|  | /* | 
|  | * ARC Cache Management | 
|  | * | 
|  | * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com) | 
|  | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/mmu_context.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cachectl.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | static int l2_line_sz; | 
|  | int ioc_exists; | 
|  | volatile int slc_enable = 1, ioc_enable = 1; | 
|  | unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */ | 
|  |  | 
|  | void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz, const int cacheop); | 
|  |  | 
|  | void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz); | 
|  | void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz); | 
|  | void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz); | 
|  |  | 
|  | char *arc_cache_mumbojumbo(int c, char *buf, int len) | 
|  | { | 
|  | int n = 0; | 
|  | struct cpuinfo_arc_cache *p; | 
|  |  | 
|  | #define PR_CACHE(p, cfg, str)						\ | 
|  | if (!(p)->ver)							\ | 
|  | n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\ | 
|  | else								\ | 
|  | n += scnprintf(buf + n, len - n,			\ | 
|  | str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\ | 
|  | (p)->sz_k, (p)->assoc, (p)->line_len,		\ | 
|  | (p)->vipt ? "VIPT" : "PIPT",			\ | 
|  | (p)->alias ? " aliasing" : "",			\ | 
|  | IS_USED_CFG(cfg)); | 
|  |  | 
|  | PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache"); | 
|  | PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache"); | 
|  |  | 
|  | if (!is_isa_arcv2()) | 
|  | return buf; | 
|  |  | 
|  | p = &cpuinfo_arc700[c].slc; | 
|  | if (p->ver) | 
|  | n += scnprintf(buf + n, len - n, | 
|  | "SLC\t\t: %uK, %uB Line%s\n", | 
|  | p->sz_k, p->line_len, IS_USED_RUN(slc_enable)); | 
|  |  | 
|  | if (ioc_exists) | 
|  | n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n", | 
|  | IS_DISABLED_RUN(ioc_enable)); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the Cache Build Confuration Registers, Decode them and save into | 
|  | * the cpuinfo structure for later use. | 
|  | * No Validation done here, simply read/convert the BCRs | 
|  | */ | 
|  | static void read_decode_cache_bcr_arcv2(int cpu) | 
|  | { | 
|  | struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc; | 
|  | struct bcr_generic uncached_space; | 
|  | struct bcr_generic sbcr; | 
|  |  | 
|  | struct bcr_slc_cfg { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int pad:24, way:2, lsz:2, sz:4; | 
|  | #else | 
|  | unsigned int sz:4, lsz:2, way:2, pad:24; | 
|  | #endif | 
|  | } slc_cfg; | 
|  |  | 
|  | struct bcr_clust_cfg { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8; | 
|  | #else | 
|  | unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7; | 
|  | #endif | 
|  | } cbcr; | 
|  |  | 
|  | READ_BCR(ARC_REG_SLC_BCR, sbcr); | 
|  | if (sbcr.ver) { | 
|  | READ_BCR(ARC_REG_SLC_CFG, slc_cfg); | 
|  | p_slc->ver = sbcr.ver; | 
|  | p_slc->sz_k = 128 << slc_cfg.sz; | 
|  | l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64; | 
|  | } | 
|  |  | 
|  | READ_BCR(ARC_REG_CLUSTER_BCR, cbcr); | 
|  | if (cbcr.c && ioc_enable) | 
|  | ioc_exists = 1; | 
|  |  | 
|  | /* Legacy Data Uncached BCR is deprecated from v3 onwards */ | 
|  | READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space); | 
|  | if (uncached_space.ver > 2) | 
|  | perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000; | 
|  | } | 
|  |  | 
|  | void read_decode_cache_bcr(void) | 
|  | { | 
|  | struct cpuinfo_arc_cache *p_ic, *p_dc; | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct bcr_cache { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int pad:12, line_len:4, sz:4, config:4, ver:8; | 
|  | #else | 
|  | unsigned int ver:8, config:4, sz:4, line_len:4, pad:12; | 
|  | #endif | 
|  | } ibcr, dbcr; | 
|  |  | 
|  | p_ic = &cpuinfo_arc700[cpu].icache; | 
|  | READ_BCR(ARC_REG_IC_BCR, ibcr); | 
|  |  | 
|  | if (!ibcr.ver) | 
|  | goto dc_chk; | 
|  |  | 
|  | if (ibcr.ver <= 3) { | 
|  | BUG_ON(ibcr.config != 3); | 
|  | p_ic->assoc = 2;		/* Fixed to 2w set assoc */ | 
|  | } else if (ibcr.ver >= 4) { | 
|  | p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */ | 
|  | } | 
|  |  | 
|  | p_ic->line_len = 8 << ibcr.line_len; | 
|  | p_ic->sz_k = 1 << (ibcr.sz - 1); | 
|  | p_ic->ver = ibcr.ver; | 
|  | p_ic->vipt = 1; | 
|  | p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1; | 
|  |  | 
|  | dc_chk: | 
|  | p_dc = &cpuinfo_arc700[cpu].dcache; | 
|  | READ_BCR(ARC_REG_DC_BCR, dbcr); | 
|  |  | 
|  | if (!dbcr.ver) | 
|  | goto slc_chk; | 
|  |  | 
|  | if (dbcr.ver <= 3) { | 
|  | BUG_ON(dbcr.config != 2); | 
|  | p_dc->assoc = 4;		/* Fixed to 4w set assoc */ | 
|  | p_dc->vipt = 1; | 
|  | p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1; | 
|  | } else if (dbcr.ver >= 4) { | 
|  | p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */ | 
|  | p_dc->vipt = 0; | 
|  | p_dc->alias = 0;		/* PIPT so can't VIPT alias */ | 
|  | } | 
|  |  | 
|  | p_dc->line_len = 16 << dbcr.line_len; | 
|  | p_dc->sz_k = 1 << (dbcr.sz - 1); | 
|  | p_dc->ver = dbcr.ver; | 
|  |  | 
|  | slc_chk: | 
|  | if (is_isa_arcv2()) | 
|  | read_decode_cache_bcr_arcv2(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Line Operation on {I,D}-Cache | 
|  | */ | 
|  |  | 
|  | #define OP_INV		0x1 | 
|  | #define OP_FLUSH	0x2 | 
|  | #define OP_FLUSH_N_INV	0x3 | 
|  | #define OP_INV_IC	0x4 | 
|  |  | 
|  | /* | 
|  | *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3) | 
|  | * | 
|  | * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag. | 
|  | * The orig Cache Management Module "CDU" only required paddr to invalidate a | 
|  | * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry. | 
|  | * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching | 
|  | * the exact same line. | 
|  | * | 
|  | * However for larger Caches (way-size > page-size) - i.e. in Aliasing config, | 
|  | * paddr alone could not be used to correctly index the cache. | 
|  | * | 
|  | * ------------------ | 
|  | * MMU v1/v2 (Fixed Page Size 8k) | 
|  | * ------------------ | 
|  | * The solution was to provide CDU with these additonal vaddr bits. These | 
|  | * would be bits [x:13], x would depend on cache-geometry, 13 comes from | 
|  | * standard page size of 8k. | 
|  | * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits | 
|  | * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the | 
|  | * orig 5 bits of paddr were anyways ignored by CDU line ops, as they | 
|  | * represent the offset within cache-line. The adv of using this "clumsy" | 
|  | * interface for additional info was no new reg was needed in CDU programming | 
|  | * model. | 
|  | * | 
|  | * 17:13 represented the max num of bits passable, actual bits needed were | 
|  | * fewer, based on the num-of-aliases possible. | 
|  | * -for 2 alias possibility, only bit 13 needed (32K cache) | 
|  | * -for 4 alias possibility, bits 14:13 needed (64K cache) | 
|  | * | 
|  | * ------------------ | 
|  | * MMU v3 | 
|  | * ------------------ | 
|  | * This ver of MMU supports variable page sizes (1k-16k): although Linux will | 
|  | * only support 8k (default), 16k and 4k. | 
|  | * However from hardware perspective, smaller page sizes aggravate aliasing | 
|  | * meaning more vaddr bits needed to disambiguate the cache-line-op ; | 
|  | * the existing scheme of piggybacking won't work for certain configurations. | 
|  | * Two new registers IC_PTAG and DC_PTAG inttoduced. | 
|  | * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs | 
|  | */ | 
|  |  | 
|  | static inline | 
|  | void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz, const int op) | 
|  | { | 
|  | unsigned int aux_cmd; | 
|  | int num_lines; | 
|  | const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; | 
|  |  | 
|  | if (op == OP_INV_IC) { | 
|  | aux_cmd = ARC_REG_IC_IVIL; | 
|  | } else { | 
|  | /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ | 
|  | aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; | 
|  | } | 
|  |  | 
|  | /* Ensure we properly floor/ceil the non-line aligned/sized requests | 
|  | * and have @paddr - aligned to cache line and integral @num_lines. | 
|  | * This however can be avoided for page sized since: | 
|  | *  -@paddr will be cache-line aligned already (being page aligned) | 
|  | *  -@sz will be integral multiple of line size (being page sized). | 
|  | */ | 
|  | if (!full_page) { | 
|  | sz += paddr & ~CACHE_LINE_MASK; | 
|  | paddr &= CACHE_LINE_MASK; | 
|  | vaddr &= CACHE_LINE_MASK; | 
|  | } | 
|  |  | 
|  | num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); | 
|  |  | 
|  | /* MMUv2 and before: paddr contains stuffed vaddrs bits */ | 
|  | paddr |= (vaddr >> PAGE_SHIFT) & 0x1F; | 
|  |  | 
|  | while (num_lines-- > 0) { | 
|  | write_aux_reg(aux_cmd, paddr); | 
|  | paddr += L1_CACHE_BYTES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For ARC700 MMUv3 I-cache and D-cache flushes | 
|  | * Also reused for HS38 aliasing I-cache configuration | 
|  | */ | 
|  | static inline | 
|  | void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz, const int op) | 
|  | { | 
|  | unsigned int aux_cmd, aux_tag; | 
|  | int num_lines; | 
|  | const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; | 
|  |  | 
|  | if (op == OP_INV_IC) { | 
|  | aux_cmd = ARC_REG_IC_IVIL; | 
|  | aux_tag = ARC_REG_IC_PTAG; | 
|  | } else { | 
|  | aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; | 
|  | aux_tag = ARC_REG_DC_PTAG; | 
|  | } | 
|  |  | 
|  | /* Ensure we properly floor/ceil the non-line aligned/sized requests | 
|  | * and have @paddr - aligned to cache line and integral @num_lines. | 
|  | * This however can be avoided for page sized since: | 
|  | *  -@paddr will be cache-line aligned already (being page aligned) | 
|  | *  -@sz will be integral multiple of line size (being page sized). | 
|  | */ | 
|  | if (!full_page) { | 
|  | sz += paddr & ~CACHE_LINE_MASK; | 
|  | paddr &= CACHE_LINE_MASK; | 
|  | vaddr &= CACHE_LINE_MASK; | 
|  | } | 
|  | num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); | 
|  |  | 
|  | /* | 
|  | * MMUv3, cache ops require paddr in PTAG reg | 
|  | * if V-P const for loop, PTAG can be written once outside loop | 
|  | */ | 
|  | if (full_page) | 
|  | write_aux_reg(aux_tag, paddr); | 
|  |  | 
|  | /* | 
|  | * This is technically for MMU v4, using the MMU v3 programming model | 
|  | * Special work for HS38 aliasing I-cache configuration with PAE40 | 
|  | *   - upper 8 bits of paddr need to be written into PTAG_HI | 
|  | *   - (and needs to be written before the lower 32 bits) | 
|  | * Note that PTAG_HI is hoisted outside the line loop | 
|  | */ | 
|  | if (is_pae40_enabled() && op == OP_INV_IC) | 
|  | write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); | 
|  |  | 
|  | while (num_lines-- > 0) { | 
|  | if (!full_page) { | 
|  | write_aux_reg(aux_tag, paddr); | 
|  | paddr += L1_CACHE_BYTES; | 
|  | } | 
|  |  | 
|  | write_aux_reg(aux_cmd, vaddr); | 
|  | vaddr += L1_CACHE_BYTES; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT | 
|  | * Here's how cache ops are implemented | 
|  | * | 
|  | *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL) | 
|  | *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL) | 
|  | *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG | 
|  | *    respectively, similar to MMU v3 programming model, hence | 
|  | *    __cache_line_loop_v3() is used) | 
|  | * | 
|  | * If PAE40 is enabled, independent of aliasing considerations, the higher bits | 
|  | * needs to be written into PTAG_HI | 
|  | */ | 
|  | static inline | 
|  | void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz, const int cacheop) | 
|  | { | 
|  | unsigned int aux_cmd; | 
|  | int num_lines; | 
|  | const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE; | 
|  |  | 
|  | if (cacheop == OP_INV_IC) { | 
|  | aux_cmd = ARC_REG_IC_IVIL; | 
|  | } else { | 
|  | /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ | 
|  | aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; | 
|  | } | 
|  |  | 
|  | /* Ensure we properly floor/ceil the non-line aligned/sized requests | 
|  | * and have @paddr - aligned to cache line and integral @num_lines. | 
|  | * This however can be avoided for page sized since: | 
|  | *  -@paddr will be cache-line aligned already (being page aligned) | 
|  | *  -@sz will be integral multiple of line size (being page sized). | 
|  | */ | 
|  | if (!full_page_op) { | 
|  | sz += paddr & ~CACHE_LINE_MASK; | 
|  | paddr &= CACHE_LINE_MASK; | 
|  | } | 
|  |  | 
|  | num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); | 
|  |  | 
|  | /* | 
|  | * For HS38 PAE40 configuration | 
|  | *   - upper 8 bits of paddr need to be written into PTAG_HI | 
|  | *   - (and needs to be written before the lower 32 bits) | 
|  | */ | 
|  | if (is_pae40_enabled()) { | 
|  | if (cacheop == OP_INV_IC) | 
|  | /* | 
|  | * Non aliasing I-cache in HS38, | 
|  | * aliasing I-cache handled in __cache_line_loop_v3() | 
|  | */ | 
|  | write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); | 
|  | else | 
|  | write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); | 
|  | } | 
|  |  | 
|  | while (num_lines-- > 0) { | 
|  | write_aux_reg(aux_cmd, paddr); | 
|  | paddr += L1_CACHE_BYTES; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if (CONFIG_ARC_MMU_VER < 3) | 
|  | #define __cache_line_loop	__cache_line_loop_v2 | 
|  | #elif (CONFIG_ARC_MMU_VER == 3) | 
|  | #define __cache_line_loop	__cache_line_loop_v3 | 
|  | #elif (CONFIG_ARC_MMU_VER > 3) | 
|  | #define __cache_line_loop	__cache_line_loop_v4 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARC_HAS_DCACHE | 
|  |  | 
|  | /*************************************************************** | 
|  | * Machine specific helpers for Entire D-Cache or Per Line ops | 
|  | */ | 
|  |  | 
|  | static inline void __before_dc_op(const int op) | 
|  | { | 
|  | if (op == OP_FLUSH_N_INV) { | 
|  | /* Dcache provides 2 cmd: FLUSH or INV | 
|  | * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE | 
|  | * flush-n-inv is achieved by INV cmd but with IM=1 | 
|  | * So toggle INV sub-mode depending on op request and default | 
|  | */ | 
|  | const unsigned int ctl = ARC_REG_DC_CTRL; | 
|  | write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __after_dc_op(const int op) | 
|  | { | 
|  | if (op & OP_FLUSH) { | 
|  | const unsigned int ctl = ARC_REG_DC_CTRL; | 
|  | unsigned int reg; | 
|  |  | 
|  | /* flush / flush-n-inv both wait */ | 
|  | while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS) | 
|  | ; | 
|  |  | 
|  | /* Switch back to default Invalidate mode */ | 
|  | if (op == OP_FLUSH_N_INV) | 
|  | write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Operation on Entire D-Cache | 
|  | * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV} | 
|  | * Note that constant propagation ensures all the checks are gone | 
|  | * in generated code | 
|  | */ | 
|  | static inline void __dc_entire_op(const int op) | 
|  | { | 
|  | int aux; | 
|  |  | 
|  | __before_dc_op(op); | 
|  |  | 
|  | if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */ | 
|  | aux = ARC_REG_DC_IVDC; | 
|  | else | 
|  | aux = ARC_REG_DC_FLSH; | 
|  |  | 
|  | write_aux_reg(aux, 0x1); | 
|  |  | 
|  | __after_dc_op(op); | 
|  | } | 
|  |  | 
|  | /* For kernel mappings cache operation: index is same as paddr */ | 
|  | #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op) | 
|  |  | 
|  | /* | 
|  | * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback) | 
|  | */ | 
|  | static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz, const int op) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | __before_dc_op(op); | 
|  |  | 
|  | __cache_line_loop(paddr, vaddr, sz, op); | 
|  |  | 
|  | __after_dc_op(op); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define __dc_entire_op(op) | 
|  | #define __dc_line_op(paddr, vaddr, sz, op) | 
|  | #define __dc_line_op_k(paddr, sz, op) | 
|  |  | 
|  | #endif /* CONFIG_ARC_HAS_DCACHE */ | 
|  |  | 
|  | #ifdef CONFIG_ARC_HAS_ICACHE | 
|  |  | 
|  | static inline void __ic_entire_inv(void) | 
|  | { | 
|  | write_aux_reg(ARC_REG_IC_IVIC, 1); | 
|  | read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */ | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  |  | 
|  | #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s) | 
|  |  | 
|  | #else | 
|  |  | 
|  | struct ic_inv_args { | 
|  | phys_addr_t paddr, vaddr; | 
|  | int sz; | 
|  | }; | 
|  |  | 
|  | static void __ic_line_inv_vaddr_helper(void *info) | 
|  | { | 
|  | struct ic_inv_args *ic_inv = info; | 
|  |  | 
|  | __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz); | 
|  | } | 
|  |  | 
|  | static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr, | 
|  | unsigned long sz) | 
|  | { | 
|  | struct ic_inv_args ic_inv = { | 
|  | .paddr = paddr, | 
|  | .vaddr = vaddr, | 
|  | .sz    = sz | 
|  | }; | 
|  |  | 
|  | on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | #else	/* !CONFIG_ARC_HAS_ICACHE */ | 
|  |  | 
|  | #define __ic_entire_inv() | 
|  | #define __ic_line_inv_vaddr(pstart, vstart, sz) | 
|  |  | 
|  | #endif /* CONFIG_ARC_HAS_ICACHE */ | 
|  |  | 
|  | noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op) | 
|  | { | 
|  | #ifdef CONFIG_ISA_ARCV2 | 
|  | /* | 
|  | * SLC is shared between all cores and concurrent aux operations from | 
|  | * multiple cores need to be serialized using a spinlock | 
|  | * A concurrent operation can be silently ignored and/or the old/new | 
|  | * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop | 
|  | * below) | 
|  | */ | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | unsigned long flags; | 
|  | unsigned int ctrl; | 
|  |  | 
|  | spin_lock_irqsave(&lock, flags); | 
|  |  | 
|  | /* | 
|  | * The Region Flush operation is specified by CTRL.RGN_OP[11..9] | 
|  | *  - b'000 (default) is Flush, | 
|  | *  - b'001 is Invalidate if CTRL.IM == 0 | 
|  | *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1 | 
|  | */ | 
|  | ctrl = read_aux_reg(ARC_REG_SLC_CTRL); | 
|  |  | 
|  | /* Don't rely on default value of IM bit */ | 
|  | if (!(op & OP_FLUSH))		/* i.e. OP_INV */ | 
|  | ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */ | 
|  | else | 
|  | ctrl |= SLC_CTRL_IM; | 
|  |  | 
|  | if (op & OP_INV) | 
|  | ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */ | 
|  | else | 
|  | ctrl &= ~SLC_CTRL_RGN_OP_INV; | 
|  |  | 
|  | write_aux_reg(ARC_REG_SLC_CTRL, ctrl); | 
|  |  | 
|  | /* | 
|  | * Lower bits are ignored, no need to clip | 
|  | * END needs to be setup before START (latter triggers the operation) | 
|  | * END can't be same as START, so add (l2_line_sz - 1) to sz | 
|  | */ | 
|  | write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1)); | 
|  | write_aux_reg(ARC_REG_SLC_RGN_START, paddr); | 
|  |  | 
|  | while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); | 
|  |  | 
|  | spin_unlock_irqrestore(&lock, flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*********************************************************** | 
|  | * Exported APIs | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Handle cache congruency of kernel and userspace mappings of page when kernel | 
|  | * writes-to/reads-from | 
|  | * | 
|  | * The idea is to defer flushing of kernel mapping after a WRITE, possible if: | 
|  | *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent | 
|  | *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache) | 
|  | *  -In SMP, if hardware caches are coherent | 
|  | * | 
|  | * There's a corollary case, where kernel READs from a userspace mapped page. | 
|  | * If the U-mapping is not congruent to to K-mapping, former needs flushing. | 
|  | */ | 
|  | void flush_dcache_page(struct page *page) | 
|  | { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | if (!cache_is_vipt_aliasing()) { | 
|  | clear_bit(PG_dc_clean, &page->flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* don't handle anon pages here */ | 
|  | mapping = page_mapping(page); | 
|  | if (!mapping) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * pagecache page, file not yet mapped to userspace | 
|  | * Make a note that K-mapping is dirty | 
|  | */ | 
|  | if (!mapping_mapped(mapping)) { | 
|  | clear_bit(PG_dc_clean, &page->flags); | 
|  | } else if (page_mapcount(page)) { | 
|  |  | 
|  | /* kernel reading from page with U-mapping */ | 
|  | phys_addr_t paddr = (unsigned long)page_address(page); | 
|  | unsigned long vaddr = page->index << PAGE_SHIFT; | 
|  |  | 
|  | if (addr_not_cache_congruent(paddr, vaddr)) | 
|  | __flush_dcache_page(paddr, vaddr); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(flush_dcache_page); | 
|  |  | 
|  | /* | 
|  | * DMA ops for systems with L1 cache only | 
|  | * Make memory coherent with L1 cache by flushing/invalidating L1 lines | 
|  | */ | 
|  | static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_FLUSH_N_INV); | 
|  | } | 
|  |  | 
|  | static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_INV); | 
|  | } | 
|  |  | 
|  | static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_FLUSH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA ops for systems with both L1 and L2 caches, but without IOC | 
|  | * Both L1 and L2 lines need to be explicitly flushed/invalidated | 
|  | */ | 
|  | static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_FLUSH_N_INV); | 
|  | slc_op(start, sz, OP_FLUSH_N_INV); | 
|  | } | 
|  |  | 
|  | static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_INV); | 
|  | slc_op(start, sz, OP_INV); | 
|  | } | 
|  |  | 
|  | static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dc_line_op_k(start, sz, OP_FLUSH); | 
|  | slc_op(start, sz, OP_FLUSH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA ops for systems with IOC | 
|  | * IOC hardware snoops all DMA traffic keeping the caches consistent with | 
|  | * memory - eliding need for any explicit cache maintenance of DMA buffers | 
|  | */ | 
|  | static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {} | 
|  | static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {} | 
|  | static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {} | 
|  |  | 
|  | /* | 
|  | * Exported DMA API | 
|  | */ | 
|  | void dma_cache_wback_inv(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dma_cache_wback_inv(start, sz); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_cache_wback_inv); | 
|  |  | 
|  | void dma_cache_inv(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dma_cache_inv(start, sz); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_cache_inv); | 
|  |  | 
|  | void dma_cache_wback(phys_addr_t start, unsigned long sz) | 
|  | { | 
|  | __dma_cache_wback(start, sz); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_cache_wback); | 
|  |  | 
|  | /* | 
|  | * This is API for making I/D Caches consistent when modifying | 
|  | * kernel code (loadable modules, kprobes, kgdb...) | 
|  | * This is called on insmod, with kernel virtual address for CODE of | 
|  | * the module. ARC cache maintenance ops require PHY address thus we | 
|  | * need to convert vmalloc addr to PHY addr | 
|  | */ | 
|  | void flush_icache_range(unsigned long kstart, unsigned long kend) | 
|  | { | 
|  | unsigned int tot_sz; | 
|  |  | 
|  | WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__); | 
|  |  | 
|  | /* Shortcut for bigger flush ranges. | 
|  | * Here we don't care if this was kernel virtual or phy addr | 
|  | */ | 
|  | tot_sz = kend - kstart; | 
|  | if (tot_sz > PAGE_SIZE) { | 
|  | flush_cache_all(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Case: Kernel Phy addr (0x8000_0000 onwards) */ | 
|  | if (likely(kstart > PAGE_OFFSET)) { | 
|  | /* | 
|  | * The 2nd arg despite being paddr will be used to index icache | 
|  | * This is OK since no alternate virtual mappings will exist | 
|  | * given the callers for this case: kprobe/kgdb in built-in | 
|  | * kernel code only. | 
|  | */ | 
|  | __sync_icache_dcache(kstart, kstart, kend - kstart); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff) | 
|  | * (1) ARC Cache Maintenance ops only take Phy addr, hence special | 
|  | *     handling of kernel vaddr. | 
|  | * | 
|  | * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already), | 
|  | *     it still needs to handle  a 2 page scenario, where the range | 
|  | *     straddles across 2 virtual pages and hence need for loop | 
|  | */ | 
|  | while (tot_sz > 0) { | 
|  | unsigned int off, sz; | 
|  | unsigned long phy, pfn; | 
|  |  | 
|  | off = kstart % PAGE_SIZE; | 
|  | pfn = vmalloc_to_pfn((void *)kstart); | 
|  | phy = (pfn << PAGE_SHIFT) + off; | 
|  | sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off); | 
|  | __sync_icache_dcache(phy, kstart, sz); | 
|  | kstart += sz; | 
|  | tot_sz -= sz; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(flush_icache_range); | 
|  |  | 
|  | /* | 
|  | * General purpose helper to make I and D cache lines consistent. | 
|  | * @paddr is phy addr of region | 
|  | * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc) | 
|  | *    However in one instance, when called by kprobe (for a breakpt in | 
|  | *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will | 
|  | *    use a paddr to index the cache (despite VIPT). This is fine since since a | 
|  | *    builtin kernel page will not have any virtual mappings. | 
|  | *    kprobe on loadable module will be kernel vaddr. | 
|  | */ | 
|  | void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len) | 
|  | { | 
|  | __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV); | 
|  | __ic_line_inv_vaddr(paddr, vaddr, len); | 
|  | } | 
|  |  | 
|  | /* wrapper to compile time eliminate alignment checks in flush loop */ | 
|  | void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr) | 
|  | { | 
|  | __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wrapper to clearout kernel or userspace mappings of a page | 
|  | * For kernel mappings @vaddr == @paddr | 
|  | */ | 
|  | void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr) | 
|  | { | 
|  | __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV); | 
|  | } | 
|  |  | 
|  | noinline void flush_cache_all(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | __ic_entire_inv(); | 
|  | __dc_entire_op(OP_FLUSH_N_INV); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING | 
|  |  | 
|  | void flush_cache_mm(struct mm_struct *mm) | 
|  | { | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | unsigned int paddr = pfn << PAGE_SHIFT; | 
|  |  | 
|  | u_vaddr &= PAGE_MASK; | 
|  |  | 
|  | __flush_dcache_page(paddr, u_vaddr); | 
|  |  | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | __inv_icache_page(paddr, u_vaddr); | 
|  | } | 
|  |  | 
|  | void flush_cache_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | void flush_anon_page(struct vm_area_struct *vma, struct page *page, | 
|  | unsigned long u_vaddr) | 
|  | { | 
|  | /* TBD: do we really need to clear the kernel mapping */ | 
|  | __flush_dcache_page(page_address(page), u_vaddr); | 
|  | __flush_dcache_page(page_address(page), page_address(page)); | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void copy_user_highpage(struct page *to, struct page *from, | 
|  | unsigned long u_vaddr, struct vm_area_struct *vma) | 
|  | { | 
|  | void *kfrom = kmap_atomic(from); | 
|  | void *kto = kmap_atomic(to); | 
|  | int clean_src_k_mappings = 0; | 
|  |  | 
|  | /* | 
|  | * If SRC page was already mapped in userspace AND it's U-mapping is | 
|  | * not congruent with K-mapping, sync former to physical page so that | 
|  | * K-mapping in memcpy below, sees the right data | 
|  | * | 
|  | * Note that while @u_vaddr refers to DST page's userspace vaddr, it is | 
|  | * equally valid for SRC page as well | 
|  | * | 
|  | * For !VIPT cache, all of this gets compiled out as | 
|  | * addr_not_cache_congruent() is 0 | 
|  | */ | 
|  | if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) { | 
|  | __flush_dcache_page((unsigned long)kfrom, u_vaddr); | 
|  | clean_src_k_mappings = 1; | 
|  | } | 
|  |  | 
|  | copy_page(kto, kfrom); | 
|  |  | 
|  | /* | 
|  | * Mark DST page K-mapping as dirty for a later finalization by | 
|  | * update_mmu_cache(). Although the finalization could have been done | 
|  | * here as well (given that both vaddr/paddr are available). | 
|  | * But update_mmu_cache() already has code to do that for other | 
|  | * non copied user pages (e.g. read faults which wire in pagecache page | 
|  | * directly). | 
|  | */ | 
|  | clear_bit(PG_dc_clean, &to->flags); | 
|  |  | 
|  | /* | 
|  | * if SRC was already usermapped and non-congruent to kernel mapping | 
|  | * sync the kernel mapping back to physical page | 
|  | */ | 
|  | if (clean_src_k_mappings) { | 
|  | __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom); | 
|  | set_bit(PG_dc_clean, &from->flags); | 
|  | } else { | 
|  | clear_bit(PG_dc_clean, &from->flags); | 
|  | } | 
|  |  | 
|  | kunmap_atomic(kto); | 
|  | kunmap_atomic(kfrom); | 
|  | } | 
|  |  | 
|  | void clear_user_page(void *to, unsigned long u_vaddr, struct page *page) | 
|  | { | 
|  | clear_page(to); | 
|  | clear_bit(PG_dc_clean, &page->flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /********************************************************************** | 
|  | * Explicit Cache flush request from user space via syscall | 
|  | * Needed for JITs which generate code on the fly | 
|  | */ | 
|  | SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags) | 
|  | { | 
|  | /* TBD: optimize this */ | 
|  | flush_cache_all(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void arc_cache_init(void) | 
|  | { | 
|  | unsigned int __maybe_unused cpu = smp_processor_id(); | 
|  | char str[256]; | 
|  |  | 
|  | printk(arc_cache_mumbojumbo(0, str, sizeof(str))); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) { | 
|  | struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache; | 
|  |  | 
|  | if (!ic->ver) | 
|  | panic("cache support enabled but non-existent cache\n"); | 
|  |  | 
|  | if (ic->line_len != L1_CACHE_BYTES) | 
|  | panic("ICache line [%d] != kernel Config [%d]", | 
|  | ic->line_len, L1_CACHE_BYTES); | 
|  |  | 
|  | if (ic->ver != CONFIG_ARC_MMU_VER) | 
|  | panic("Cache ver [%d] doesn't match MMU ver [%d]\n", | 
|  | ic->ver, CONFIG_ARC_MMU_VER); | 
|  |  | 
|  | /* | 
|  | * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG | 
|  | * pair to provide vaddr/paddr respectively, just as in MMU v3 | 
|  | */ | 
|  | if (is_isa_arcv2() && ic->alias) | 
|  | _cache_line_loop_ic_fn = __cache_line_loop_v3; | 
|  | else | 
|  | _cache_line_loop_ic_fn = __cache_line_loop; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) { | 
|  | struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache; | 
|  |  | 
|  | if (!dc->ver) | 
|  | panic("cache support enabled but non-existent cache\n"); | 
|  |  | 
|  | if (dc->line_len != L1_CACHE_BYTES) | 
|  | panic("DCache line [%d] != kernel Config [%d]", | 
|  | dc->line_len, L1_CACHE_BYTES); | 
|  |  | 
|  | /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */ | 
|  | if (is_isa_arcompact()) { | 
|  | int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING); | 
|  |  | 
|  | if (dc->alias && !handled) | 
|  | panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); | 
|  | else if (!dc->alias && handled) | 
|  | panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_isa_arcv2() && l2_line_sz && !slc_enable) { | 
|  |  | 
|  | /* IM set : flush before invalidate */ | 
|  | write_aux_reg(ARC_REG_SLC_CTRL, | 
|  | read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM); | 
|  |  | 
|  | write_aux_reg(ARC_REG_SLC_INVALIDATE, 1); | 
|  |  | 
|  | /* Important to wait for flush to complete */ | 
|  | while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); | 
|  | write_aux_reg(ARC_REG_SLC_CTRL, | 
|  | read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE); | 
|  | } | 
|  |  | 
|  | if (is_isa_arcv2() && ioc_exists) { | 
|  | /* IO coherency base - 0x8z */ | 
|  | write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000); | 
|  | /* IO coherency aperture size - 512Mb: 0x8z-0xAz */ | 
|  | write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11); | 
|  | /* Enable partial writes */ | 
|  | write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1); | 
|  | /* Enable IO coherency */ | 
|  | write_aux_reg(ARC_REG_IO_COH_ENABLE, 1); | 
|  |  | 
|  | __dma_cache_wback_inv = __dma_cache_wback_inv_ioc; | 
|  | __dma_cache_inv = __dma_cache_inv_ioc; | 
|  | __dma_cache_wback = __dma_cache_wback_ioc; | 
|  | } else if (is_isa_arcv2() && l2_line_sz && slc_enable) { | 
|  | __dma_cache_wback_inv = __dma_cache_wback_inv_slc; | 
|  | __dma_cache_inv = __dma_cache_inv_slc; | 
|  | __dma_cache_wback = __dma_cache_wback_slc; | 
|  | } else { | 
|  | __dma_cache_wback_inv = __dma_cache_wback_inv_l1; | 
|  | __dma_cache_inv = __dma_cache_inv_l1; | 
|  | __dma_cache_wback = __dma_cache_wback_l1; | 
|  | } | 
|  | } |