| /* |
| * Huffman encoder, part of New Generation Entropy library |
| * Copyright (C) 2013-2016, Yann Collet. |
| * |
| * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * This program is free software; you can redistribute it and/or modify it under |
| * the terms of the GNU General Public License version 2 as published by the |
| * Free Software Foundation. This program is dual-licensed; you may select |
| * either version 2 of the GNU General Public License ("GPL") or BSD license |
| * ("BSD"). |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| */ |
| |
| /* ************************************************************** |
| * Includes |
| ****************************************************************/ |
| #include "bitstream.h" |
| #include "fse.h" /* header compression */ |
| #include "huf.h" |
| #include <linux/kernel.h> |
| #include <linux/string.h> /* memcpy, memset */ |
| |
| /* ************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define HUF_STATIC_ASSERT(c) \ |
| { \ |
| enum { HUF_static_assert = 1 / (int)(!!(c)) }; \ |
| } /* use only *after* variable declarations */ |
| #define CHECK_V_F(e, f) \ |
| size_t const e = f; \ |
| if (ERR_isError(e)) \ |
| return f |
| #define CHECK_F(f) \ |
| { \ |
| CHECK_V_F(_var_err__, f); \ |
| } |
| |
| /* ************************************************************** |
| * Utils |
| ****************************************************************/ |
| unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) |
| { |
| return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); |
| } |
| |
| /* ******************************************************* |
| * HUF : Huffman block compression |
| *********************************************************/ |
| /* HUF_compressWeights() : |
| * Same as FSE_compress(), but dedicated to huff0's weights compression. |
| * The use case needs much less stack memory. |
| * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. |
| */ |
| #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 |
| size_t HUF_compressWeights_wksp(void *dst, size_t dstSize, const void *weightTable, size_t wtSize, void *workspace, size_t workspaceSize) |
| { |
| BYTE *const ostart = (BYTE *)dst; |
| BYTE *op = ostart; |
| BYTE *const oend = ostart + dstSize; |
| |
| U32 maxSymbolValue = HUF_TABLELOG_MAX; |
| U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; |
| |
| FSE_CTable *CTable; |
| U32 *count; |
| S16 *norm; |
| size_t spaceUsed32 = 0; |
| |
| HUF_STATIC_ASSERT(sizeof(FSE_CTable) == sizeof(U32)); |
| |
| CTable = (FSE_CTable *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX); |
| count = (U32 *)workspace + spaceUsed32; |
| spaceUsed32 += HUF_TABLELOG_MAX + 1; |
| norm = (S16 *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += ALIGN(sizeof(S16) * (HUF_TABLELOG_MAX + 1), sizeof(U32)) >> 2; |
| |
| if ((spaceUsed32 << 2) > workspaceSize) |
| return ERROR(tableLog_tooLarge); |
| workspace = (U32 *)workspace + spaceUsed32; |
| workspaceSize -= (spaceUsed32 << 2); |
| |
| /* init conditions */ |
| if (wtSize <= 1) |
| return 0; /* Not compressible */ |
| |
| /* Scan input and build symbol stats */ |
| { |
| CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize)); |
| if (maxCount == wtSize) |
| return 1; /* only a single symbol in src : rle */ |
| if (maxCount == 1) |
| return 0; /* each symbol present maximum once => not compressible */ |
| } |
| |
| tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); |
| CHECK_F(FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue)); |
| |
| /* Write table description header */ |
| { |
| CHECK_V_F(hSize, FSE_writeNCount(op, oend - op, norm, maxSymbolValue, tableLog)); |
| op += hSize; |
| } |
| |
| /* Compress */ |
| CHECK_F(FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, workspace, workspaceSize)); |
| { |
| CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable)); |
| if (cSize == 0) |
| return 0; /* not enough space for compressed data */ |
| op += cSize; |
| } |
| |
| return op - ostart; |
| } |
| |
| struct HUF_CElt_s { |
| U16 val; |
| BYTE nbBits; |
| }; /* typedef'd to HUF_CElt within "huf.h" */ |
| |
| /*! HUF_writeCTable_wksp() : |
| `CTable` : Huffman tree to save, using huf representation. |
| @return : size of saved CTable */ |
| size_t HUF_writeCTable_wksp(void *dst, size_t maxDstSize, const HUF_CElt *CTable, U32 maxSymbolValue, U32 huffLog, void *workspace, size_t workspaceSize) |
| { |
| BYTE *op = (BYTE *)dst; |
| U32 n; |
| |
| BYTE *bitsToWeight; |
| BYTE *huffWeight; |
| size_t spaceUsed32 = 0; |
| |
| bitsToWeight = (BYTE *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += ALIGN(HUF_TABLELOG_MAX + 1, sizeof(U32)) >> 2; |
| huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX, sizeof(U32)) >> 2; |
| |
| if ((spaceUsed32 << 2) > workspaceSize) |
| return ERROR(tableLog_tooLarge); |
| workspace = (U32 *)workspace + spaceUsed32; |
| workspaceSize -= (spaceUsed32 << 2); |
| |
| /* check conditions */ |
| if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) |
| return ERROR(maxSymbolValue_tooLarge); |
| |
| /* convert to weight */ |
| bitsToWeight[0] = 0; |
| for (n = 1; n < huffLog + 1; n++) |
| bitsToWeight[n] = (BYTE)(huffLog + 1 - n); |
| for (n = 0; n < maxSymbolValue; n++) |
| huffWeight[n] = bitsToWeight[CTable[n].nbBits]; |
| |
| /* attempt weights compression by FSE */ |
| { |
| CHECK_V_F(hSize, HUF_compressWeights_wksp(op + 1, maxDstSize - 1, huffWeight, maxSymbolValue, workspace, workspaceSize)); |
| if ((hSize > 1) & (hSize < maxSymbolValue / 2)) { /* FSE compressed */ |
| op[0] = (BYTE)hSize; |
| return hSize + 1; |
| } |
| } |
| |
| /* write raw values as 4-bits (max : 15) */ |
| if (maxSymbolValue > (256 - 128)) |
| return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ |
| if (((maxSymbolValue + 1) / 2) + 1 > maxDstSize) |
| return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ |
| op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue - 1)); |
| huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ |
| for (n = 0; n < maxSymbolValue; n += 2) |
| op[(n / 2) + 1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n + 1]); |
| return ((maxSymbolValue + 1) / 2) + 1; |
| } |
| |
| size_t HUF_readCTable_wksp(HUF_CElt *CTable, U32 maxSymbolValue, const void *src, size_t srcSize, void *workspace, size_t workspaceSize) |
| { |
| U32 *rankVal; |
| BYTE *huffWeight; |
| U32 tableLog = 0; |
| U32 nbSymbols = 0; |
| size_t readSize; |
| size_t spaceUsed32 = 0; |
| |
| rankVal = (U32 *)workspace + spaceUsed32; |
| spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1; |
| huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32); |
| spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; |
| |
| if ((spaceUsed32 << 2) > workspaceSize) |
| return ERROR(tableLog_tooLarge); |
| workspace = (U32 *)workspace + spaceUsed32; |
| workspaceSize -= (spaceUsed32 << 2); |
| |
| /* get symbol weights */ |
| readSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize); |
| if (ERR_isError(readSize)) |
| return readSize; |
| |
| /* check result */ |
| if (tableLog > HUF_TABLELOG_MAX) |
| return ERROR(tableLog_tooLarge); |
| if (nbSymbols > maxSymbolValue + 1) |
| return ERROR(maxSymbolValue_tooSmall); |
| |
| /* Prepare base value per rank */ |
| { |
| U32 n, nextRankStart = 0; |
| for (n = 1; n <= tableLog; n++) { |
| U32 curr = nextRankStart; |
| nextRankStart += (rankVal[n] << (n - 1)); |
| rankVal[n] = curr; |
| } |
| } |
| |
| /* fill nbBits */ |
| { |
| U32 n; |
| for (n = 0; n < nbSymbols; n++) { |
| const U32 w = huffWeight[n]; |
| CTable[n].nbBits = (BYTE)(tableLog + 1 - w); |
| } |
| } |
| |
| /* fill val */ |
| { |
| U16 nbPerRank[HUF_TABLELOG_MAX + 2] = {0}; /* support w=0=>n=tableLog+1 */ |
| U16 valPerRank[HUF_TABLELOG_MAX + 2] = {0}; |
| { |
| U32 n; |
| for (n = 0; n < nbSymbols; n++) |
| nbPerRank[CTable[n].nbBits]++; |
| } |
| /* determine stating value per rank */ |
| valPerRank[tableLog + 1] = 0; /* for w==0 */ |
| { |
| U16 min = 0; |
| U32 n; |
| for (n = tableLog; n > 0; n--) { /* start at n=tablelog <-> w=1 */ |
| valPerRank[n] = min; /* get starting value within each rank */ |
| min += nbPerRank[n]; |
| min >>= 1; |
| } |
| } |
| /* assign value within rank, symbol order */ |
| { |
| U32 n; |
| for (n = 0; n <= maxSymbolValue; n++) |
| CTable[n].val = valPerRank[CTable[n].nbBits]++; |
| } |
| } |
| |
| return readSize; |
| } |
| |
| typedef struct nodeElt_s { |
| U32 count; |
| U16 parent; |
| BYTE byte; |
| BYTE nbBits; |
| } nodeElt; |
| |
| static U32 HUF_setMaxHeight(nodeElt *huffNode, U32 lastNonNull, U32 maxNbBits) |
| { |
| const U32 largestBits = huffNode[lastNonNull].nbBits; |
| if (largestBits <= maxNbBits) |
| return largestBits; /* early exit : no elt > maxNbBits */ |
| |
| /* there are several too large elements (at least >= 2) */ |
| { |
| int totalCost = 0; |
| const U32 baseCost = 1 << (largestBits - maxNbBits); |
| U32 n = lastNonNull; |
| |
| while (huffNode[n].nbBits > maxNbBits) { |
| totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); |
| huffNode[n].nbBits = (BYTE)maxNbBits; |
| n--; |
| } /* n stops at huffNode[n].nbBits <= maxNbBits */ |
| while (huffNode[n].nbBits == maxNbBits) |
| n--; /* n end at index of smallest symbol using < maxNbBits */ |
| |
| /* renorm totalCost */ |
| totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */ |
| |
| /* repay normalized cost */ |
| { |
| U32 const noSymbol = 0xF0F0F0F0; |
| U32 rankLast[HUF_TABLELOG_MAX + 2]; |
| int pos; |
| |
| /* Get pos of last (smallest) symbol per rank */ |
| memset(rankLast, 0xF0, sizeof(rankLast)); |
| { |
| U32 currNbBits = maxNbBits; |
| for (pos = n; pos >= 0; pos--) { |
| if (huffNode[pos].nbBits >= currNbBits) |
| continue; |
| currNbBits = huffNode[pos].nbBits; /* < maxNbBits */ |
| rankLast[maxNbBits - currNbBits] = pos; |
| } |
| } |
| |
| while (totalCost > 0) { |
| U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1; |
| for (; nBitsToDecrease > 1; nBitsToDecrease--) { |
| U32 highPos = rankLast[nBitsToDecrease]; |
| U32 lowPos = rankLast[nBitsToDecrease - 1]; |
| if (highPos == noSymbol) |
| continue; |
| if (lowPos == noSymbol) |
| break; |
| { |
| U32 const highTotal = huffNode[highPos].count; |
| U32 const lowTotal = 2 * huffNode[lowPos].count; |
| if (highTotal <= lowTotal) |
| break; |
| } |
| } |
| /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ |
| /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ |
| while ((nBitsToDecrease <= HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) |
| nBitsToDecrease++; |
| totalCost -= 1 << (nBitsToDecrease - 1); |
| if (rankLast[nBitsToDecrease - 1] == noSymbol) |
| rankLast[nBitsToDecrease - 1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */ |
| huffNode[rankLast[nBitsToDecrease]].nbBits++; |
| if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ |
| rankLast[nBitsToDecrease] = noSymbol; |
| else { |
| rankLast[nBitsToDecrease]--; |
| if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits - nBitsToDecrease) |
| rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ |
| } |
| } /* while (totalCost > 0) */ |
| |
| while (totalCost < 0) { /* Sometimes, cost correction overshoot */ |
| if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 |
| (using maxNbBits) */ |
| while (huffNode[n].nbBits == maxNbBits) |
| n--; |
| huffNode[n + 1].nbBits--; |
| rankLast[1] = n + 1; |
| totalCost++; |
| continue; |
| } |
| huffNode[rankLast[1] + 1].nbBits--; |
| rankLast[1]++; |
| totalCost++; |
| } |
| } |
| } /* there are several too large elements (at least >= 2) */ |
| |
| return maxNbBits; |
| } |
| |
| typedef struct { |
| U32 base; |
| U32 curr; |
| } rankPos; |
| |
| static void HUF_sort(nodeElt *huffNode, const U32 *count, U32 maxSymbolValue) |
| { |
| rankPos rank[32]; |
| U32 n; |
| |
| memset(rank, 0, sizeof(rank)); |
| for (n = 0; n <= maxSymbolValue; n++) { |
| U32 r = BIT_highbit32(count[n] + 1); |
| rank[r].base++; |
| } |
| for (n = 30; n > 0; n--) |
| rank[n - 1].base += rank[n].base; |
| for (n = 0; n < 32; n++) |
| rank[n].curr = rank[n].base; |
| for (n = 0; n <= maxSymbolValue; n++) { |
| U32 const c = count[n]; |
| U32 const r = BIT_highbit32(c + 1) + 1; |
| U32 pos = rank[r].curr++; |
| while ((pos > rank[r].base) && (c > huffNode[pos - 1].count)) |
| huffNode[pos] = huffNode[pos - 1], pos--; |
| huffNode[pos].count = c; |
| huffNode[pos].byte = (BYTE)n; |
| } |
| } |
| |
| /** HUF_buildCTable_wksp() : |
| * Same as HUF_buildCTable(), but using externally allocated scratch buffer. |
| * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned. |
| */ |
| #define STARTNODE (HUF_SYMBOLVALUE_MAX + 1) |
| typedef nodeElt huffNodeTable[2 * HUF_SYMBOLVALUE_MAX + 1 + 1]; |
| size_t HUF_buildCTable_wksp(HUF_CElt *tree, const U32 *count, U32 maxSymbolValue, U32 maxNbBits, void *workSpace, size_t wkspSize) |
| { |
| nodeElt *const huffNode0 = (nodeElt *)workSpace; |
| nodeElt *const huffNode = huffNode0 + 1; |
| U32 n, nonNullRank; |
| int lowS, lowN; |
| U16 nodeNb = STARTNODE; |
| U32 nodeRoot; |
| |
| /* safety checks */ |
| if (wkspSize < sizeof(huffNodeTable)) |
| return ERROR(GENERIC); /* workSpace is not large enough */ |
| if (maxNbBits == 0) |
| maxNbBits = HUF_TABLELOG_DEFAULT; |
| if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) |
| return ERROR(GENERIC); |
| memset(huffNode0, 0, sizeof(huffNodeTable)); |
| |
| /* sort, decreasing order */ |
| HUF_sort(huffNode, count, maxSymbolValue); |
| |
| /* init for parents */ |
| nonNullRank = maxSymbolValue; |
| while (huffNode[nonNullRank].count == 0) |
| nonNullRank--; |
| lowS = nonNullRank; |
| nodeRoot = nodeNb + lowS - 1; |
| lowN = nodeNb; |
| huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS - 1].count; |
| huffNode[lowS].parent = huffNode[lowS - 1].parent = nodeNb; |
| nodeNb++; |
| lowS -= 2; |
| for (n = nodeNb; n <= nodeRoot; n++) |
| huffNode[n].count = (U32)(1U << 30); |
| huffNode0[0].count = (U32)(1U << 31); /* fake entry, strong barrier */ |
| |
| /* create parents */ |
| while (nodeNb <= nodeRoot) { |
| U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; |
| U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; |
| huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; |
| huffNode[n1].parent = huffNode[n2].parent = nodeNb; |
| nodeNb++; |
| } |
| |
| /* distribute weights (unlimited tree height) */ |
| huffNode[nodeRoot].nbBits = 0; |
| for (n = nodeRoot - 1; n >= STARTNODE; n--) |
| huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1; |
| for (n = 0; n <= nonNullRank; n++) |
| huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1; |
| |
| /* enforce maxTableLog */ |
| maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits); |
| |
| /* fill result into tree (val, nbBits) */ |
| { |
| U16 nbPerRank[HUF_TABLELOG_MAX + 1] = {0}; |
| U16 valPerRank[HUF_TABLELOG_MAX + 1] = {0}; |
| if (maxNbBits > HUF_TABLELOG_MAX) |
| return ERROR(GENERIC); /* check fit into table */ |
| for (n = 0; n <= nonNullRank; n++) |
| nbPerRank[huffNode[n].nbBits]++; |
| /* determine stating value per rank */ |
| { |
| U16 min = 0; |
| for (n = maxNbBits; n > 0; n--) { |
| valPerRank[n] = min; /* get starting value within each rank */ |
| min += nbPerRank[n]; |
| min >>= 1; |
| } |
| } |
| for (n = 0; n <= maxSymbolValue; n++) |
| tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */ |
| for (n = 0; n <= maxSymbolValue; n++) |
| tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */ |
| } |
| |
| return maxNbBits; |
| } |
| |
| static size_t HUF_estimateCompressedSize(HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue) |
| { |
| size_t nbBits = 0; |
| int s; |
| for (s = 0; s <= (int)maxSymbolValue; ++s) { |
| nbBits += CTable[s].nbBits * count[s]; |
| } |
| return nbBits >> 3; |
| } |
| |
| static int HUF_validateCTable(const HUF_CElt *CTable, const unsigned *count, unsigned maxSymbolValue) |
| { |
| int bad = 0; |
| int s; |
| for (s = 0; s <= (int)maxSymbolValue; ++s) { |
| bad |= (count[s] != 0) & (CTable[s].nbBits == 0); |
| } |
| return !bad; |
| } |
| |
| static void HUF_encodeSymbol(BIT_CStream_t *bitCPtr, U32 symbol, const HUF_CElt *CTable) |
| { |
| BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); |
| } |
| |
| size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } |
| |
| #define HUF_FLUSHBITS(s) BIT_flushBits(s) |
| |
| #define HUF_FLUSHBITS_1(stream) \ |
| if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 2 + 7) \ |
| HUF_FLUSHBITS(stream) |
| |
| #define HUF_FLUSHBITS_2(stream) \ |
| if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 4 + 7) \ |
| HUF_FLUSHBITS(stream) |
| |
| size_t HUF_compress1X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable) |
| { |
| const BYTE *ip = (const BYTE *)src; |
| BYTE *const ostart = (BYTE *)dst; |
| BYTE *const oend = ostart + dstSize; |
| BYTE *op = ostart; |
| size_t n; |
| BIT_CStream_t bitC; |
| |
| /* init */ |
| if (dstSize < 8) |
| return 0; /* not enough space to compress */ |
| { |
| size_t const initErr = BIT_initCStream(&bitC, op, oend - op); |
| if (HUF_isError(initErr)) |
| return 0; |
| } |
| |
| n = srcSize & ~3; /* join to mod 4 */ |
| switch (srcSize & 3) { |
| case 3: HUF_encodeSymbol(&bitC, ip[n + 2], CTable); HUF_FLUSHBITS_2(&bitC); |
| /* fall through */ |
| case 2: HUF_encodeSymbol(&bitC, ip[n + 1], CTable); HUF_FLUSHBITS_1(&bitC); |
| /* fall through */ |
| case 1: HUF_encodeSymbol(&bitC, ip[n + 0], CTable); HUF_FLUSHBITS(&bitC); |
| case 0: |
| default:; |
| } |
| |
| for (; n > 0; n -= 4) { /* note : n&3==0 at this stage */ |
| HUF_encodeSymbol(&bitC, ip[n - 1], CTable); |
| HUF_FLUSHBITS_1(&bitC); |
| HUF_encodeSymbol(&bitC, ip[n - 2], CTable); |
| HUF_FLUSHBITS_2(&bitC); |
| HUF_encodeSymbol(&bitC, ip[n - 3], CTable); |
| HUF_FLUSHBITS_1(&bitC); |
| HUF_encodeSymbol(&bitC, ip[n - 4], CTable); |
| HUF_FLUSHBITS(&bitC); |
| } |
| |
| return BIT_closeCStream(&bitC); |
| } |
| |
| size_t HUF_compress4X_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const HUF_CElt *CTable) |
| { |
| size_t const segmentSize = (srcSize + 3) / 4; /* first 3 segments */ |
| const BYTE *ip = (const BYTE *)src; |
| const BYTE *const iend = ip + srcSize; |
| BYTE *const ostart = (BYTE *)dst; |
| BYTE *const oend = ostart + dstSize; |
| BYTE *op = ostart; |
| |
| if (dstSize < 6 + 1 + 1 + 1 + 8) |
| return 0; /* minimum space to compress successfully */ |
| if (srcSize < 12) |
| return 0; /* no saving possible : too small input */ |
| op += 6; /* jumpTable */ |
| |
| { |
| CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); |
| if (cSize == 0) |
| return 0; |
| ZSTD_writeLE16(ostart, (U16)cSize); |
| op += cSize; |
| } |
| |
| ip += segmentSize; |
| { |
| CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); |
| if (cSize == 0) |
| return 0; |
| ZSTD_writeLE16(ostart + 2, (U16)cSize); |
| op += cSize; |
| } |
| |
| ip += segmentSize; |
| { |
| CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, segmentSize, CTable)); |
| if (cSize == 0) |
| return 0; |
| ZSTD_writeLE16(ostart + 4, (U16)cSize); |
| op += cSize; |
| } |
| |
| ip += segmentSize; |
| { |
| CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend - op, ip, iend - ip, CTable)); |
| if (cSize == 0) |
| return 0; |
| op += cSize; |
| } |
| |
| return op - ostart; |
| } |
| |
| static size_t HUF_compressCTable_internal(BYTE *const ostart, BYTE *op, BYTE *const oend, const void *src, size_t srcSize, unsigned singleStream, |
| const HUF_CElt *CTable) |
| { |
| size_t const cSize = |
| singleStream ? HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) : HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable); |
| if (HUF_isError(cSize)) { |
| return cSize; |
| } |
| if (cSize == 0) { |
| return 0; |
| } /* uncompressible */ |
| op += cSize; |
| /* check compressibility */ |
| if ((size_t)(op - ostart) >= srcSize - 1) { |
| return 0; |
| } |
| return op - ostart; |
| } |
| |
| /* `workSpace` must a table of at least 1024 unsigned */ |
| static size_t HUF_compress_internal(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, |
| unsigned singleStream, void *workSpace, size_t wkspSize, HUF_CElt *oldHufTable, HUF_repeat *repeat, int preferRepeat) |
| { |
| BYTE *const ostart = (BYTE *)dst; |
| BYTE *const oend = ostart + dstSize; |
| BYTE *op = ostart; |
| |
| U32 *count; |
| size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1); |
| HUF_CElt *CTable; |
| size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1); |
| |
| /* checks & inits */ |
| if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) |
| return ERROR(GENERIC); |
| if (!srcSize) |
| return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */ |
| if (!dstSize) |
| return 0; /* cannot fit within dst budget */ |
| if (srcSize > HUF_BLOCKSIZE_MAX) |
| return ERROR(srcSize_wrong); /* curr block size limit */ |
| if (huffLog > HUF_TABLELOG_MAX) |
| return ERROR(tableLog_tooLarge); |
| if (!maxSymbolValue) |
| maxSymbolValue = HUF_SYMBOLVALUE_MAX; |
| if (!huffLog) |
| huffLog = HUF_TABLELOG_DEFAULT; |
| |
| count = (U32 *)workSpace; |
| workSpace = (BYTE *)workSpace + countSize; |
| wkspSize -= countSize; |
| CTable = (HUF_CElt *)workSpace; |
| workSpace = (BYTE *)workSpace + CTableSize; |
| wkspSize -= CTableSize; |
| |
| /* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */ |
| if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { |
| return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); |
| } |
| |
| /* Scan input and build symbol stats */ |
| { |
| CHECK_V_F(largest, FSE_count_wksp(count, &maxSymbolValue, (const BYTE *)src, srcSize, (U32 *)workSpace)); |
| if (largest == srcSize) { |
| *ostart = ((const BYTE *)src)[0]; |
| return 1; |
| } /* single symbol, rle */ |
| if (largest <= (srcSize >> 7) + 1) |
| return 0; /* Fast heuristic : not compressible enough */ |
| } |
| |
| /* Check validity of previous table */ |
| if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) { |
| *repeat = HUF_repeat_none; |
| } |
| /* Heuristic : use existing table for small inputs */ |
| if (preferRepeat && repeat && *repeat != HUF_repeat_none) { |
| return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); |
| } |
| |
| /* Build Huffman Tree */ |
| huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); |
| { |
| CHECK_V_F(maxBits, HUF_buildCTable_wksp(CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize)); |
| huffLog = (U32)maxBits; |
| /* Zero the unused symbols so we can check it for validity */ |
| memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt)); |
| } |
| |
| /* Write table description header */ |
| { |
| CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, CTable, maxSymbolValue, huffLog, workSpace, wkspSize)); |
| /* Check if using the previous table will be beneficial */ |
| if (repeat && *repeat != HUF_repeat_none) { |
| size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue); |
| size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue); |
| if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { |
| return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable); |
| } |
| } |
| /* Use the new table */ |
| if (hSize + 12ul >= srcSize) { |
| return 0; |
| } |
| op += hSize; |
| if (repeat) { |
| *repeat = HUF_repeat_none; |
| } |
| if (oldHufTable) { |
| memcpy(oldHufTable, CTable, CTableSize); |
| } /* Save the new table */ |
| } |
| return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable); |
| } |
| |
| size_t HUF_compress1X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, |
| size_t wkspSize) |
| { |
| return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0); |
| } |
| |
| size_t HUF_compress1X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, |
| size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat) |
| { |
| return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, |
| preferRepeat); |
| } |
| |
| size_t HUF_compress4X_wksp(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, |
| size_t wkspSize) |
| { |
| return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0); |
| } |
| |
| size_t HUF_compress4X_repeat(void *dst, size_t dstSize, const void *src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog, void *workSpace, |
| size_t wkspSize, HUF_CElt *hufTable, HUF_repeat *repeat, int preferRepeat) |
| { |
| return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, |
| preferRepeat); |
| } |