| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Energy Model of CPUs |
| * |
| * Copyright (c) 2018, Arm ltd. |
| * Written by: Quentin Perret, Arm ltd. |
| */ |
| |
| #define pr_fmt(fmt) "energy_model: " fmt |
| |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/debugfs.h> |
| #include <linux/energy_model.h> |
| #include <linux/sched/topology.h> |
| #include <linux/slab.h> |
| |
| /* Mapping of each CPU to the performance domain to which it belongs. */ |
| static DEFINE_PER_CPU(struct em_perf_domain *, em_data); |
| |
| /* |
| * Mutex serializing the registrations of performance domains and letting |
| * callbacks defined by drivers sleep. |
| */ |
| static DEFINE_MUTEX(em_pd_mutex); |
| |
| #ifdef CONFIG_DEBUG_FS |
| static struct dentry *rootdir; |
| |
| static void em_debug_create_cs(struct em_cap_state *cs, struct dentry *pd) |
| { |
| struct dentry *d; |
| char name[24]; |
| |
| snprintf(name, sizeof(name), "cs:%lu", cs->frequency); |
| |
| /* Create per-cs directory */ |
| d = debugfs_create_dir(name, pd); |
| debugfs_create_ulong("frequency", 0444, d, &cs->frequency); |
| debugfs_create_ulong("power", 0444, d, &cs->power); |
| debugfs_create_ulong("cost", 0444, d, &cs->cost); |
| } |
| |
| static int em_debug_cpus_show(struct seq_file *s, void *unused) |
| { |
| seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private))); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(em_debug_cpus); |
| |
| static void em_debug_create_pd(struct em_perf_domain *pd, int cpu) |
| { |
| struct dentry *d; |
| char name[8]; |
| int i; |
| |
| snprintf(name, sizeof(name), "pd%d", cpu); |
| |
| /* Create the directory of the performance domain */ |
| d = debugfs_create_dir(name, rootdir); |
| |
| debugfs_create_file("cpus", 0444, d, pd->cpus, &em_debug_cpus_fops); |
| |
| /* Create a sub-directory for each capacity state */ |
| for (i = 0; i < pd->nr_cap_states; i++) |
| em_debug_create_cs(&pd->table[i], d); |
| } |
| |
| static int __init em_debug_init(void) |
| { |
| /* Create /sys/kernel/debug/energy_model directory */ |
| rootdir = debugfs_create_dir("energy_model", NULL); |
| |
| return 0; |
| } |
| fs_initcall(em_debug_init); |
| #else /* CONFIG_DEBUG_FS */ |
| static void em_debug_create_pd(struct em_perf_domain *pd, int cpu) {} |
| #endif |
| static struct em_perf_domain *em_create_pd(cpumask_t *span, int nr_states, |
| struct em_data_callback *cb) |
| { |
| unsigned long opp_eff, prev_opp_eff = ULONG_MAX; |
| unsigned long power, freq, prev_freq = 0; |
| int i, ret, cpu = cpumask_first(span); |
| struct em_cap_state *table; |
| struct em_perf_domain *pd; |
| u64 fmax; |
| |
| if (!cb->active_power) |
| return NULL; |
| |
| pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); |
| if (!pd) |
| return NULL; |
| |
| table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL); |
| if (!table) |
| goto free_pd; |
| |
| /* Build the list of capacity states for this performance domain */ |
| for (i = 0, freq = 0; i < nr_states; i++, freq++) { |
| /* |
| * active_power() is a driver callback which ceils 'freq' to |
| * lowest capacity state of 'cpu' above 'freq' and updates |
| * 'power' and 'freq' accordingly. |
| */ |
| ret = cb->active_power(&power, &freq, cpu); |
| if (ret) { |
| pr_err("pd%d: invalid cap. state: %d\n", cpu, ret); |
| goto free_cs_table; |
| } |
| |
| /* |
| * We expect the driver callback to increase the frequency for |
| * higher capacity states. |
| */ |
| if (freq <= prev_freq) { |
| pr_err("pd%d: non-increasing freq: %lu\n", cpu, freq); |
| goto free_cs_table; |
| } |
| |
| /* |
| * The power returned by active_state() is expected to be |
| * positive, in milli-watts and to fit into 16 bits. |
| */ |
| if (!power || power > EM_CPU_MAX_POWER) { |
| pr_err("pd%d: invalid power: %lu\n", cpu, power); |
| goto free_cs_table; |
| } |
| |
| table[i].power = power; |
| table[i].frequency = prev_freq = freq; |
| |
| /* |
| * The hertz/watts efficiency ratio should decrease as the |
| * frequency grows on sane platforms. But this isn't always |
| * true in practice so warn the user if a higher OPP is more |
| * power efficient than a lower one. |
| */ |
| opp_eff = freq / power; |
| if (opp_eff >= prev_opp_eff) |
| pr_warn("pd%d: hertz/watts ratio non-monotonically decreasing: em_cap_state %d >= em_cap_state%d\n", |
| cpu, i, i - 1); |
| prev_opp_eff = opp_eff; |
| } |
| |
| /* Compute the cost of each capacity_state. */ |
| fmax = (u64) table[nr_states - 1].frequency; |
| for (i = 0; i < nr_states; i++) { |
| unsigned long power_res = em_scale_power(table[i].power); |
| |
| table[i].cost = div64_u64(fmax * power_res, |
| table[i].frequency); |
| } |
| |
| pd->table = table; |
| pd->nr_cap_states = nr_states; |
| cpumask_copy(to_cpumask(pd->cpus), span); |
| |
| em_debug_create_pd(pd, cpu); |
| |
| return pd; |
| |
| free_cs_table: |
| kfree(table); |
| free_pd: |
| kfree(pd); |
| |
| return NULL; |
| } |
| |
| /** |
| * em_cpu_get() - Return the performance domain for a CPU |
| * @cpu : CPU to find the performance domain for |
| * |
| * Return: the performance domain to which 'cpu' belongs, or NULL if it doesn't |
| * exist. |
| */ |
| struct em_perf_domain *em_cpu_get(int cpu) |
| { |
| return READ_ONCE(per_cpu(em_data, cpu)); |
| } |
| EXPORT_SYMBOL_GPL(em_cpu_get); |
| |
| /** |
| * em_register_perf_domain() - Register the Energy Model of a performance domain |
| * @span : Mask of CPUs in the performance domain |
| * @nr_states : Number of capacity states to register |
| * @cb : Callback functions providing the data of the Energy Model |
| * |
| * Create Energy Model tables for a performance domain using the callbacks |
| * defined in cb. |
| * |
| * If multiple clients register the same performance domain, all but the first |
| * registration will be ignored. |
| * |
| * Return 0 on success |
| */ |
| int em_register_perf_domain(cpumask_t *span, unsigned int nr_states, |
| struct em_data_callback *cb) |
| { |
| unsigned long cap, prev_cap = 0; |
| struct em_perf_domain *pd; |
| int cpu, ret = 0; |
| |
| if (!span || !nr_states || !cb) |
| return -EINVAL; |
| |
| /* |
| * Use a mutex to serialize the registration of performance domains and |
| * let the driver-defined callback functions sleep. |
| */ |
| mutex_lock(&em_pd_mutex); |
| |
| for_each_cpu(cpu, span) { |
| /* Make sure we don't register again an existing domain. */ |
| if (READ_ONCE(per_cpu(em_data, cpu))) { |
| ret = -EEXIST; |
| goto unlock; |
| } |
| |
| /* |
| * All CPUs of a domain must have the same micro-architecture |
| * since they all share the same table. |
| */ |
| cap = arch_scale_cpu_capacity(cpu); |
| if (prev_cap && prev_cap != cap) { |
| pr_err("CPUs of %*pbl must have the same capacity\n", |
| cpumask_pr_args(span)); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| prev_cap = cap; |
| } |
| |
| /* Create the performance domain and add it to the Energy Model. */ |
| pd = em_create_pd(span, nr_states, cb); |
| if (!pd) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| for_each_cpu(cpu, span) { |
| /* |
| * The per-cpu array can be read concurrently from em_cpu_get(). |
| * The barrier enforces the ordering needed to make sure readers |
| * can only access well formed em_perf_domain structs. |
| */ |
| smp_store_release(per_cpu_ptr(&em_data, cpu), pd); |
| } |
| |
| pr_debug("Created perf domain %*pbl\n", cpumask_pr_args(span)); |
| unlock: |
| mutex_unlock(&em_pd_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(em_register_perf_domain); |