| #include <linux/perf_event.h> | 
 | #include <linux/types.h> | 
 |  | 
 | #include <asm/perf_event.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/insn.h> | 
 |  | 
 | #include "../perf_event.h" | 
 |  | 
 | enum { | 
 | 	LBR_FORMAT_32		= 0x00, | 
 | 	LBR_FORMAT_LIP		= 0x01, | 
 | 	LBR_FORMAT_EIP		= 0x02, | 
 | 	LBR_FORMAT_EIP_FLAGS	= 0x03, | 
 | 	LBR_FORMAT_EIP_FLAGS2	= 0x04, | 
 | 	LBR_FORMAT_INFO		= 0x05, | 
 | 	LBR_FORMAT_TIME		= 0x06, | 
 | 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME, | 
 | }; | 
 |  | 
 | static enum { | 
 | 	LBR_EIP_FLAGS		= 1, | 
 | 	LBR_TSX			= 2, | 
 | } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { | 
 | 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS, | 
 | 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, | 
 | }; | 
 |  | 
 | /* | 
 |  * Intel LBR_SELECT bits | 
 |  * Intel Vol3a, April 2011, Section 16.7 Table 16-10 | 
 |  * | 
 |  * Hardware branch filter (not available on all CPUs) | 
 |  */ | 
 | #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */ | 
 | #define LBR_USER_BIT		1 /* do not capture at ring > 0 */ | 
 | #define LBR_JCC_BIT		2 /* do not capture conditional branches */ | 
 | #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */ | 
 | #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */ | 
 | #define LBR_RETURN_BIT		5 /* do not capture near returns */ | 
 | #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */ | 
 | #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */ | 
 | #define LBR_FAR_BIT		8 /* do not capture far branches */ | 
 | #define LBR_CALL_STACK_BIT	9 /* enable call stack */ | 
 |  | 
 | /* | 
 |  * Following bit only exists in Linux; we mask it out before writing it to | 
 |  * the actual MSR. But it helps the constraint perf code to understand | 
 |  * that this is a separate configuration. | 
 |  */ | 
 | #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */ | 
 |  | 
 | #define LBR_KERNEL	(1 << LBR_KERNEL_BIT) | 
 | #define LBR_USER	(1 << LBR_USER_BIT) | 
 | #define LBR_JCC		(1 << LBR_JCC_BIT) | 
 | #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT) | 
 | #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT) | 
 | #define LBR_RETURN	(1 << LBR_RETURN_BIT) | 
 | #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT) | 
 | #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT) | 
 | #define LBR_FAR		(1 << LBR_FAR_BIT) | 
 | #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT) | 
 | #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT) | 
 |  | 
 | #define LBR_PLM (LBR_KERNEL | LBR_USER) | 
 |  | 
 | #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */ | 
 | #define LBR_NOT_SUPP	-1	/* LBR filter not supported */ | 
 | #define LBR_IGN		0	/* ignored */ | 
 |  | 
 | #define LBR_ANY		 \ | 
 | 	(LBR_JCC	|\ | 
 | 	 LBR_REL_CALL	|\ | 
 | 	 LBR_IND_CALL	|\ | 
 | 	 LBR_RETURN	|\ | 
 | 	 LBR_REL_JMP	|\ | 
 | 	 LBR_IND_JMP	|\ | 
 | 	 LBR_FAR) | 
 |  | 
 | #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63) | 
 | #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62) | 
 | #define LBR_FROM_FLAG_ABORT	BIT_ULL(61) | 
 |  | 
 | #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59)) | 
 |  | 
 | /* | 
 |  * x86control flow change classification | 
 |  * x86control flow changes include branches, interrupts, traps, faults | 
 |  */ | 
 | enum { | 
 | 	X86_BR_NONE		= 0,      /* unknown */ | 
 |  | 
 | 	X86_BR_USER		= 1 << 0, /* branch target is user */ | 
 | 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */ | 
 |  | 
 | 	X86_BR_CALL		= 1 << 2, /* call */ | 
 | 	X86_BR_RET		= 1 << 3, /* return */ | 
 | 	X86_BR_SYSCALL		= 1 << 4, /* syscall */ | 
 | 	X86_BR_SYSRET		= 1 << 5, /* syscall return */ | 
 | 	X86_BR_INT		= 1 << 6, /* sw interrupt */ | 
 | 	X86_BR_IRET		= 1 << 7, /* return from interrupt */ | 
 | 	X86_BR_JCC		= 1 << 8, /* conditional */ | 
 | 	X86_BR_JMP		= 1 << 9, /* jump */ | 
 | 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */ | 
 | 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */ | 
 | 	X86_BR_ABORT		= 1 << 12,/* transaction abort */ | 
 | 	X86_BR_IN_TX		= 1 << 13,/* in transaction */ | 
 | 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */ | 
 | 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */ | 
 | 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */ | 
 | 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */ | 
 | }; | 
 |  | 
 | #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) | 
 | #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) | 
 |  | 
 | #define X86_BR_ANY       \ | 
 | 	(X86_BR_CALL    |\ | 
 | 	 X86_BR_RET     |\ | 
 | 	 X86_BR_SYSCALL |\ | 
 | 	 X86_BR_SYSRET  |\ | 
 | 	 X86_BR_INT     |\ | 
 | 	 X86_BR_IRET    |\ | 
 | 	 X86_BR_JCC     |\ | 
 | 	 X86_BR_JMP	 |\ | 
 | 	 X86_BR_IRQ	 |\ | 
 | 	 X86_BR_ABORT	 |\ | 
 | 	 X86_BR_IND_CALL |\ | 
 | 	 X86_BR_IND_JMP  |\ | 
 | 	 X86_BR_ZERO_CALL) | 
 |  | 
 | #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) | 
 |  | 
 | #define X86_BR_ANY_CALL		 \ | 
 | 	(X86_BR_CALL		|\ | 
 | 	 X86_BR_IND_CALL	|\ | 
 | 	 X86_BR_ZERO_CALL	|\ | 
 | 	 X86_BR_SYSCALL		|\ | 
 | 	 X86_BR_IRQ		|\ | 
 | 	 X86_BR_INT) | 
 |  | 
 | static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); | 
 |  | 
 | /* | 
 |  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI | 
 |  * otherwise it becomes near impossible to get a reliable stack. | 
 |  */ | 
 |  | 
 | static void __intel_pmu_lbr_enable(bool pmi) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	u64 debugctl, lbr_select = 0, orig_debugctl; | 
 |  | 
 | 	/* | 
 | 	 * No need to unfreeze manually, as v4 can do that as part | 
 | 	 * of the GLOBAL_STATUS ack. | 
 | 	 */ | 
 | 	if (pmi && x86_pmu.version >= 4) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * No need to reprogram LBR_SELECT in a PMI, as it | 
 | 	 * did not change. | 
 | 	 */ | 
 | 	if (cpuc->lbr_sel) | 
 | 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; | 
 | 	if (!pmi && cpuc->lbr_sel) | 
 | 		wrmsrl(MSR_LBR_SELECT, lbr_select); | 
 |  | 
 | 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | 	orig_debugctl = debugctl; | 
 | 	debugctl |= DEBUGCTLMSR_LBR; | 
 | 	/* | 
 | 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. | 
 | 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions | 
 | 	 * may cause superfluous increase/decrease of LBR_TOS. | 
 | 	 */ | 
 | 	if (!(lbr_select & LBR_CALL_STACK)) | 
 | 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; | 
 | 	if (orig_debugctl != debugctl) | 
 | 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | } | 
 |  | 
 | static void __intel_pmu_lbr_disable(void) | 
 | { | 
 | 	u64 debugctl; | 
 |  | 
 | 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); | 
 | 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | } | 
 |  | 
 | static void intel_pmu_lbr_reset_32(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < x86_pmu.lbr_nr; i++) | 
 | 		wrmsrl(x86_pmu.lbr_from + i, 0); | 
 | } | 
 |  | 
 | static void intel_pmu_lbr_reset_64(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
 | 		wrmsrl(x86_pmu.lbr_from + i, 0); | 
 | 		wrmsrl(x86_pmu.lbr_to   + i, 0); | 
 | 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) | 
 | 			wrmsrl(MSR_LBR_INFO_0 + i, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void intel_pmu_lbr_reset(void) | 
 | { | 
 | 	if (!x86_pmu.lbr_nr) | 
 | 		return; | 
 |  | 
 | 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) | 
 | 		intel_pmu_lbr_reset_32(); | 
 | 	else | 
 | 		intel_pmu_lbr_reset_64(); | 
 | } | 
 |  | 
 | /* | 
 |  * TOS = most recently recorded branch | 
 |  */ | 
 | static inline u64 intel_pmu_lbr_tos(void) | 
 | { | 
 | 	u64 tos; | 
 |  | 
 | 	rdmsrl(x86_pmu.lbr_tos, tos); | 
 | 	return tos; | 
 | } | 
 |  | 
 | enum { | 
 | 	LBR_NONE, | 
 | 	LBR_VALID, | 
 | }; | 
 |  | 
 | /* | 
 |  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in | 
 |  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when | 
 |  * TSX is not supported they have no consistent behavior: | 
 |  * | 
 |  *   - For wrmsr(), bits 61:62 are considered part of the sign extension. | 
 |  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not | 
 |  *     part of the sign extension. | 
 |  * | 
 |  * Therefore, if: | 
 |  * | 
 |  *   1) LBR has TSX format | 
 |  *   2) CPU has no TSX support enabled | 
 |  * | 
 |  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any | 
 |  * value from rdmsr() must be converted to have a 61 bits sign extension, | 
 |  * ignoring the TSX flags. | 
 |  */ | 
 | static inline bool lbr_from_signext_quirk_needed(void) | 
 | { | 
 | 	int lbr_format = x86_pmu.intel_cap.lbr_format; | 
 | 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || | 
 | 			   boot_cpu_has(X86_FEATURE_RTM); | 
 |  | 
 | 	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX); | 
 | } | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); | 
 |  | 
 | /* If quirk is enabled, ensure sign extension is 63 bits: */ | 
 | inline u64 lbr_from_signext_quirk_wr(u64 val) | 
 | { | 
 | 	if (static_branch_unlikely(&lbr_from_quirk_key)) { | 
 | 		/* | 
 | 		 * Sign extend into bits 61:62 while preserving bit 63. | 
 | 		 * | 
 | 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits | 
 | 		 * in val are always OFF and must be changed to be sign | 
 | 		 * extension bits. Since bits 59:60 are guaranteed to be | 
 | 		 * part of the sign extension bits, we can just copy them | 
 | 		 * to 61:62. | 
 | 		 */ | 
 | 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | /* | 
 |  * If quirk is needed, ensure sign extension is 61 bits: | 
 |  */ | 
 | u64 lbr_from_signext_quirk_rd(u64 val) | 
 | { | 
 | 	if (static_branch_unlikely(&lbr_from_quirk_key)) { | 
 | 		/* | 
 | 		 * Quirk is on when TSX is not enabled. Therefore TSX | 
 | 		 * flags must be read as OFF. | 
 | 		 */ | 
 | 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | static inline void wrlbr_from(unsigned int idx, u64 val) | 
 | { | 
 | 	val = lbr_from_signext_quirk_wr(val); | 
 | 	wrmsrl(x86_pmu.lbr_from + idx, val); | 
 | } | 
 |  | 
 | static inline void wrlbr_to(unsigned int idx, u64 val) | 
 | { | 
 | 	wrmsrl(x86_pmu.lbr_to + idx, val); | 
 | } | 
 |  | 
 | static inline u64 rdlbr_from(unsigned int idx) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	rdmsrl(x86_pmu.lbr_from + idx, val); | 
 |  | 
 | 	return lbr_from_signext_quirk_rd(val); | 
 | } | 
 |  | 
 | static inline u64 rdlbr_to(unsigned int idx) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	rdmsrl(x86_pmu.lbr_to + idx, val); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) | 
 | { | 
 | 	int i; | 
 | 	unsigned lbr_idx, mask; | 
 | 	u64 tos; | 
 |  | 
 | 	if (task_ctx->lbr_callstack_users == 0 || | 
 | 	    task_ctx->lbr_stack_state == LBR_NONE) { | 
 | 		intel_pmu_lbr_reset(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mask = x86_pmu.lbr_nr - 1; | 
 | 	tos = task_ctx->tos; | 
 | 	for (i = 0; i < tos; i++) { | 
 | 		lbr_idx = (tos - i) & mask; | 
 | 		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]); | 
 | 		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]); | 
 |  | 
 | 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) | 
 | 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); | 
 | 	} | 
 | 	wrmsrl(x86_pmu.lbr_tos, tos); | 
 | 	task_ctx->lbr_stack_state = LBR_NONE; | 
 | } | 
 |  | 
 | static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) | 
 | { | 
 | 	unsigned lbr_idx, mask; | 
 | 	u64 tos; | 
 | 	int i; | 
 |  | 
 | 	if (task_ctx->lbr_callstack_users == 0) { | 
 | 		task_ctx->lbr_stack_state = LBR_NONE; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mask = x86_pmu.lbr_nr - 1; | 
 | 	tos = intel_pmu_lbr_tos(); | 
 | 	for (i = 0; i < tos; i++) { | 
 | 		lbr_idx = (tos - i) & mask; | 
 | 		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx); | 
 | 		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx); | 
 | 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) | 
 | 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); | 
 | 	} | 
 | 	task_ctx->tos = tos; | 
 | 	task_ctx->lbr_stack_state = LBR_VALID; | 
 | } | 
 |  | 
 | void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	struct x86_perf_task_context *task_ctx; | 
 |  | 
 | 	/* | 
 | 	 * If LBR callstack feature is enabled and the stack was saved when | 
 | 	 * the task was scheduled out, restore the stack. Otherwise flush | 
 | 	 * the LBR stack. | 
 | 	 */ | 
 | 	task_ctx = ctx ? ctx->task_ctx_data : NULL; | 
 | 	if (task_ctx) { | 
 | 		if (sched_in) { | 
 | 			__intel_pmu_lbr_restore(task_ctx); | 
 | 			cpuc->lbr_context = ctx; | 
 | 		} else { | 
 | 			__intel_pmu_lbr_save(task_ctx); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When sampling the branck stack in system-wide, it may be | 
 | 	 * necessary to flush the stack on context switch. This happens | 
 | 	 * when the branch stack does not tag its entries with the pid | 
 | 	 * of the current task. Otherwise it becomes impossible to | 
 | 	 * associate a branch entry with a task. This ambiguity is more | 
 | 	 * likely to appear when the branch stack supports priv level | 
 | 	 * filtering and the user sets it to monitor only at the user | 
 | 	 * level (which could be a useful measurement in system-wide | 
 | 	 * mode). In that case, the risk is high of having a branch | 
 | 	 * stack with branch from multiple tasks. | 
 |  	 */ | 
 | 	if (sched_in) { | 
 | 		intel_pmu_lbr_reset(); | 
 | 		cpuc->lbr_context = ctx; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool branch_user_callstack(unsigned br_sel) | 
 | { | 
 | 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); | 
 | } | 
 |  | 
 | void intel_pmu_lbr_enable(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	struct x86_perf_task_context *task_ctx; | 
 |  | 
 | 	if (!x86_pmu.lbr_nr) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Reset the LBR stack if we changed task context to | 
 | 	 * avoid data leaks. | 
 | 	 */ | 
 | 	if (event->ctx->task && cpuc->lbr_context != event->ctx) { | 
 | 		intel_pmu_lbr_reset(); | 
 | 		cpuc->lbr_context = event->ctx; | 
 | 	} | 
 | 	cpuc->br_sel = event->hw.branch_reg.reg; | 
 |  | 
 | 	if (branch_user_callstack(cpuc->br_sel) && event->ctx && | 
 | 					event->ctx->task_ctx_data) { | 
 | 		task_ctx = event->ctx->task_ctx_data; | 
 | 		task_ctx->lbr_callstack_users++; | 
 | 	} | 
 |  | 
 | 	cpuc->lbr_users++; | 
 | 	perf_sched_cb_inc(event->ctx->pmu); | 
 | } | 
 |  | 
 | void intel_pmu_lbr_disable(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	struct x86_perf_task_context *task_ctx; | 
 |  | 
 | 	if (!x86_pmu.lbr_nr) | 
 | 		return; | 
 |  | 
 | 	if (branch_user_callstack(cpuc->br_sel) && event->ctx && | 
 | 					event->ctx->task_ctx_data) { | 
 | 		task_ctx = event->ctx->task_ctx_data; | 
 | 		task_ctx->lbr_callstack_users--; | 
 | 	} | 
 |  | 
 | 	cpuc->lbr_users--; | 
 | 	WARN_ON_ONCE(cpuc->lbr_users < 0); | 
 | 	perf_sched_cb_dec(event->ctx->pmu); | 
 |  | 
 | 	if (cpuc->enabled && !cpuc->lbr_users) { | 
 | 		__intel_pmu_lbr_disable(); | 
 | 		/* avoid stale pointer */ | 
 | 		cpuc->lbr_context = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | void intel_pmu_lbr_enable_all(bool pmi) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (cpuc->lbr_users) | 
 | 		__intel_pmu_lbr_enable(pmi); | 
 | } | 
 |  | 
 | void intel_pmu_lbr_disable_all(void) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (cpuc->lbr_users) | 
 | 		__intel_pmu_lbr_disable(); | 
 | } | 
 |  | 
 | static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	unsigned long mask = x86_pmu.lbr_nr - 1; | 
 | 	u64 tos = intel_pmu_lbr_tos(); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < x86_pmu.lbr_nr; i++) { | 
 | 		unsigned long lbr_idx = (tos - i) & mask; | 
 | 		union { | 
 | 			struct { | 
 | 				u32 from; | 
 | 				u32 to; | 
 | 			}; | 
 | 			u64     lbr; | 
 | 		} msr_lastbranch; | 
 |  | 
 | 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); | 
 |  | 
 | 		cpuc->lbr_entries[i].from	= msr_lastbranch.from; | 
 | 		cpuc->lbr_entries[i].to		= msr_lastbranch.to; | 
 | 		cpuc->lbr_entries[i].mispred	= 0; | 
 | 		cpuc->lbr_entries[i].predicted	= 0; | 
 | 		cpuc->lbr_entries[i].reserved	= 0; | 
 | 	} | 
 | 	cpuc->lbr_stack.nr = i; | 
 | } | 
 |  | 
 | /* | 
 |  * Due to lack of segmentation in Linux the effective address (offset) | 
 |  * is the same as the linear address, allowing us to merge the LIP and EIP | 
 |  * LBR formats. | 
 |  */ | 
 | static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	bool need_info = false; | 
 | 	unsigned long mask = x86_pmu.lbr_nr - 1; | 
 | 	int lbr_format = x86_pmu.intel_cap.lbr_format; | 
 | 	u64 tos = intel_pmu_lbr_tos(); | 
 | 	int i; | 
 | 	int out = 0; | 
 | 	int num = x86_pmu.lbr_nr; | 
 |  | 
 | 	if (cpuc->lbr_sel) { | 
 | 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); | 
 | 		if (cpuc->lbr_sel->config & LBR_CALL_STACK) | 
 | 			num = tos; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num; i++) { | 
 | 		unsigned long lbr_idx = (tos - i) & mask; | 
 | 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; | 
 | 		int skip = 0; | 
 | 		u16 cycles = 0; | 
 | 		int lbr_flags = lbr_desc[lbr_format]; | 
 |  | 
 | 		from = rdlbr_from(lbr_idx); | 
 | 		to   = rdlbr_to(lbr_idx); | 
 |  | 
 | 		if (lbr_format == LBR_FORMAT_INFO && need_info) { | 
 | 			u64 info; | 
 |  | 
 | 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); | 
 | 			mis = !!(info & LBR_INFO_MISPRED); | 
 | 			pred = !mis; | 
 | 			in_tx = !!(info & LBR_INFO_IN_TX); | 
 | 			abort = !!(info & LBR_INFO_ABORT); | 
 | 			cycles = (info & LBR_INFO_CYCLES); | 
 | 		} | 
 |  | 
 | 		if (lbr_format == LBR_FORMAT_TIME) { | 
 | 			mis = !!(from & LBR_FROM_FLAG_MISPRED); | 
 | 			pred = !mis; | 
 | 			skip = 1; | 
 | 			cycles = ((to >> 48) & LBR_INFO_CYCLES); | 
 |  | 
 | 			to = (u64)((((s64)to) << 16) >> 16); | 
 | 		} | 
 |  | 
 | 		if (lbr_flags & LBR_EIP_FLAGS) { | 
 | 			mis = !!(from & LBR_FROM_FLAG_MISPRED); | 
 | 			pred = !mis; | 
 | 			skip = 1; | 
 | 		} | 
 | 		if (lbr_flags & LBR_TSX) { | 
 | 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX); | 
 | 			abort = !!(from & LBR_FROM_FLAG_ABORT); | 
 | 			skip = 3; | 
 | 		} | 
 | 		from = (u64)((((s64)from) << skip) >> skip); | 
 |  | 
 | 		/* | 
 | 		 * Some CPUs report duplicated abort records, | 
 | 		 * with the second entry not having an abort bit set. | 
 | 		 * Skip them here. This loop runs backwards, | 
 | 		 * so we need to undo the previous record. | 
 | 		 * If the abort just happened outside the window | 
 | 		 * the extra entry cannot be removed. | 
 | 		 */ | 
 | 		if (abort && x86_pmu.lbr_double_abort && out > 0) | 
 | 			out--; | 
 |  | 
 | 		cpuc->lbr_entries[out].from	 = from; | 
 | 		cpuc->lbr_entries[out].to	 = to; | 
 | 		cpuc->lbr_entries[out].mispred	 = mis; | 
 | 		cpuc->lbr_entries[out].predicted = pred; | 
 | 		cpuc->lbr_entries[out].in_tx	 = in_tx; | 
 | 		cpuc->lbr_entries[out].abort	 = abort; | 
 | 		cpuc->lbr_entries[out].cycles	 = cycles; | 
 | 		cpuc->lbr_entries[out].reserved	 = 0; | 
 | 		out++; | 
 | 	} | 
 | 	cpuc->lbr_stack.nr = out; | 
 | } | 
 |  | 
 | void intel_pmu_lbr_read(void) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	if (!cpuc->lbr_users) | 
 | 		return; | 
 |  | 
 | 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) | 
 | 		intel_pmu_lbr_read_32(cpuc); | 
 | 	else | 
 | 		intel_pmu_lbr_read_64(cpuc); | 
 |  | 
 | 	intel_pmu_lbr_filter(cpuc); | 
 | } | 
 |  | 
 | /* | 
 |  * SW filter is used: | 
 |  * - in case there is no HW filter | 
 |  * - in case the HW filter has errata or limitations | 
 |  */ | 
 | static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) | 
 | { | 
 | 	u64 br_type = event->attr.branch_sample_type; | 
 | 	int mask = 0; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_USER) | 
 | 		mask |= X86_BR_USER; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL) | 
 | 		mask |= X86_BR_KERNEL; | 
 |  | 
 | 	/* we ignore BRANCH_HV here */ | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_ANY) | 
 | 		mask |= X86_BR_ANY; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) | 
 | 		mask |= X86_BR_ANY_CALL; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) | 
 | 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) | 
 | 		mask |= X86_BR_IND_CALL; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) | 
 | 		mask |= X86_BR_ABORT; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX) | 
 | 		mask |= X86_BR_IN_TX; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX) | 
 | 		mask |= X86_BR_NO_TX; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_COND) | 
 | 		mask |= X86_BR_JCC; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { | 
 | 		if (!x86_pmu_has_lbr_callstack()) | 
 | 			return -EOPNOTSUPP; | 
 | 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) | 
 | 			return -EINVAL; | 
 | 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | | 
 | 			X86_BR_CALL_STACK; | 
 | 	} | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) | 
 | 		mask |= X86_BR_IND_JMP; | 
 |  | 
 | 	if (br_type & PERF_SAMPLE_BRANCH_CALL) | 
 | 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL; | 
 | 	/* | 
 | 	 * stash actual user request into reg, it may | 
 | 	 * be used by fixup code for some CPU | 
 | 	 */ | 
 | 	event->hw.branch_reg.reg = mask; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * setup the HW LBR filter | 
 |  * Used only when available, may not be enough to disambiguate | 
 |  * all branches, may need the help of the SW filter | 
 |  */ | 
 | static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event_extra *reg; | 
 | 	u64 br_type = event->attr.branch_sample_type; | 
 | 	u64 mask = 0, v; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { | 
 | 		if (!(br_type & (1ULL << i))) | 
 | 			continue; | 
 |  | 
 | 		v = x86_pmu.lbr_sel_map[i]; | 
 | 		if (v == LBR_NOT_SUPP) | 
 | 			return -EOPNOTSUPP; | 
 |  | 
 | 		if (v != LBR_IGN) | 
 | 			mask |= v; | 
 | 	} | 
 |  | 
 | 	reg = &event->hw.branch_reg; | 
 | 	reg->idx = EXTRA_REG_LBR; | 
 |  | 
 | 	/* | 
 | 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate | 
 | 	 * in suppress mode. So LBR_SELECT should be set to | 
 | 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) | 
 | 	 * But the 10th bit LBR_CALL_STACK does not operate | 
 | 	 * in suppress mode. | 
 | 	 */ | 
 | 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); | 
 |  | 
 | 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && | 
 | 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && | 
 | 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) | 
 | 		reg->config |= LBR_NO_INFO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int intel_pmu_setup_lbr_filter(struct perf_event *event) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * no LBR on this PMU | 
 | 	 */ | 
 | 	if (!x86_pmu.lbr_nr) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* | 
 | 	 * setup SW LBR filter | 
 | 	 */ | 
 | 	ret = intel_pmu_setup_sw_lbr_filter(event); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * setup HW LBR filter, if any | 
 | 	 */ | 
 | 	if (x86_pmu.lbr_sel_map) | 
 | 		ret = intel_pmu_setup_hw_lbr_filter(event); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * return the type of control flow change at address "from" | 
 |  * instruction is not necessarily a branch (in case of interrupt). | 
 |  * | 
 |  * The branch type returned also includes the priv level of the | 
 |  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). | 
 |  * | 
 |  * If a branch type is unknown OR the instruction cannot be | 
 |  * decoded (e.g., text page not present), then X86_BR_NONE is | 
 |  * returned. | 
 |  */ | 
 | static int branch_type(unsigned long from, unsigned long to, int abort) | 
 | { | 
 | 	struct insn insn; | 
 | 	void *addr; | 
 | 	int bytes_read, bytes_left; | 
 | 	int ret = X86_BR_NONE; | 
 | 	int ext, to_plm, from_plm; | 
 | 	u8 buf[MAX_INSN_SIZE]; | 
 | 	int is64 = 0; | 
 |  | 
 | 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; | 
 | 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; | 
 |  | 
 | 	/* | 
 | 	 * maybe zero if lbr did not fill up after a reset by the time | 
 | 	 * we get a PMU interrupt | 
 | 	 */ | 
 | 	if (from == 0 || to == 0) | 
 | 		return X86_BR_NONE; | 
 |  | 
 | 	if (abort) | 
 | 		return X86_BR_ABORT | to_plm; | 
 |  | 
 | 	if (from_plm == X86_BR_USER) { | 
 | 		/* | 
 | 		 * can happen if measuring at the user level only | 
 | 		 * and we interrupt in a kernel thread, e.g., idle. | 
 | 		 */ | 
 | 		if (!current->mm) | 
 | 			return X86_BR_NONE; | 
 |  | 
 | 		/* may fail if text not present */ | 
 | 		bytes_left = copy_from_user_nmi(buf, (void __user *)from, | 
 | 						MAX_INSN_SIZE); | 
 | 		bytes_read = MAX_INSN_SIZE - bytes_left; | 
 | 		if (!bytes_read) | 
 | 			return X86_BR_NONE; | 
 |  | 
 | 		addr = buf; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The LBR logs any address in the IP, even if the IP just | 
 | 		 * faulted. This means userspace can control the from address. | 
 | 		 * Ensure we don't blindy read any address by validating it is | 
 | 		 * a known text address. | 
 | 		 */ | 
 | 		if (kernel_text_address(from)) { | 
 | 			addr = (void *)from; | 
 | 			/* | 
 | 			 * Assume we can get the maximum possible size | 
 | 			 * when grabbing kernel data.  This is not | 
 | 			 * _strictly_ true since we could possibly be | 
 | 			 * executing up next to a memory hole, but | 
 | 			 * it is very unlikely to be a problem. | 
 | 			 */ | 
 | 			bytes_read = MAX_INSN_SIZE; | 
 | 		} else { | 
 | 			return X86_BR_NONE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * decoder needs to know the ABI especially | 
 | 	 * on 64-bit systems running 32-bit apps | 
 | 	 */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); | 
 | #endif | 
 | 	insn_init(&insn, addr, bytes_read, is64); | 
 | 	insn_get_opcode(&insn); | 
 | 	if (!insn.opcode.got) | 
 | 		return X86_BR_ABORT; | 
 |  | 
 | 	switch (insn.opcode.bytes[0]) { | 
 | 	case 0xf: | 
 | 		switch (insn.opcode.bytes[1]) { | 
 | 		case 0x05: /* syscall */ | 
 | 		case 0x34: /* sysenter */ | 
 | 			ret = X86_BR_SYSCALL; | 
 | 			break; | 
 | 		case 0x07: /* sysret */ | 
 | 		case 0x35: /* sysexit */ | 
 | 			ret = X86_BR_SYSRET; | 
 | 			break; | 
 | 		case 0x80 ... 0x8f: /* conditional */ | 
 | 			ret = X86_BR_JCC; | 
 | 			break; | 
 | 		default: | 
 | 			ret = X86_BR_NONE; | 
 | 		} | 
 | 		break; | 
 | 	case 0x70 ... 0x7f: /* conditional */ | 
 | 		ret = X86_BR_JCC; | 
 | 		break; | 
 | 	case 0xc2: /* near ret */ | 
 | 	case 0xc3: /* near ret */ | 
 | 	case 0xca: /* far ret */ | 
 | 	case 0xcb: /* far ret */ | 
 | 		ret = X86_BR_RET; | 
 | 		break; | 
 | 	case 0xcf: /* iret */ | 
 | 		ret = X86_BR_IRET; | 
 | 		break; | 
 | 	case 0xcc ... 0xce: /* int */ | 
 | 		ret = X86_BR_INT; | 
 | 		break; | 
 | 	case 0xe8: /* call near rel */ | 
 | 		insn_get_immediate(&insn); | 
 | 		if (insn.immediate1.value == 0) { | 
 | 			/* zero length call */ | 
 | 			ret = X86_BR_ZERO_CALL; | 
 | 			break; | 
 | 		} | 
 | 	case 0x9a: /* call far absolute */ | 
 | 		ret = X86_BR_CALL; | 
 | 		break; | 
 | 	case 0xe0 ... 0xe3: /* loop jmp */ | 
 | 		ret = X86_BR_JCC; | 
 | 		break; | 
 | 	case 0xe9 ... 0xeb: /* jmp */ | 
 | 		ret = X86_BR_JMP; | 
 | 		break; | 
 | 	case 0xff: /* call near absolute, call far absolute ind */ | 
 | 		insn_get_modrm(&insn); | 
 | 		ext = (insn.modrm.bytes[0] >> 3) & 0x7; | 
 | 		switch (ext) { | 
 | 		case 2: /* near ind call */ | 
 | 		case 3: /* far ind call */ | 
 | 			ret = X86_BR_IND_CALL; | 
 | 			break; | 
 | 		case 4: | 
 | 		case 5: | 
 | 			ret = X86_BR_IND_JMP; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		ret = X86_BR_NONE; | 
 | 	} | 
 | 	/* | 
 | 	 * interrupts, traps, faults (and thus ring transition) may | 
 | 	 * occur on any instructions. Thus, to classify them correctly, | 
 | 	 * we need to first look at the from and to priv levels. If they | 
 | 	 * are different and to is in the kernel, then it indicates | 
 | 	 * a ring transition. If the from instruction is not a ring | 
 | 	 * transition instr (syscall, systenter, int), then it means | 
 | 	 * it was a irq, trap or fault. | 
 | 	 * | 
 | 	 * we have no way of detecting kernel to kernel faults. | 
 | 	 */ | 
 | 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL | 
 | 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT) | 
 | 		ret = X86_BR_IRQ; | 
 |  | 
 | 	/* | 
 | 	 * branch priv level determined by target as | 
 | 	 * is done by HW when LBR_SELECT is implemented | 
 | 	 */ | 
 | 	if (ret != X86_BR_NONE) | 
 | 		ret |= to_plm; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * implement actual branch filter based on user demand. | 
 |  * Hardware may not exactly satisfy that request, thus | 
 |  * we need to inspect opcodes. Mismatched branches are | 
 |  * discarded. Therefore, the number of branches returned | 
 |  * in PERF_SAMPLE_BRANCH_STACK sample may vary. | 
 |  */ | 
 | static void | 
 | intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	u64 from, to; | 
 | 	int br_sel = cpuc->br_sel; | 
 | 	int i, j, type; | 
 | 	bool compress = false; | 
 |  | 
 | 	/* if sampling all branches, then nothing to filter */ | 
 | 	if ((br_sel & X86_BR_ALL) == X86_BR_ALL) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < cpuc->lbr_stack.nr; i++) { | 
 |  | 
 | 		from = cpuc->lbr_entries[i].from; | 
 | 		to = cpuc->lbr_entries[i].to; | 
 |  | 
 | 		type = branch_type(from, to, cpuc->lbr_entries[i].abort); | 
 | 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { | 
 | 			if (cpuc->lbr_entries[i].in_tx) | 
 | 				type |= X86_BR_IN_TX; | 
 | 			else | 
 | 				type |= X86_BR_NO_TX; | 
 | 		} | 
 |  | 
 | 		/* if type does not correspond, then discard */ | 
 | 		if (type == X86_BR_NONE || (br_sel & type) != type) { | 
 | 			cpuc->lbr_entries[i].from = 0; | 
 | 			compress = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!compress) | 
 | 		return; | 
 |  | 
 | 	/* remove all entries with from=0 */ | 
 | 	for (i = 0; i < cpuc->lbr_stack.nr; ) { | 
 | 		if (!cpuc->lbr_entries[i].from) { | 
 | 			j = i; | 
 | 			while (++j < cpuc->lbr_stack.nr) | 
 | 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; | 
 | 			cpuc->lbr_stack.nr--; | 
 | 			if (!cpuc->lbr_entries[i].from) | 
 | 				continue; | 
 | 		} | 
 | 		i++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Map interface branch filters onto LBR filters | 
 |  */ | 
 | static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
 | 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
 | 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
 | 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
 | 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
 | 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP | 
 | 						| LBR_IND_JMP | LBR_FAR, | 
 | 	/* | 
 | 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches | 
 | 	 */ | 
 | 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = | 
 | 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, | 
 | 	/* | 
 | 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL | 
 | 	 */ | 
 | 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, | 
 | 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC, | 
 | 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, | 
 | }; | 
 |  | 
 | static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
 | 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
 | 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
 | 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
 | 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
 | 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR, | 
 | 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
 | 						| LBR_FAR, | 
 | 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL, | 
 | 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC, | 
 | 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP, | 
 | 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL, | 
 | }; | 
 |  | 
 | static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { | 
 | 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY, | 
 | 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER, | 
 | 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL, | 
 | 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN, | 
 | 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR, | 
 | 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
 | 						| LBR_FAR, | 
 | 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL, | 
 | 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC, | 
 | 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL | 
 | 						| LBR_RETURN | LBR_CALL_STACK, | 
 | 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP, | 
 | 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL, | 
 | }; | 
 |  | 
 | /* core */ | 
 | void __init intel_pmu_lbr_init_core(void) | 
 | { | 
 | 	x86_pmu.lbr_nr     = 4; | 
 | 	x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
 | 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - compensate for lack of HW filter | 
 | 	 */ | 
 | } | 
 |  | 
 | /* nehalem/westmere */ | 
 | void __init intel_pmu_lbr_init_nhm(void) | 
 | { | 
 | 	x86_pmu.lbr_nr     = 16; | 
 | 	x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM; | 
 | 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - workaround LBR_SEL errata (see above) | 
 | 	 * - support syscall, sysret capture. | 
 | 	 *   That requires LBR_FAR but that means far | 
 | 	 *   jmp need to be filtered out | 
 | 	 */ | 
 | } | 
 |  | 
 | /* sandy bridge */ | 
 | void __init intel_pmu_lbr_init_snb(void) | 
 | { | 
 | 	x86_pmu.lbr_nr	 = 16; | 
 | 	x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
 | 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - support syscall, sysret capture. | 
 | 	 *   That requires LBR_FAR but that means far | 
 | 	 *   jmp need to be filtered out | 
 | 	 */ | 
 | } | 
 |  | 
 | /* haswell */ | 
 | void intel_pmu_lbr_init_hsw(void) | 
 | { | 
 | 	x86_pmu.lbr_nr	 = 16; | 
 | 	x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
 | 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map; | 
 |  | 
 | 	if (lbr_from_signext_quirk_needed()) | 
 | 		static_branch_enable(&lbr_from_quirk_key); | 
 | } | 
 |  | 
 | /* skylake */ | 
 | __init void intel_pmu_lbr_init_skl(void) | 
 | { | 
 | 	x86_pmu.lbr_nr	 = 32; | 
 | 	x86_pmu.lbr_tos	 = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM; | 
 | 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - support syscall, sysret capture. | 
 | 	 *   That requires LBR_FAR but that means far | 
 | 	 *   jmp need to be filtered out | 
 | 	 */ | 
 | } | 
 |  | 
 | /* atom */ | 
 | void __init intel_pmu_lbr_init_atom(void) | 
 | { | 
 | 	/* | 
 | 	 * only models starting at stepping 10 seems | 
 | 	 * to have an operational LBR which can freeze | 
 | 	 * on PMU interrupt | 
 | 	 */ | 
 | 	if (boot_cpu_data.x86_model == 28 | 
 | 	    && boot_cpu_data.x86_mask < 10) { | 
 | 		pr_cont("LBR disabled due to erratum"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	x86_pmu.lbr_nr	   = 8; | 
 | 	x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
 | 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - compensate for lack of HW filter | 
 | 	 */ | 
 | } | 
 |  | 
 | /* slm */ | 
 | void __init intel_pmu_lbr_init_slm(void) | 
 | { | 
 | 	x86_pmu.lbr_nr	   = 8; | 
 | 	x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM; | 
 | 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map; | 
 |  | 
 | 	/* | 
 | 	 * SW branch filter usage: | 
 | 	 * - compensate for lack of HW filter | 
 | 	 */ | 
 | 	pr_cont("8-deep LBR, "); | 
 | } | 
 |  | 
 | /* Knights Landing */ | 
 | void intel_pmu_lbr_init_knl(void) | 
 | { | 
 | 	x86_pmu.lbr_nr	   = 8; | 
 | 	x86_pmu.lbr_tos    = MSR_LBR_TOS; | 
 | 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM; | 
 | 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO; | 
 |  | 
 | 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK; | 
 | 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map; | 
 | } |