| /* | 
 |  * pSeries NUMA support | 
 |  * | 
 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 | #define pr_fmt(fmt) "numa: " fmt | 
 |  | 
 | #include <linux/threads.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/export.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/of.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/node.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/cputhreads.h> | 
 | #include <asm/sparsemem.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/cputhreads.h> | 
 | #include <asm/topology.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/paca.h> | 
 | #include <asm/hvcall.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/vdso.h> | 
 |  | 
 | static int numa_enabled = 1; | 
 |  | 
 | static char *cmdline __initdata; | 
 |  | 
 | static int numa_debug; | 
 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
 |  | 
 | int numa_cpu_lookup_table[NR_CPUS]; | 
 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
 | struct pglist_data *node_data[MAX_NUMNODES]; | 
 |  | 
 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | EXPORT_SYMBOL(node_to_cpumask_map); | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | static int min_common_depth; | 
 | static int n_mem_addr_cells, n_mem_size_cells; | 
 | static int form1_affinity; | 
 |  | 
 | #define MAX_DISTANCE_REF_POINTS 4 | 
 | static int distance_ref_points_depth; | 
 | static const __be32 *distance_ref_points; | 
 | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; | 
 |  | 
 | /* | 
 |  * Allocate node_to_cpumask_map based on number of available nodes | 
 |  * Requires node_possible_map to be valid. | 
 |  * | 
 |  * Note: cpumask_of_node() is not valid until after this is done. | 
 |  */ | 
 | static void __init setup_node_to_cpumask_map(void) | 
 | { | 
 | 	unsigned int node; | 
 |  | 
 | 	/* setup nr_node_ids if not done yet */ | 
 | 	if (nr_node_ids == MAX_NUMNODES) | 
 | 		setup_nr_node_ids(); | 
 |  | 
 | 	/* allocate the map */ | 
 | 	for_each_node(node) | 
 | 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
 |  | 
 | 	/* cpumask_of_node() will now work */ | 
 | 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids); | 
 | } | 
 |  | 
 | static int __init fake_numa_create_new_node(unsigned long end_pfn, | 
 | 						unsigned int *nid) | 
 | { | 
 | 	unsigned long long mem; | 
 | 	char *p = cmdline; | 
 | 	static unsigned int fake_nid; | 
 | 	static unsigned long long curr_boundary; | 
 |  | 
 | 	/* | 
 | 	 * Modify node id, iff we started creating NUMA nodes | 
 | 	 * We want to continue from where we left of the last time | 
 | 	 */ | 
 | 	if (fake_nid) | 
 | 		*nid = fake_nid; | 
 | 	/* | 
 | 	 * In case there are no more arguments to parse, the | 
 | 	 * node_id should be the same as the last fake node id | 
 | 	 * (we've handled this above). | 
 | 	 */ | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	mem = memparse(p, &p); | 
 | 	if (!mem) | 
 | 		return 0; | 
 |  | 
 | 	if (mem < curr_boundary) | 
 | 		return 0; | 
 |  | 
 | 	curr_boundary = mem; | 
 |  | 
 | 	if ((end_pfn << PAGE_SHIFT) > mem) { | 
 | 		/* | 
 | 		 * Skip commas and spaces | 
 | 		 */ | 
 | 		while (*p == ',' || *p == ' ' || *p == '\t') | 
 | 			p++; | 
 |  | 
 | 		cmdline = p; | 
 | 		fake_nid++; | 
 | 		*nid = fake_nid; | 
 | 		dbg("created new fake_node with id %d\n", fake_nid); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void reset_numa_cpu_lookup_table(void) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		numa_cpu_lookup_table[cpu] = -1; | 
 | } | 
 |  | 
 | static void update_numa_cpu_lookup_table(unsigned int cpu, int node) | 
 | { | 
 | 	numa_cpu_lookup_table[cpu] = node; | 
 | } | 
 |  | 
 | static void map_cpu_to_node(int cpu, int node) | 
 | { | 
 | 	update_numa_cpu_lookup_table(cpu, node); | 
 |  | 
 | 	dbg("adding cpu %d to node %d\n", cpu, node); | 
 |  | 
 | 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) | 
 | 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | 
 | } | 
 |  | 
 | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) | 
 | static void unmap_cpu_from_node(unsigned long cpu) | 
 | { | 
 | 	int node = numa_cpu_lookup_table[cpu]; | 
 |  | 
 | 	dbg("removing cpu %lu from node %d\n", cpu, node); | 
 |  | 
 | 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { | 
 | 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); | 
 | 	} else { | 
 | 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
 | 		       cpu, node); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ | 
 |  | 
 | /* must hold reference to node during call */ | 
 | static const __be32 *of_get_associativity(struct device_node *dev) | 
 | { | 
 | 	return of_get_property(dev, "ibm,associativity", NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the property linux,drconf-usable-memory if | 
 |  * it exists (the property exists only in kexec/kdump kernels, | 
 |  * added by kexec-tools) | 
 |  */ | 
 | static const __be32 *of_get_usable_memory(struct device_node *memory) | 
 | { | 
 | 	const __be32 *prop; | 
 | 	u32 len; | 
 | 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return NULL; | 
 | 	return prop; | 
 | } | 
 |  | 
 | int __node_distance(int a, int b) | 
 | { | 
 | 	int i; | 
 | 	int distance = LOCAL_DISTANCE; | 
 |  | 
 | 	if (!form1_affinity) | 
 | 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | 
 | 			break; | 
 |  | 
 | 		/* Double the distance for each NUMA level */ | 
 | 		distance *= 2; | 
 | 	} | 
 |  | 
 | 	return distance; | 
 | } | 
 | EXPORT_SYMBOL(__node_distance); | 
 |  | 
 | static void initialize_distance_lookup_table(int nid, | 
 | 		const __be32 *associativity) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!form1_affinity) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 		const __be32 *entry; | 
 |  | 
 | 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; | 
 | 		distance_lookup_table[nid][i] = of_read_number(entry, 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
 |  * info is found. | 
 |  */ | 
 | static int associativity_to_nid(const __be32 *associativity) | 
 | { | 
 | 	int nid = -1; | 
 |  | 
 | 	if (min_common_depth == -1) | 
 | 		goto out; | 
 |  | 
 | 	if (of_read_number(associativity, 1) >= min_common_depth) | 
 | 		nid = of_read_number(&associativity[min_common_depth], 1); | 
 |  | 
 | 	/* POWER4 LPAR uses 0xffff as invalid node */ | 
 | 	if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 		nid = -1; | 
 |  | 
 | 	if (nid > 0 && | 
 | 		of_read_number(associativity, 1) >= distance_ref_points_depth) { | 
 | 		/* | 
 | 		 * Skip the length field and send start of associativity array | 
 | 		 */ | 
 | 		initialize_distance_lookup_table(nid, associativity + 1); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Returns the nid associated with the given device tree node, | 
 |  * or -1 if not found. | 
 |  */ | 
 | static int of_node_to_nid_single(struct device_node *device) | 
 | { | 
 | 	int nid = -1; | 
 | 	const __be32 *tmp; | 
 |  | 
 | 	tmp = of_get_associativity(device); | 
 | 	if (tmp) | 
 | 		nid = associativity_to_nid(tmp); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Walk the device tree upwards, looking for an associativity id */ | 
 | int of_node_to_nid(struct device_node *device) | 
 | { | 
 | 	int nid = -1; | 
 |  | 
 | 	of_node_get(device); | 
 | 	while (device) { | 
 | 		nid = of_node_to_nid_single(device); | 
 | 		if (nid != -1) | 
 | 			break; | 
 |  | 
 | 		device = of_get_next_parent(device); | 
 | 	} | 
 | 	of_node_put(device); | 
 |  | 
 | 	return nid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_node_to_nid); | 
 |  | 
 | static int __init find_min_common_depth(void) | 
 | { | 
 | 	int depth; | 
 | 	struct device_node *root; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL)) | 
 | 		root = of_find_node_by_path("/ibm,opal"); | 
 | 	else | 
 | 		root = of_find_node_by_path("/rtas"); | 
 | 	if (!root) | 
 | 		root = of_find_node_by_path("/"); | 
 |  | 
 | 	/* | 
 | 	 * This property is a set of 32-bit integers, each representing | 
 | 	 * an index into the ibm,associativity nodes. | 
 | 	 * | 
 | 	 * With form 0 affinity the first integer is for an SMP configuration | 
 | 	 * (should be all 0's) and the second is for a normal NUMA | 
 | 	 * configuration. We have only one level of NUMA. | 
 | 	 * | 
 | 	 * With form 1 affinity the first integer is the most significant | 
 | 	 * NUMA boundary and the following are progressively less significant | 
 | 	 * boundaries. There can be more than one level of NUMA. | 
 | 	 */ | 
 | 	distance_ref_points = of_get_property(root, | 
 | 					"ibm,associativity-reference-points", | 
 | 					&distance_ref_points_depth); | 
 |  | 
 | 	if (!distance_ref_points) { | 
 | 		dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	distance_ref_points_depth /= sizeof(int); | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_OPAL) || | 
 | 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { | 
 | 		dbg("Using form 1 affinity\n"); | 
 | 		form1_affinity = 1; | 
 | 	} | 
 |  | 
 | 	if (form1_affinity) { | 
 | 		depth = of_read_number(distance_ref_points, 1); | 
 | 	} else { | 
 | 		if (distance_ref_points_depth < 2) { | 
 | 			printk(KERN_WARNING "NUMA: " | 
 | 				"short ibm,associativity-reference-points\n"); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		depth = of_read_number(&distance_ref_points[1], 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Warn and cap if the hardware supports more than | 
 | 	 * MAX_DISTANCE_REF_POINTS domains. | 
 | 	 */ | 
 | 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | 
 | 		printk(KERN_WARNING "NUMA: distance array capped at " | 
 | 			"%d entries\n", MAX_DISTANCE_REF_POINTS); | 
 | 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | 
 | 	} | 
 |  | 
 | 	of_node_put(root); | 
 | 	return depth; | 
 |  | 
 | err: | 
 | 	of_node_put(root); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 |  | 
 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 	if (!memory) | 
 | 		panic("numa.c: No memory nodes found!"); | 
 |  | 
 | 	*n_addr_cells = of_n_addr_cells(memory); | 
 | 	*n_size_cells = of_n_size_cells(memory); | 
 | 	of_node_put(memory); | 
 | } | 
 |  | 
 | static unsigned long read_n_cells(int n, const __be32 **buf) | 
 | { | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	while (n--) { | 
 | 		result = (result << 32) | of_read_number(*buf, 1); | 
 | 		(*buf)++; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the next memblock list entry from the ibm,dynamic-memory property | 
 |  * and return the information in the provided of_drconf_cell structure. | 
 |  */ | 
 | static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) | 
 | { | 
 | 	const __be32 *cp; | 
 |  | 
 | 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); | 
 |  | 
 | 	cp = *cellp; | 
 | 	drmem->drc_index = of_read_number(cp, 1); | 
 | 	drmem->reserved = of_read_number(&cp[1], 1); | 
 | 	drmem->aa_index = of_read_number(&cp[2], 1); | 
 | 	drmem->flags = of_read_number(&cp[3], 1); | 
 |  | 
 | 	*cellp = cp + 4; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve and validate the ibm,dynamic-memory property of the device tree. | 
 |  * | 
 |  * The layout of the ibm,dynamic-memory property is a number N of memblock | 
 |  * list entries followed by N memblock list entries.  Each memblock list entry | 
 |  * contains information as laid out in the of_drconf_cell struct above. | 
 |  */ | 
 | static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) | 
 | { | 
 | 	const __be32 *prop; | 
 | 	u32 len, entries; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,dynamic-memory", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	entries = of_read_number(prop++, 1); | 
 |  | 
 | 	/* Now that we know the number of entries, revalidate the size | 
 | 	 * of the property read in to ensure we have everything | 
 | 	 */ | 
 | 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	*dm = prop; | 
 | 	return entries; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve and validate the ibm,lmb-size property for drconf memory | 
 |  * from the device tree. | 
 |  */ | 
 | static u64 of_get_lmb_size(struct device_node *memory) | 
 | { | 
 | 	const __be32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,lmb-size", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	return read_n_cells(n_mem_size_cells, &prop); | 
 | } | 
 |  | 
 | struct assoc_arrays { | 
 | 	u32	n_arrays; | 
 | 	u32	array_sz; | 
 | 	const __be32 *arrays; | 
 | }; | 
 |  | 
 | /* | 
 |  * Retrieve and validate the list of associativity arrays for drconf | 
 |  * memory from the ibm,associativity-lookup-arrays property of the | 
 |  * device tree.. | 
 |  * | 
 |  * The layout of the ibm,associativity-lookup-arrays property is a number N | 
 |  * indicating the number of associativity arrays, followed by a number M | 
 |  * indicating the size of each associativity array, followed by a list | 
 |  * of N associativity arrays. | 
 |  */ | 
 | static int of_get_assoc_arrays(struct device_node *memory, | 
 | 			       struct assoc_arrays *aa) | 
 | { | 
 | 	const __be32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
 | 	if (!prop || len < 2 * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->n_arrays = of_read_number(prop++, 1); | 
 | 	aa->array_sz = of_read_number(prop++, 1); | 
 |  | 
 | 	/* Now that we know the number of arrays and size of each array, | 
 | 	 * revalidate the size of the property read in. | 
 | 	 */ | 
 | 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->arrays = prop; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like of_node_to_nid_single() for memory represented in the | 
 |  * ibm,dynamic-reconfiguration-memory node. | 
 |  */ | 
 | static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, | 
 | 				   struct assoc_arrays *aa) | 
 | { | 
 | 	int default_nid = 0; | 
 | 	int nid = default_nid; | 
 | 	int index; | 
 |  | 
 | 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz && | 
 | 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) && | 
 | 	    drmem->aa_index < aa->n_arrays) { | 
 | 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1; | 
 | 		nid = of_read_number(&aa->arrays[index], 1); | 
 |  | 
 | 		if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 			nid = default_nid; | 
 |  | 
 | 		if (nid > 0) { | 
 | 			index = drmem->aa_index * aa->array_sz; | 
 | 			initialize_distance_lookup_table(nid, | 
 | 							&aa->arrays[index]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out to which domain a cpu belongs and stick it there. | 
 |  * Return the id of the domain used. | 
 |  */ | 
 | static int numa_setup_cpu(unsigned long lcpu) | 
 | { | 
 | 	int nid = -1; | 
 | 	struct device_node *cpu; | 
 |  | 
 | 	/* | 
 | 	 * If a valid cpu-to-node mapping is already available, use it | 
 | 	 * directly instead of querying the firmware, since it represents | 
 | 	 * the most recent mapping notified to us by the platform (eg: VPHN). | 
 | 	 */ | 
 | 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { | 
 | 		map_cpu_to_node(lcpu, nid); | 
 | 		return nid; | 
 | 	} | 
 |  | 
 | 	cpu = of_get_cpu_node(lcpu, NULL); | 
 |  | 
 | 	if (!cpu) { | 
 | 		WARN_ON(1); | 
 | 		if (cpu_present(lcpu)) | 
 | 			goto out_present; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	nid = of_node_to_nid_single(cpu); | 
 |  | 
 | out_present: | 
 | 	if (nid < 0 || !node_online(nid)) | 
 | 		nid = first_online_node; | 
 |  | 
 | 	map_cpu_to_node(lcpu, nid); | 
 | 	of_node_put(cpu); | 
 | out: | 
 | 	return nid; | 
 | } | 
 |  | 
 | static void verify_cpu_node_mapping(int cpu, int node) | 
 | { | 
 | 	int base, sibling, i; | 
 |  | 
 | 	/* Verify that all the threads in the core belong to the same node */ | 
 | 	base = cpu_first_thread_sibling(cpu); | 
 |  | 
 | 	for (i = 0; i < threads_per_core; i++) { | 
 | 		sibling = base + i; | 
 |  | 
 | 		if (sibling == cpu || cpu_is_offline(sibling)) | 
 | 			continue; | 
 |  | 
 | 		if (cpu_to_node(sibling) != node) { | 
 | 			WARN(1, "CPU thread siblings %d and %d don't belong" | 
 | 				" to the same node!\n", cpu, sibling); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, | 
 | 			     void *hcpu) | 
 | { | 
 | 	unsigned long lcpu = (unsigned long)hcpu; | 
 | 	int ret = NOTIFY_DONE, nid; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		nid = numa_setup_cpu(lcpu); | 
 | 		verify_cpu_node_mapping((int)lcpu, nid); | 
 | 		ret = NOTIFY_OK; | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 		unmap_cpu_from_node(lcpu); | 
 | 		ret = NOTIFY_OK; | 
 | 		break; | 
 | #endif | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check and possibly modify a memory region to enforce the memory limit. | 
 |  * | 
 |  * Returns the size the region should have to enforce the memory limit. | 
 |  * This will either be the original value of size, a truncated value, | 
 |  * or zero. If the returned value of size is 0 the region should be | 
 |  * discarded as it lies wholly above the memory limit. | 
 |  */ | 
 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
 | 						      unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because | 
 | 	 * we've already adjusted it for the limit and it takes care of | 
 | 	 * having memory holes below the limit.  Also, in the case of | 
 | 	 * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
 | 	 */ | 
 |  | 
 | 	if (start + size <= memblock_end_of_DRAM()) | 
 | 		return size; | 
 |  | 
 | 	if (start >= memblock_end_of_DRAM()) | 
 | 		return 0; | 
 |  | 
 | 	return memblock_end_of_DRAM() - start; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads the counter for a given entry in | 
 |  * linux,drconf-usable-memory property | 
 |  */ | 
 | static inline int __init read_usm_ranges(const __be32 **usm) | 
 | { | 
 | 	/* | 
 | 	 * For each lmb in ibm,dynamic-memory a corresponding | 
 | 	 * entry in linux,drconf-usable-memory property contains | 
 | 	 * a counter followed by that many (base, size) duple. | 
 | 	 * read the counter from linux,drconf-usable-memory | 
 | 	 */ | 
 | 	return read_n_cells(n_mem_size_cells, usm); | 
 | } | 
 |  | 
 | /* | 
 |  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
 |  * node.  This assumes n_mem_{addr,size}_cells have been set. | 
 |  */ | 
 | static void __init parse_drconf_memory(struct device_node *memory) | 
 | { | 
 | 	const __be32 *uninitialized_var(dm), *usm; | 
 | 	unsigned int n, rc, ranges, is_kexec_kdump = 0; | 
 | 	unsigned long lmb_size, base, size, sz; | 
 | 	int nid; | 
 | 	struct assoc_arrays aa = { .arrays = NULL }; | 
 |  | 
 | 	n = of_get_drconf_memory(memory, &dm); | 
 | 	if (!n) | 
 | 		return; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return; | 
 |  | 
 | 	/* check if this is a kexec/kdump kernel */ | 
 | 	usm = of_get_usable_memory(memory); | 
 | 	if (usm != NULL) | 
 | 		is_kexec_kdump = 1; | 
 |  | 
 | 	for (; n != 0; --n) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if the reserved bit is set in flags (0x80) | 
 | 		   or if the block is not assigned to this partition (0x8) */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		base = drmem.base_addr; | 
 | 		size = lmb_size; | 
 | 		ranges = 1; | 
 |  | 
 | 		if (is_kexec_kdump) { | 
 | 			ranges = read_usm_ranges(&usm); | 
 | 			if (!ranges) /* there are no (base, size) duple */ | 
 | 				continue; | 
 | 		} | 
 | 		do { | 
 | 			if (is_kexec_kdump) { | 
 | 				base = read_n_cells(n_mem_addr_cells, &usm); | 
 | 				size = read_n_cells(n_mem_size_cells, &usm); | 
 | 			} | 
 | 			nid = of_drconf_to_nid_single(&drmem, &aa); | 
 | 			fake_numa_create_new_node( | 
 | 				((base + size) >> PAGE_SHIFT), | 
 | 					   &nid); | 
 | 			node_set_online(nid); | 
 | 			sz = numa_enforce_memory_limit(base, size); | 
 | 			if (sz) | 
 | 				memblock_set_node(base, sz, | 
 | 						  &memblock.memory, nid); | 
 | 		} while (--ranges); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init parse_numa_properties(void) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	int default_nid = 0; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (numa_enabled == 0) { | 
 | 		printk(KERN_WARNING "NUMA disabled by user\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	min_common_depth = find_min_common_depth(); | 
 |  | 
 | 	if (min_common_depth < 0) | 
 | 		return min_common_depth; | 
 |  | 
 | 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
 |  | 
 | 	/* | 
 | 	 * Even though we connect cpus to numa domains later in SMP | 
 | 	 * init, we need to know the node ids now. This is because | 
 | 	 * each node to be onlined must have NODE_DATA etc backing it. | 
 | 	 */ | 
 | 	for_each_present_cpu(i) { | 
 | 		struct device_node *cpu; | 
 | 		int nid; | 
 |  | 
 | 		cpu = of_get_cpu_node(i, NULL); | 
 | 		BUG_ON(!cpu); | 
 | 		nid = of_node_to_nid_single(cpu); | 
 | 		of_node_put(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Don't fall back to default_nid yet -- we will plug | 
 | 		 * cpus into nodes once the memory scan has discovered | 
 | 		 * the topology. | 
 | 		 */ | 
 | 		if (nid < 0) | 
 | 			continue; | 
 | 		node_set_online(nid); | 
 | 	} | 
 |  | 
 | 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		unsigned long start; | 
 | 		unsigned long size; | 
 | 		int nid; | 
 | 		int ranges; | 
 | 		const __be32 *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, | 
 | 			"linux,usable-memory", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 | new_range: | 
 | 		/* these are order-sensitive, and modify the buffer pointer */ | 
 | 		start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 		size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 		/* | 
 | 		 * Assumption: either all memory nodes or none will | 
 | 		 * have associativity properties.  If none, then | 
 | 		 * everything goes to default_nid. | 
 | 		 */ | 
 | 		nid = of_node_to_nid_single(memory); | 
 | 		if (nid < 0) | 
 | 			nid = default_nid; | 
 |  | 
 | 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
 | 		node_set_online(nid); | 
 |  | 
 | 		if (!(size = numa_enforce_memory_limit(start, size))) { | 
 | 			if (--ranges) | 
 | 				goto new_range; | 
 | 			else | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		memblock_set_node(start, size, &memblock.memory, nid); | 
 |  | 
 | 		if (--ranges) | 
 | 			goto new_range; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now do the same thing for each MEMBLOCK listed in the | 
 | 	 * ibm,dynamic-memory property in the | 
 | 	 * ibm,dynamic-reconfiguration-memory node. | 
 | 	 */ | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) | 
 | 		parse_drconf_memory(memory); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init setup_nonnuma(void) | 
 | { | 
 | 	unsigned long top_of_ram = memblock_end_of_DRAM(); | 
 | 	unsigned long total_ram = memblock_phys_mem_size(); | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned int nid = 0; | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
 | 	       top_of_ram, total_ram); | 
 | 	printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
 | 	       (top_of_ram - total_ram) >> 20); | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		start_pfn = memblock_region_memory_base_pfn(reg); | 
 | 		end_pfn = memblock_region_memory_end_pfn(reg); | 
 |  | 
 | 		fake_numa_create_new_node(end_pfn, &nid); | 
 | 		memblock_set_node(PFN_PHYS(start_pfn), | 
 | 				  PFN_PHYS(end_pfn - start_pfn), | 
 | 				  &memblock.memory, nid); | 
 | 		node_set_online(nid); | 
 | 	} | 
 | } | 
 |  | 
 | void __init dump_numa_cpu_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int cpu, count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		printk(KERN_DEBUG "Node %d CPUs:", node); | 
 |  | 
 | 		count = 0; | 
 | 		/* | 
 | 		 * If we used a CPU iterator here we would miss printing | 
 | 		 * the holes in the cpumap. | 
 | 		 */ | 
 | 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 
 | 			if (cpumask_test_cpu(cpu, | 
 | 					node_to_cpumask_map[node])) { | 
 | 				if (count == 0) | 
 | 					printk(" %u", cpu); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 1) | 
 | 					printk("-%u", cpu - 1); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 1) | 
 | 			printk("-%u", nr_cpu_ids - 1); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init dump_numa_memory_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long i; | 
 |  | 
 | 		printk(KERN_DEBUG "Node %d Memory:", node); | 
 |  | 
 | 		count = 0; | 
 |  | 
 | 		for (i = 0; i < memblock_end_of_DRAM(); | 
 | 		     i += (1 << SECTION_SIZE_BITS)) { | 
 | 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { | 
 | 				if (count == 0) | 
 | 					printk(" 0x%lx", i); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 0) | 
 | 					printk("-0x%lx", i); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 0) | 
 | 			printk("-0x%lx", i); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static struct notifier_block ppc64_numa_nb = { | 
 | 	.notifier_call = cpu_numa_callback, | 
 | 	.priority = 1 /* Must run before sched domains notifier. */ | 
 | }; | 
 |  | 
 | /* Initialize NODE_DATA for a node on the local memory */ | 
 | static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) | 
 | { | 
 | 	u64 spanned_pages = end_pfn - start_pfn; | 
 | 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); | 
 | 	u64 nd_pa; | 
 | 	void *nd; | 
 | 	int tnid; | 
 |  | 
 | 	if (spanned_pages) | 
 | 		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", | 
 | 			nid, start_pfn << PAGE_SHIFT, | 
 | 			(end_pfn << PAGE_SHIFT) - 1); | 
 | 	else | 
 | 		pr_info("Initmem setup node %d\n", nid); | 
 |  | 
 | 	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); | 
 | 	nd = __va(nd_pa); | 
 |  | 
 | 	/* report and initialize */ | 
 | 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n", | 
 | 		nd_pa, nd_pa + nd_size - 1); | 
 | 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | 
 | 	if (tnid != nid) | 
 | 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid); | 
 |  | 
 | 	node_data[nid] = nd; | 
 | 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | 
 | 	NODE_DATA(nid)->node_id = nid; | 
 | 	NODE_DATA(nid)->node_start_pfn = start_pfn; | 
 | 	NODE_DATA(nid)->node_spanned_pages = spanned_pages; | 
 | } | 
 |  | 
 | void __init initmem_init(void) | 
 | { | 
 | 	int nid, cpu; | 
 |  | 
 | 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	max_pfn = max_low_pfn; | 
 |  | 
 | 	if (parse_numa_properties()) | 
 | 		setup_nonnuma(); | 
 | 	else | 
 | 		dump_numa_memory_topology(); | 
 |  | 
 | 	memblock_dump_all(); | 
 |  | 
 | 	/* | 
 | 	 * Reduce the possible NUMA nodes to the online NUMA nodes, | 
 | 	 * since we do not support node hotplug. This ensures that  we | 
 | 	 * lower the maximum NUMA node ID to what is actually present. | 
 | 	 */ | 
 | 	nodes_and(node_possible_map, node_possible_map, node_online_map); | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 | 		setup_node_data(nid, start_pfn, end_pfn); | 
 | 		sparse_memory_present_with_active_regions(nid); | 
 | 	} | 
 |  | 
 | 	sparse_init(); | 
 |  | 
 | 	setup_node_to_cpumask_map(); | 
 |  | 
 | 	reset_numa_cpu_lookup_table(); | 
 | 	register_cpu_notifier(&ppc64_numa_nb); | 
 | 	/* | 
 | 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs, | 
 | 	 * even before we online them, so that we can use cpu_to_{node,mem} | 
 | 	 * early in boot, cf. smp_prepare_cpus(). | 
 | 	 */ | 
 | 	for_each_present_cpu(cpu) { | 
 | 		numa_setup_cpu((unsigned long)cpu); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init early_numa(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (strstr(p, "off")) | 
 | 		numa_enabled = 0; | 
 |  | 
 | 	if (strstr(p, "debug")) | 
 | 		numa_debug = 1; | 
 |  | 
 | 	p = strstr(p, "fake="); | 
 | 	if (p) | 
 | 		cmdline = p + strlen("fake="); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("numa", early_numa); | 
 |  | 
 | static bool topology_updates_enabled = true; | 
 |  | 
 | static int __init early_topology_updates(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (!strcmp(p, "off")) { | 
 | 		pr_info("Disabling topology updates\n"); | 
 | 		topology_updates_enabled = false; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("topology_updates", early_topology_updates); | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * Find the node associated with a hot added memory section for | 
 |  * memory represented in the device tree by the property | 
 |  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
 |  */ | 
 | static int hot_add_drconf_scn_to_nid(struct device_node *memory, | 
 | 				     unsigned long scn_addr) | 
 | { | 
 | 	const __be32 *dm; | 
 | 	unsigned int drconf_cell_cnt, rc; | 
 | 	unsigned long lmb_size; | 
 | 	struct assoc_arrays aa; | 
 | 	int nid = -1; | 
 |  | 
 | 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm); | 
 | 	if (!drconf_cell_cnt) | 
 | 		return -1; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return -1; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return -1; | 
 |  | 
 | 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if it is reserved or not assigned to | 
 | 		 * this partition */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		if ((scn_addr < drmem.base_addr) | 
 | 		    || (scn_addr >= (drmem.base_addr + lmb_size))) | 
 | 			continue; | 
 |  | 
 | 		nid = of_drconf_to_nid_single(&drmem, &aa); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section for memory | 
 |  * represented in the device tree as a node (i.e. memory@XXXX) for | 
 |  * each memblock. | 
 |  */ | 
 | static int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory; | 
 | 	int nid = -1; | 
 |  | 
 | 	for_each_node_by_type(memory, "memory") { | 
 | 		unsigned long start, size; | 
 | 		int ranges; | 
 | 		const __be32 *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 |  | 
 | 		while (ranges--) { | 
 | 			start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 			size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 			if ((scn_addr < start) || (scn_addr >= (start + size))) | 
 | 				continue; | 
 |  | 
 | 			nid = of_node_to_nid_single(memory); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (nid >= 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	of_node_put(memory); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section.  Section | 
 |  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that | 
 |  * sections are fully contained within a single MEMBLOCK. | 
 |  */ | 
 | int hot_add_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 | 	int nid, found = 0; | 
 |  | 
 | 	if (!numa_enabled || (min_common_depth < 0)) | 
 | 		return first_online_node; | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr); | 
 | 		of_node_put(memory); | 
 | 	} else { | 
 | 		nid = hot_add_node_scn_to_nid(scn_addr); | 
 | 	} | 
 |  | 
 | 	if (nid < 0 || !node_online(nid)) | 
 | 		nid = first_online_node; | 
 |  | 
 | 	if (NODE_DATA(nid)->node_spanned_pages) | 
 | 		return nid; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		if (NODE_DATA(nid)->node_spanned_pages) { | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG_ON(!found); | 
 | 	return nid; | 
 | } | 
 |  | 
 | static u64 hot_add_drconf_memory_max(void) | 
 | { | 
 |         struct device_node *memory = NULL; | 
 |         unsigned int drconf_cell_cnt = 0; | 
 |         u64 lmb_size = 0; | 
 | 	const __be32 *dm = NULL; | 
 |  | 
 |         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 |         if (memory) { | 
 |                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); | 
 |                 lmb_size = of_get_lmb_size(memory); | 
 |                 of_node_put(memory); | 
 |         } | 
 |         return lmb_size * drconf_cell_cnt; | 
 | } | 
 |  | 
 | /* | 
 |  * memory_hotplug_max - return max address of memory that may be added | 
 |  * | 
 |  * This is currently only used on systems that support drconfig memory | 
 |  * hotplug. | 
 |  */ | 
 | u64 memory_hotplug_max(void) | 
 | { | 
 |         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /* Virtual Processor Home Node (VPHN) support */ | 
 | #ifdef CONFIG_PPC_SPLPAR | 
 |  | 
 | #include "vphn.h" | 
 |  | 
 | struct topology_update_data { | 
 | 	struct topology_update_data *next; | 
 | 	unsigned int cpu; | 
 | 	int old_nid; | 
 | 	int new_nid; | 
 | }; | 
 |  | 
 | static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; | 
 | static cpumask_t cpu_associativity_changes_mask; | 
 | static int vphn_enabled; | 
 | static int prrn_enabled; | 
 | static void reset_topology_timer(void); | 
 |  | 
 | /* | 
 |  * Store the current values of the associativity change counters in the | 
 |  * hypervisor. | 
 |  */ | 
 | static void setup_cpu_associativity_change_counters(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* The VPHN feature supports a maximum of 8 reference points */ | 
 | 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		int i; | 
 | 		u8 *counts = vphn_cpu_change_counts[cpu]; | 
 | 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; | 
 |  | 
 | 		for (i = 0; i < distance_ref_points_depth; i++) | 
 | 			counts[i] = hypervisor_counts[i]; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The hypervisor maintains a set of 8 associativity change counters in | 
 |  * the VPA of each cpu that correspond to the associativity levels in the | 
 |  * ibm,associativity-reference-points property. When an associativity | 
 |  * level changes, the corresponding counter is incremented. | 
 |  * | 
 |  * Set a bit in cpu_associativity_changes_mask for each cpu whose home | 
 |  * node associativity levels have changed. | 
 |  * | 
 |  * Returns the number of cpus with unhandled associativity changes. | 
 |  */ | 
 | static int update_cpu_associativity_changes_mask(void) | 
 | { | 
 | 	int cpu; | 
 | 	cpumask_t *changes = &cpu_associativity_changes_mask; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		int i, changed = 0; | 
 | 		u8 *counts = vphn_cpu_change_counts[cpu]; | 
 | 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; | 
 |  | 
 | 		for (i = 0; i < distance_ref_points_depth; i++) { | 
 | 			if (hypervisor_counts[i] != counts[i]) { | 
 | 				counts[i] = hypervisor_counts[i]; | 
 | 				changed = 1; | 
 | 			} | 
 | 		} | 
 | 		if (changed) { | 
 | 			cpumask_or(changes, changes, cpu_sibling_mask(cpu)); | 
 | 			cpu = cpu_last_thread_sibling(cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return cpumask_weight(changes); | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the new associativity information for a virtual processor's | 
 |  * home node. | 
 |  */ | 
 | static long hcall_vphn(unsigned long cpu, __be32 *associativity) | 
 | { | 
 | 	long rc; | 
 | 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; | 
 | 	u64 flags = 1; | 
 | 	int hwcpu = get_hard_smp_processor_id(cpu); | 
 |  | 
 | 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); | 
 | 	vphn_unpack_associativity(retbuf, associativity); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static long vphn_get_associativity(unsigned long cpu, | 
 | 					__be32 *associativity) | 
 | { | 
 | 	long rc; | 
 |  | 
 | 	rc = hcall_vphn(cpu, associativity); | 
 |  | 
 | 	switch (rc) { | 
 | 	case H_FUNCTION: | 
 | 		printk(KERN_INFO | 
 | 			"VPHN is not supported. Disabling polling...\n"); | 
 | 		stop_topology_update(); | 
 | 		break; | 
 | 	case H_HARDWARE: | 
 | 		printk(KERN_ERR | 
 | 			"hcall_vphn() experienced a hardware fault " | 
 | 			"preventing VPHN. Disabling polling...\n"); | 
 | 		stop_topology_update(); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the CPU maps and sysfs entries for a single CPU when its NUMA | 
 |  * characteristics change. This function doesn't perform any locking and is | 
 |  * only safe to call from stop_machine(). | 
 |  */ | 
 | static int update_cpu_topology(void *data) | 
 | { | 
 | 	struct topology_update_data *update; | 
 | 	unsigned long cpu; | 
 |  | 
 | 	if (!data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	for (update = data; update; update = update->next) { | 
 | 		int new_nid = update->new_nid; | 
 | 		if (cpu != update->cpu) | 
 | 			continue; | 
 |  | 
 | 		unmap_cpu_from_node(cpu); | 
 | 		map_cpu_to_node(cpu, new_nid); | 
 | 		set_cpu_numa_node(cpu, new_nid); | 
 | 		set_cpu_numa_mem(cpu, local_memory_node(new_nid)); | 
 | 		vdso_getcpu_init(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int update_lookup_table(void *data) | 
 | { | 
 | 	struct topology_update_data *update; | 
 |  | 
 | 	if (!data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Upon topology update, the numa-cpu lookup table needs to be updated | 
 | 	 * for all threads in the core, including offline CPUs, to ensure that | 
 | 	 * future hotplug operations respect the cpu-to-node associativity | 
 | 	 * properly. | 
 | 	 */ | 
 | 	for (update = data; update; update = update->next) { | 
 | 		int nid, base, j; | 
 |  | 
 | 		nid = update->new_nid; | 
 | 		base = cpu_first_thread_sibling(update->cpu); | 
 |  | 
 | 		for (j = 0; j < threads_per_core; j++) { | 
 | 			update_numa_cpu_lookup_table(base + j, nid); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the node maps and sysfs entries for each cpu whose home node | 
 |  * has changed. Returns 1 when the topology has changed, and 0 otherwise. | 
 |  */ | 
 | int arch_update_cpu_topology(void) | 
 | { | 
 | 	unsigned int cpu, sibling, changed = 0; | 
 | 	struct topology_update_data *updates, *ud; | 
 | 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
 | 	cpumask_t updated_cpus; | 
 | 	struct device *dev; | 
 | 	int weight, new_nid, i = 0; | 
 |  | 
 | 	if (!prrn_enabled && !vphn_enabled) | 
 | 		return 0; | 
 |  | 
 | 	weight = cpumask_weight(&cpu_associativity_changes_mask); | 
 | 	if (!weight) | 
 | 		return 0; | 
 |  | 
 | 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); | 
 | 	if (!updates) | 
 | 		return 0; | 
 |  | 
 | 	cpumask_clear(&updated_cpus); | 
 |  | 
 | 	for_each_cpu(cpu, &cpu_associativity_changes_mask) { | 
 | 		/* | 
 | 		 * If siblings aren't flagged for changes, updates list | 
 | 		 * will be too short. Skip on this update and set for next | 
 | 		 * update. | 
 | 		 */ | 
 | 		if (!cpumask_subset(cpu_sibling_mask(cpu), | 
 | 					&cpu_associativity_changes_mask)) { | 
 | 			pr_info("Sibling bits not set for associativity " | 
 | 					"change, cpu%d\n", cpu); | 
 | 			cpumask_or(&cpu_associativity_changes_mask, | 
 | 					&cpu_associativity_changes_mask, | 
 | 					cpu_sibling_mask(cpu)); | 
 | 			cpu = cpu_last_thread_sibling(cpu); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Use associativity from first thread for all siblings */ | 
 | 		vphn_get_associativity(cpu, associativity); | 
 | 		new_nid = associativity_to_nid(associativity); | 
 | 		if (new_nid < 0 || !node_online(new_nid)) | 
 | 			new_nid = first_online_node; | 
 |  | 
 | 		if (new_nid == numa_cpu_lookup_table[cpu]) { | 
 | 			cpumask_andnot(&cpu_associativity_changes_mask, | 
 | 					&cpu_associativity_changes_mask, | 
 | 					cpu_sibling_mask(cpu)); | 
 | 			cpu = cpu_last_thread_sibling(cpu); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) { | 
 | 			ud = &updates[i++]; | 
 | 			ud->cpu = sibling; | 
 | 			ud->new_nid = new_nid; | 
 | 			ud->old_nid = numa_cpu_lookup_table[sibling]; | 
 | 			cpumask_set_cpu(sibling, &updated_cpus); | 
 | 			if (i < weight) | 
 | 				ud->next = &updates[i]; | 
 | 		} | 
 | 		cpu = cpu_last_thread_sibling(cpu); | 
 | 	} | 
 |  | 
 | 	pr_debug("Topology update for the following CPUs:\n"); | 
 | 	if (cpumask_weight(&updated_cpus)) { | 
 | 		for (ud = &updates[0]; ud; ud = ud->next) { | 
 | 			pr_debug("cpu %d moving from node %d " | 
 | 					  "to %d\n", ud->cpu, | 
 | 					  ud->old_nid, ud->new_nid); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In cases where we have nothing to update (because the updates list | 
 | 	 * is too short or because the new topology is same as the old one), | 
 | 	 * skip invoking update_cpu_topology() via stop-machine(). This is | 
 | 	 * necessary (and not just a fast-path optimization) since stop-machine | 
 | 	 * can end up electing a random CPU to run update_cpu_topology(), and | 
 | 	 * thus trick us into setting up incorrect cpu-node mappings (since | 
 | 	 * 'updates' is kzalloc()'ed). | 
 | 	 * | 
 | 	 * And for the similar reason, we will skip all the following updating. | 
 | 	 */ | 
 | 	if (!cpumask_weight(&updated_cpus)) | 
 | 		goto out; | 
 |  | 
 | 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus); | 
 |  | 
 | 	/* | 
 | 	 * Update the numa-cpu lookup table with the new mappings, even for | 
 | 	 * offline CPUs. It is best to perform this update from the stop- | 
 | 	 * machine context. | 
 | 	 */ | 
 | 	stop_machine(update_lookup_table, &updates[0], | 
 | 					cpumask_of(raw_smp_processor_id())); | 
 |  | 
 | 	for (ud = &updates[0]; ud; ud = ud->next) { | 
 | 		unregister_cpu_under_node(ud->cpu, ud->old_nid); | 
 | 		register_cpu_under_node(ud->cpu, ud->new_nid); | 
 |  | 
 | 		dev = get_cpu_device(ud->cpu); | 
 | 		if (dev) | 
 | 			kobject_uevent(&dev->kobj, KOBJ_CHANGE); | 
 | 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); | 
 | 		changed = 1; | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(updates); | 
 | 	return changed; | 
 | } | 
 |  | 
 | static void topology_work_fn(struct work_struct *work) | 
 | { | 
 | 	rebuild_sched_domains(); | 
 | } | 
 | static DECLARE_WORK(topology_work, topology_work_fn); | 
 |  | 
 | static void topology_schedule_update(void) | 
 | { | 
 | 	schedule_work(&topology_work); | 
 | } | 
 |  | 
 | static void topology_timer_fn(unsigned long ignored) | 
 | { | 
 | 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) | 
 | 		topology_schedule_update(); | 
 | 	else if (vphn_enabled) { | 
 | 		if (update_cpu_associativity_changes_mask() > 0) | 
 | 			topology_schedule_update(); | 
 | 		reset_topology_timer(); | 
 | 	} | 
 | } | 
 | static struct timer_list topology_timer = | 
 | 	TIMER_INITIALIZER(topology_timer_fn, 0, 0); | 
 |  | 
 | static void reset_topology_timer(void) | 
 | { | 
 | 	topology_timer.data = 0; | 
 | 	topology_timer.expires = jiffies + 60 * HZ; | 
 | 	mod_timer(&topology_timer, topology_timer.expires); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void stage_topology_update(int core_id) | 
 | { | 
 | 	cpumask_or(&cpu_associativity_changes_mask, | 
 | 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); | 
 | 	reset_topology_timer(); | 
 | } | 
 |  | 
 | static int dt_update_callback(struct notifier_block *nb, | 
 | 				unsigned long action, void *data) | 
 | { | 
 | 	struct of_reconfig_data *update = data; | 
 | 	int rc = NOTIFY_DONE; | 
 |  | 
 | 	switch (action) { | 
 | 	case OF_RECONFIG_UPDATE_PROPERTY: | 
 | 		if (!of_prop_cmp(update->dn->type, "cpu") && | 
 | 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) { | 
 | 			u32 core_id; | 
 | 			of_property_read_u32(update->dn, "reg", &core_id); | 
 | 			stage_topology_update(core_id); | 
 | 			rc = NOTIFY_OK; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static struct notifier_block dt_update_nb = { | 
 | 	.notifier_call = dt_update_callback, | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Start polling for associativity changes. | 
 |  */ | 
 | int start_topology_update(void) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_PRRN)) { | 
 | 		if (!prrn_enabled) { | 
 | 			prrn_enabled = 1; | 
 | 			vphn_enabled = 0; | 
 | #ifdef CONFIG_SMP | 
 | 			rc = of_reconfig_notifier_register(&dt_update_nb); | 
 | #endif | 
 | 		} | 
 | 	} else if (firmware_has_feature(FW_FEATURE_VPHN) && | 
 | 		   lppaca_shared_proc(get_lppaca())) { | 
 | 		if (!vphn_enabled) { | 
 | 			prrn_enabled = 0; | 
 | 			vphn_enabled = 1; | 
 | 			setup_cpu_associativity_change_counters(); | 
 | 			init_timer_deferrable(&topology_timer); | 
 | 			reset_topology_timer(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Disable polling for VPHN associativity changes. | 
 |  */ | 
 | int stop_topology_update(void) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (prrn_enabled) { | 
 | 		prrn_enabled = 0; | 
 | #ifdef CONFIG_SMP | 
 | 		rc = of_reconfig_notifier_unregister(&dt_update_nb); | 
 | #endif | 
 | 	} else if (vphn_enabled) { | 
 | 		vphn_enabled = 0; | 
 | 		rc = del_timer_sync(&topology_timer); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | int prrn_is_enabled(void) | 
 | { | 
 | 	return prrn_enabled; | 
 | } | 
 |  | 
 | static int topology_read(struct seq_file *file, void *v) | 
 | { | 
 | 	if (vphn_enabled || prrn_enabled) | 
 | 		seq_puts(file, "on\n"); | 
 | 	else | 
 | 		seq_puts(file, "off\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int topology_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return single_open(file, topology_read, NULL); | 
 | } | 
 |  | 
 | static ssize_t topology_write(struct file *file, const char __user *buf, | 
 | 			      size_t count, loff_t *off) | 
 | { | 
 | 	char kbuf[4]; /* "on" or "off" plus null. */ | 
 | 	int read_len; | 
 |  | 
 | 	read_len = count < 3 ? count : 3; | 
 | 	if (copy_from_user(kbuf, buf, read_len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	kbuf[read_len] = '\0'; | 
 |  | 
 | 	if (!strncmp(kbuf, "on", 2)) | 
 | 		start_topology_update(); | 
 | 	else if (!strncmp(kbuf, "off", 3)) | 
 | 		stop_topology_update(); | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct file_operations topology_ops = { | 
 | 	.read = seq_read, | 
 | 	.write = topology_write, | 
 | 	.open = topology_open, | 
 | 	.release = single_release | 
 | }; | 
 |  | 
 | static int topology_update_init(void) | 
 | { | 
 | 	/* Do not poll for changes if disabled at boot */ | 
 | 	if (topology_updates_enabled) | 
 | 		start_topology_update(); | 
 |  | 
 | 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 | device_initcall(topology_update_init); | 
 | #endif /* CONFIG_PPC_SPLPAR */ |