRACE_EVENT_FORK; | 
 |  | 
 | 		if (likely(!ptrace_event_enabled(current, trace))) | 
 | 			trace = 0; | 
 | 	} | 
 |  | 
 | 	p = copy_process(clone_flags, stack_start, stack_size, | 
 | 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); | 
 | 	add_latent_entropy(); | 
 |  | 
 | 	if (IS_ERR(p)) | 
 | 		return PTR_ERR(p); | 
 |  | 
 | 	/* | 
 | 	 * Do this prior waking up the new thread - the thread pointer | 
 | 	 * might get invalid after that point, if the thread exits quickly. | 
 | 	 */ | 
 | 	trace_sched_process_fork(current, p); | 
 |  | 
 | 	pid = get_task_pid(p, PIDTYPE_PID); | 
 | 	nr = pid_vnr(pid); | 
 |  | 
 | 	if (clone_flags & CLONE_PARENT_SETTID) | 
 | 		put_user(nr, parent_tidptr); | 
 |  | 
 | 	if (clone_flags & CLONE_VFORK) { | 
 | 		p->vfork_done = &vfork; | 
 | 		init_completion(&vfork); | 
 | 		get_task_struct(p); | 
 | 	} | 
 |  | 
 | 	wake_up_new_task(p); | 
 |  | 
 | 	/* forking complete and child started to run, tell ptracer */ | 
 | 	if (unlikely(trace)) | 
 | 		ptrace_event_pid(trace, pid); | 
 |  | 
 | 	if (clone_flags & CLONE_VFORK) { | 
 | 		if (!wait_for_vfork_done(p, &vfork)) | 
 | 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); | 
 | 	} | 
 |  | 
 | 	put_pid(pid); | 
 | 	return nr; | 
 | } | 
 |  | 
 | #ifndef CONFIG_HAVE_COPY_THREAD_TLS | 
 | /* For compatibility with architectures that call do_fork directly rather than | 
 |  * using the syscall entry points below. */ | 
 | long do_fork(unsigned long clone_flags, | 
 | 	      unsigned long stack_start, | 
 | 	      unsigned long stack_size, | 
 | 	      int __user *parent_tidptr, | 
 | 	      int __user *child_tidptr) | 
 | { | 
 | 	return _do_fork(clone_flags, stack_start, stack_size, | 
 | 			parent_tidptr, child_tidptr, 0); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Create a kernel thread. | 
 |  */ | 
 | pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) | 
 | { | 
 | 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, | 
 | 		(unsigned long)arg, NULL, NULL, 0); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_FORK | 
 | SYSCALL_DEFINE0(fork) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); | 
 | #else | 
 | 	/* can not support in nommu mode */ | 
 | 	return -EINVAL; | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_VFORK | 
 | SYSCALL_DEFINE0(vfork) | 
 | { | 
 | 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, | 
 | 			0, NULL, NULL, 0); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_CLONE | 
 | #ifdef CONFIG_CLONE_BACKWARDS | 
 | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, | 
 | 		 int __user *, parent_tidptr, | 
 | 		 unsigned long, tls, | 
 | 		 int __user *, child_tidptr) | 
 | #elif defined(CONFIG_CLONE_BACKWARDS2) | 
 | SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, | 
 | 		 int __user *, parent_tidptr, | 
 | 		 int __user *, child_tidptr, | 
 | 		 unsigned long, tls) | 
 | #elif defined(CONFIG_CLONE_BACKWARDS3) | 
 | SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, | 
 | 		int, stack_size, | 
 | 		int __user *, parent_tidptr, | 
 | 		int __user *, child_tidptr, | 
 | 		unsigned long, tls) | 
 | #else | 
 | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, | 
 | 		 int __user *, parent_tidptr, | 
 | 		 int __user *, child_tidptr, | 
 | 		 unsigned long, tls) | 
 | #endif | 
 | { | 
 | 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); | 
 | } | 
 | #endif | 
 |  | 
 | void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) | 
 | { | 
 | 	struct task_struct *leader, *parent, *child; | 
 | 	int res; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	leader = top = top->group_leader; | 
 | down: | 
 | 	for_each_thread(leader, parent) { | 
 | 		list_for_each_entry(child, &parent->children, sibling) { | 
 | 			res = visitor(child, data); | 
 | 			if (res) { | 
 | 				if (res < 0) | 
 | 					goto out; | 
 | 				leader = child; | 
 | 				goto down; | 
 | 			} | 
 | up: | 
 | 			; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (leader != top) { | 
 | 		child = leader; | 
 | 		parent = child->real_parent; | 
 | 		leader = parent->group_leader; | 
 | 		goto up; | 
 | 	} | 
 | out: | 
 | 	read_unlock(&tasklist_lock); | 
 | } | 
 |  | 
 | #ifndef ARCH_MIN_MMSTRUCT_ALIGN | 
 | #define ARCH_MIN_MMSTRUCT_ALIGN 0 | 
 | #endif | 
 |  | 
 | static void sighand_ctor(void *data) | 
 | { | 
 | 	struct sighand_struct *sighand = data; | 
 |  | 
 | 	spin_lock_init(&sighand->siglock); | 
 | 	init_waitqueue_head(&sighand->signalfd_wqh); | 
 | } | 
 |  | 
 | void __init proc_caches_init(void) | 
 | { | 
 | 	sighand_cachep = kmem_cache_create("sighand_cache", | 
 | 			sizeof(struct sighand_struct), 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| | 
 | 			SLAB_ACCOUNT, sighand_ctor); | 
 | 	signal_cachep = kmem_cache_create("signal_cache", | 
 | 			sizeof(struct signal_struct), 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			NULL); | 
 | 	files_cachep = kmem_cache_create("files_cache", | 
 | 			sizeof(struct files_struct), 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			NULL); | 
 | 	fs_cachep = kmem_cache_create("fs_cache", | 
 | 			sizeof(struct fs_struct), 0, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			NULL); | 
 | 	/* | 
 | 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the | 
 | 	 * whole struct cpumask for the OFFSTACK case. We could change | 
 | 	 * this to *only* allocate as much of it as required by the | 
 | 	 * maximum number of CPU's we can ever have.  The cpumask_allocation | 
 | 	 * is at the end of the structure, exactly for that reason. | 
 | 	 */ | 
 | 	mm_cachep = kmem_cache_create_usercopy("mm_struct", | 
 | 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, | 
 | 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			offsetof(struct mm_struct, saved_auxv), | 
 | 			sizeof_field(struct mm_struct, saved_auxv), | 
 | 			NULL); | 
 | 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); | 
 | 	mmap_init(); | 
 | 	nsproxy_cache_init(); | 
 | } | 
 |  | 
 | /* | 
 |  * Check constraints on flags passed to the unshare system call. | 
 |  */ | 
 | static int check_unshare_flags(unsigned long unshare_flags) | 
 | { | 
 | 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| | 
 | 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| | 
 | 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| | 
 | 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Not implemented, but pretend it works if there is nothing | 
 | 	 * to unshare.  Note that unsharing the address space or the | 
 | 	 * signal handlers also need to unshare the signal queues (aka | 
 | 	 * CLONE_THREAD). | 
 | 	 */ | 
 | 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { | 
 | 		if (!thread_group_empty(current)) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { | 
 | 		if (atomic_read(¤t->sighand->count) > 1) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	if (unshare_flags & CLONE_VM) { | 
 | 		if (!current_is_single_threaded()) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Unshare the filesystem structure if it is being shared | 
 |  */ | 
 | static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) | 
 | { | 
 | 	struct fs_struct *fs = current->fs; | 
 |  | 
 | 	if (!(unshare_flags & CLONE_FS) || !fs) | 
 | 		return 0; | 
 |  | 
 | 	/* don't need lock here; in the worst case we'll do useless copy */ | 
 | 	if (fs->users == 1) | 
 | 		return 0; | 
 |  | 
 | 	*new_fsp = copy_fs_struct(fs); | 
 | 	if (!*new_fsp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Unshare file descriptor table if it is being shared | 
 |  */ | 
 | static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) | 
 | { | 
 | 	struct files_struct *fd = current->files; | 
 | 	int error = 0; | 
 |  | 
 | 	if ((unshare_flags & CLONE_FILES) && | 
 | 	    (fd && atomic_read(&fd->count) > 1)) { | 
 | 		*new_fdp = dup_fd(fd, &error); | 
 | 		if (!*new_fdp) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * unshare allows a process to 'unshare' part of the process | 
 |  * context which was originally shared using clone.  copy_* | 
 |  * functions used by do_fork() cannot be used here directly | 
 |  * because they modify an inactive task_struct that is being | 
 |  * constructed. Here we are modifying the current, active, | 
 |  * task_struct. | 
 |  */ | 
 | SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) | 
 | { | 
 | 	struct fs_struct *fs, *new_fs = NULL; | 
 | 	struct files_struct *fd, *new_fd = NULL; | 
 | 	struct cred *new_cred = NULL; | 
 | 	struct nsproxy *new_nsproxy = NULL; | 
 | 	int do_sysvsem = 0; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If unsharing a user namespace must also unshare the thread group | 
 | 	 * and unshare the filesystem root and working directories. | 
 | 	 */ | 
 | 	if (unshare_flags & CLONE_NEWUSER) | 
 | 		unshare_flags |= CLONE_THREAD | CLONE_FS; | 
 | 	/* | 
 | 	 * If unsharing vm, must also unshare signal handlers. | 
 | 	 */ | 
 | 	if (unshare_flags & CLONE_VM) | 
 | 		unshare_flags |= CLONE_SIGHAND; | 
 | 	/* | 
 | 	 * If unsharing a signal handlers, must also unshare the signal queues. | 
 | 	 */ | 
 | 	if (unshare_flags & CLONE_SIGHAND) | 
 | 		unshare_flags |= CLONE_THREAD; | 
 | 	/* | 
 | 	 * If unsharing namespace, must also unshare filesystem information. | 
 | 	 */ | 
 | 	if (unshare_flags & CLONE_NEWNS) | 
 | 		unshare_flags |= CLONE_FS; | 
 |  | 
 | 	err = check_unshare_flags(unshare_flags); | 
 | 	if (err) | 
 | 		goto bad_unshare_out; | 
 | 	/* | 
 | 	 * CLONE_NEWIPC must also detach from the undolist: after switching | 
 | 	 * to a new ipc namespace, the semaphore arrays from the old | 
 | 	 * namespace are unreachable. | 
 | 	 */ | 
 | 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) | 
 | 		do_sysvsem = 1; | 
 | 	err = unshare_fs(unshare_flags, &new_fs); | 
 | 	if (err) | 
 | 		goto bad_unshare_out; | 
 | 	err = unshare_fd(unshare_flags, &new_fd); | 
 | 	if (err) | 
 | 		goto bad_unshare_cleanup_fs; | 
 | 	err = unshare_userns(unshare_flags, &new_cred); | 
 | 	if (err) | 
 | 		goto bad_unshare_cleanup_fd; | 
 | 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, | 
 | 					 new_cred, new_fs); | 
 | 	if (err) | 
 | 		goto bad_unshare_cleanup_cred; | 
 |  | 
 | 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { | 
 | 		if (do_sysvsem) { | 
 | 			/* | 
 | 			 * CLONE_SYSVSEM is equivalent to sys_exit(). | 
 | 			 */ | 
 | 			exit_sem(current); | 
 | 		} | 
 | 		if (unshare_flags & CLONE_NEWIPC) { | 
 | 			/* Orphan segments in old ns (see sem above). */ | 
 | 			exit_shm(current); | 
 | 			shm_init_task(current); | 
 | 		} | 
 |  | 
 | 		if (new_nsproxy) | 
 | 			switch_task_namespaces(current, new_nsproxy); | 
 |  | 
 | 		task_lock(current); | 
 |  | 
 | 		if (new_fs) { | 
 | 			fs = current->fs; | 
 | 			spin_lock(&fs->lock); | 
 | 			current->fs = new_fs; | 
 | 			if (--fs->users) | 
 | 				new_fs = NULL; | 
 | 			else | 
 | 				new_fs = fs; | 
 | 			spin_unlock(&fs->lock); | 
 | 		} | 
 |  | 
 | 		if (new_fd) { | 
 | 			fd = current->files; | 
 | 			current->files = new_fd; | 
 | 			new_fd = fd; | 
 | 		} | 
 |  | 
 | 		task_unlock(current); | 
 |  | 
 | 		if (new_cred) { | 
 | 			/* Install the new user namespace */ | 
 | 			commit_creds(new_cred); | 
 | 			new_cred = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	perf_event_namespaces(current); | 
 |  | 
 | bad_unshare_cleanup_cred: | 
 | 	if (new_cred) | 
 | 		put_cred(new_cred); | 
 | bad_unshare_cleanup_fd: | 
 | 	if (new_fd) | 
 | 		put_files_struct(new_fd); | 
 |  | 
 | bad_unshare_cleanup_fs: | 
 | 	if (new_fs) | 
 | 		free_fs_struct(new_fs); | 
 |  | 
 | bad_unshare_out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  *	Helper to unshare the files of the current task. | 
 |  *	We don't want to expose copy_files internals to | 
 |  *	the exec layer of the kernel. | 
 |  */ | 
 |  | 
 | int unshare_files(struct files_struct **displaced) | 
 | { | 
 | 	struct task_struct *task = current; | 
 | 	struct files_struct *copy = NULL; | 
 | 	int error; | 
 |  | 
 | 	error = unshare_fd(CLONE_FILES, ©); | 
 | 	if (error || !copy) { | 
 | 		*displaced = NULL; | 
 | 		return error; | 
 | 	} | 
 | 	*displaced = task->files; | 
 | 	task_lock(task); | 
 | 	task->files = copy; | 
 | 	task_unlock(task); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sysctl_max_threads(struct ctl_table *table, int write, | 
 | 		       void __user *buffer, size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	struct ctl_table t; | 
 | 	int ret; | 
 | 	int threads = max_threads; | 
 | 	int min = MIN_THREADS; | 
 | 	int max = MAX_THREADS; | 
 |  | 
 | 	t = *table; | 
 | 	t.data = &threads; | 
 | 	t.extra1 = &min; | 
 | 	t.extra2 = &max; | 
 |  | 
 | 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	set_max_threads(threads); | 
 |  | 
 | 	return 0; | 
 | } |