| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * rcar_du_group.c -- R-Car Display Unit Channels Pair |
| * |
| * Copyright (C) 2013-2015 Renesas Electronics Corporation |
| * |
| * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| */ |
| |
| /* |
| * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending |
| * unit, timings generator, ...) and device-global resources (start/stop |
| * control, planes, ...) shared between the two CRTCs. |
| * |
| * The R8A7790 introduced a third CRTC with its own set of global resources. |
| * This would be modeled as two separate DU device instances if it wasn't for |
| * a handful or resources that are shared between the three CRTCs (mostly |
| * related to input and output routing). For this reason the R8A7790 DU must be |
| * modeled as a single device with three CRTCs, two sets of "semi-global" |
| * resources, and a few device-global resources. |
| * |
| * The rcar_du_group object is a driver specific object, without any real |
| * counterpart in the DU documentation, that models those semi-global resources. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| |
| #include "rcar_du_drv.h" |
| #include "rcar_du_group.h" |
| #include "rcar_du_regs.h" |
| |
| u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg) |
| { |
| return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg); |
| } |
| |
| void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data) |
| { |
| rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data); |
| } |
| |
| static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp) |
| { |
| u32 defr6 = DEFR6_CODE; |
| |
| if (rgrp->channels_mask & BIT(0)) |
| defr6 |= DEFR6_ODPM02_DISP; |
| |
| if (rgrp->channels_mask & BIT(1)) |
| defr6 |= DEFR6_ODPM12_DISP; |
| |
| rcar_du_group_write(rgrp, DEFR6, defr6); |
| } |
| |
| static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp) |
| { |
| struct rcar_du_device *rcdu = rgrp->dev; |
| u32 defr8 = DEFR8_CODE; |
| |
| if (rcdu->info->gen < 3) { |
| defr8 |= DEFR8_DEFE8; |
| |
| /* |
| * On Gen2 the DEFR8 register for the first group also controls |
| * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for |
| * DU instances that support it. |
| */ |
| if (rgrp->index == 0) { |
| defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); |
| if (rgrp->dev->vspd1_sink == 2) |
| defr8 |= DEFR8_VSCS; |
| } |
| } else { |
| /* |
| * On Gen3 VSPD routing can't be configured, and DPAD routing |
| * is set in the group corresponding to the DPAD output (no Gen3 |
| * SoC has multiple DPAD sources belonging to separate groups). |
| */ |
| if (rgrp->index == rcdu->dpad0_source / 2) |
| defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); |
| } |
| |
| rcar_du_group_write(rgrp, DEFR8, defr8); |
| } |
| |
| static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp) |
| { |
| struct rcar_du_device *rcdu = rgrp->dev; |
| struct rcar_du_crtc *rcrtc; |
| unsigned int num_crtcs = 0; |
| unsigned int i; |
| u32 didsr; |
| |
| /* |
| * Configure input dot clock routing with a hardcoded configuration. If |
| * the DU channel can use the LVDS encoder output clock as the dot |
| * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn. |
| * |
| * Each channel can then select between the dot clock configured here |
| * and the clock provided by the CPG through the ESCR register. |
| */ |
| if (rcdu->info->gen < 3 && rgrp->index == 0) { |
| /* |
| * On Gen2 a single register in the first group controls dot |
| * clock selection for all channels. |
| */ |
| rcrtc = rcdu->crtcs; |
| num_crtcs = rcdu->num_crtcs; |
| } else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) { |
| /* |
| * On Gen3 dot clocks are setup through per-group registers, |
| * only available when the group has two channels. |
| */ |
| rcrtc = &rcdu->crtcs[rgrp->index * 2]; |
| num_crtcs = rgrp->num_crtcs; |
| } |
| |
| if (!num_crtcs) |
| return; |
| |
| didsr = DIDSR_CODE; |
| for (i = 0; i < num_crtcs; ++i, ++rcrtc) { |
| if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) |
| didsr |= DIDSR_LCDS_LVDS0(i) |
| | DIDSR_PDCS_CLK(i, 0); |
| else |
| didsr |= DIDSR_LCDS_DCLKIN(i) |
| | DIDSR_PDCS_CLK(i, 0); |
| } |
| |
| rcar_du_group_write(rgrp, DIDSR, didsr); |
| } |
| |
| static void rcar_du_group_setup(struct rcar_du_group *rgrp) |
| { |
| struct rcar_du_device *rcdu = rgrp->dev; |
| |
| /* Enable extended features */ |
| rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE); |
| if (rcdu->info->gen < 3) { |
| rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G); |
| rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3); |
| rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE); |
| } |
| rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5); |
| |
| rcar_du_group_setup_pins(rgrp); |
| |
| if (rcdu->info->gen >= 2) { |
| rcar_du_group_setup_defr8(rgrp); |
| rcar_du_group_setup_didsr(rgrp); |
| } |
| |
| if (rcdu->info->gen >= 3) |
| rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10); |
| |
| /* |
| * Use DS1PR and DS2PR to configure planes priorities and connects the |
| * superposition 0 to DU0 pins. DU1 pins will be configured dynamically. |
| */ |
| rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS); |
| |
| /* Apply planes to CRTCs association. */ |
| mutex_lock(&rgrp->lock); |
| rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) | |
| rgrp->dptsr_planes); |
| mutex_unlock(&rgrp->lock); |
| } |
| |
| /* |
| * rcar_du_group_get - Acquire a reference to the DU channels group |
| * |
| * Acquiring the first reference setups core registers. A reference must be held |
| * before accessing any hardware registers. |
| * |
| * This function must be called with the DRM mode_config lock held. |
| * |
| * Return 0 in case of success or a negative error code otherwise. |
| */ |
| int rcar_du_group_get(struct rcar_du_group *rgrp) |
| { |
| if (rgrp->use_count) |
| goto done; |
| |
| rcar_du_group_setup(rgrp); |
| |
| done: |
| rgrp->use_count++; |
| return 0; |
| } |
| |
| /* |
| * rcar_du_group_put - Release a reference to the DU |
| * |
| * This function must be called with the DRM mode_config lock held. |
| */ |
| void rcar_du_group_put(struct rcar_du_group *rgrp) |
| { |
| --rgrp->use_count; |
| } |
| |
| static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) |
| { |
| struct rcar_du_device *rcdu = rgrp->dev; |
| |
| /* |
| * Group start/stop is controlled by the DRES and DEN bits of DSYSR0 |
| * for the first group and DSYSR2 for the second group. On most DU |
| * instances, this maps to the first CRTC of the group, and we can just |
| * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On |
| * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to |
| * access the register directly using group read/write. |
| */ |
| if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) { |
| struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2]; |
| |
| rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN, |
| start ? DSYSR_DEN : DSYSR_DRES); |
| } else { |
| rcar_du_group_write(rgrp, DSYSR, |
| start ? DSYSR_DEN : DSYSR_DRES); |
| } |
| } |
| |
| void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) |
| { |
| /* |
| * Many of the configuration bits are only updated when the display |
| * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some |
| * of those bits could be pre-configured, but others (especially the |
| * bits related to plane assignment to display timing controllers) need |
| * to be modified at runtime. |
| * |
| * Restart the display controller if a start is requested. Sorry for the |
| * flicker. It should be possible to move most of the "DRES-update" bits |
| * setup to driver initialization time and minimize the number of cases |
| * when the display controller will have to be restarted. |
| */ |
| if (start) { |
| if (rgrp->used_crtcs++ != 0) |
| __rcar_du_group_start_stop(rgrp, false); |
| __rcar_du_group_start_stop(rgrp, true); |
| } else { |
| if (--rgrp->used_crtcs == 0) |
| __rcar_du_group_start_stop(rgrp, false); |
| } |
| } |
| |
| void rcar_du_group_restart(struct rcar_du_group *rgrp) |
| { |
| rgrp->need_restart = false; |
| |
| __rcar_du_group_start_stop(rgrp, false); |
| __rcar_du_group_start_stop(rgrp, true); |
| } |
| |
| int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu) |
| { |
| struct rcar_du_group *rgrp; |
| struct rcar_du_crtc *crtc; |
| unsigned int index; |
| int ret; |
| |
| if (rcdu->info->gen < 2) |
| return 0; |
| |
| /* |
| * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are |
| * configured in the DEFR8 register of the first group on Gen2 and the |
| * last group on Gen3. As this function can be called with the DU |
| * channels of the corresponding CRTCs disabled, we need to enable the |
| * group clock before accessing the register. |
| */ |
| index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1; |
| rgrp = &rcdu->groups[index]; |
| crtc = &rcdu->crtcs[index * 2]; |
| |
| ret = clk_prepare_enable(crtc->clock); |
| if (ret < 0) |
| return ret; |
| |
| rcar_du_group_setup_defr8(rgrp); |
| |
| clk_disable_unprepare(crtc->clock); |
| |
| return 0; |
| } |
| |
| static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp) |
| { |
| static const u32 doflr_values[2] = { |
| DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 | |
| DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0, |
| DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 | |
| DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1, |
| }; |
| static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1) |
| | BIT(RCAR_DU_OUTPUT_DPAD0); |
| struct rcar_du_device *rcdu = rgrp->dev; |
| u32 doflr = DOFLR_CODE; |
| unsigned int i; |
| |
| if (rcdu->info->gen < 2) |
| return; |
| |
| /* |
| * The DPAD outputs can't be controlled directly. However, the parallel |
| * output of the DU channels routed to DPAD can be set to fixed levels |
| * through the DOFLR group register. Use this to turn the DPAD on or off |
| * by driving fixed low-level signals at the output of any DU channel |
| * not routed to a DPAD output. This doesn't affect the DU output |
| * signals going to other outputs, such as the internal LVDS and HDMI |
| * encoders. |
| */ |
| |
| for (i = 0; i < rgrp->num_crtcs; ++i) { |
| struct rcar_du_crtc_state *rstate; |
| struct rcar_du_crtc *rcrtc; |
| |
| rcrtc = &rcdu->crtcs[rgrp->index * 2 + i]; |
| rstate = to_rcar_crtc_state(rcrtc->crtc.state); |
| |
| if (!(rstate->outputs & dpad_mask)) |
| doflr |= doflr_values[i]; |
| } |
| |
| rcar_du_group_write(rgrp, DOFLR, doflr); |
| } |
| |
| int rcar_du_group_set_routing(struct rcar_du_group *rgrp) |
| { |
| struct rcar_du_device *rcdu = rgrp->dev; |
| u32 dorcr = rcar_du_group_read(rgrp, DORCR); |
| |
| dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK); |
| |
| /* |
| * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and |
| * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1 |
| * by default. |
| */ |
| if (rcdu->dpad1_source == rgrp->index * 2) |
| dorcr |= DORCR_PG2D_DS1; |
| else |
| dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2; |
| |
| rcar_du_group_write(rgrp, DORCR, dorcr); |
| |
| rcar_du_group_set_dpad_levels(rgrp); |
| |
| return rcar_du_set_dpad0_vsp1_routing(rgrp->dev); |
| } |