|  | /* Intel(R) Gigabit Ethernet Linux driver | 
|  | * Copyright(c) 2007-2014 Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in | 
|  | * the file called "COPYING". | 
|  | * | 
|  | * Contact Information: | 
|  | * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | */ | 
|  |  | 
|  | /* e1000_i210 | 
|  | * e1000_i211 | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/if_ether.h> | 
|  |  | 
|  | #include "e1000_hw.h" | 
|  | #include "e1000_i210.h" | 
|  |  | 
|  | static s32 igb_update_flash_i210(struct e1000_hw *hw); | 
|  |  | 
|  | /** | 
|  | * igb_get_hw_semaphore_i210 - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | */ | 
|  | static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  | s32 timeout = hw->nvm.word_size + 1; | 
|  | s32 i = 0; | 
|  |  | 
|  | /* Get the SW semaphore */ | 
|  | while (i < timeout) { | 
|  | swsm = rd32(E1000_SWSM); | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | /* In rare circumstances, the SW semaphore may already be held | 
|  | * unintentionally. Clear the semaphore once before giving up. | 
|  | */ | 
|  | if (hw->dev_spec._82575.clear_semaphore_once) { | 
|  | hw->dev_spec._82575.clear_semaphore_once = false; | 
|  | igb_put_hw_semaphore(hw); | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = rd32(E1000_SWSM); | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we do not have the semaphore here, we have to give up. */ | 
|  | if (i == timeout) { | 
|  | hw_dbg("Driver can't access device - SMBI bit is set.\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the FW semaphore. */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = rd32(E1000_SWSM); | 
|  | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | /* Semaphore acquired if bit latched */ | 
|  | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | /* Release semaphores */ | 
|  | igb_put_hw_semaphore(hw); | 
|  | hw_dbg("Driver can't access the NVM\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_nvm_i210 - Request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the necessary semaphores for exclusive access to the EEPROM. | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | static s32 igb_acquire_nvm_i210(struct e1000_hw *hw) | 
|  | { | 
|  | return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_nvm_i210 - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit, | 
|  | *  then release the semaphores acquired. | 
|  | **/ | 
|  | static void igb_release_nvm_i210(struct e1000_hw *hw) | 
|  | { | 
|  | igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're acquiring the lock for. | 
|  | **/ | 
|  | s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 16; | 
|  | s32 ret_val = 0; | 
|  | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | 
|  |  | 
|  | while (i < timeout) { | 
|  | if (igb_get_hw_semaphore_i210(hw)) { | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | if (!(swfw_sync & (fwmask | swmask))) | 
|  | break; | 
|  |  | 
|  | /* Firmware currently using resource (fwmask) */ | 
|  | igb_put_hw_semaphore(hw); | 
|  | mdelay(5); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync |= swmask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_swfw_sync_i210 - Release SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're releasing the lock for. | 
|  | **/ | 
|  | void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  |  | 
|  | while (igb_get_hw_semaphore_i210(hw)) | 
|  | ; /* Empty */ | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | swfw_sync &= ~mask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the Shadow Ram to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the Shadow Ram | 
|  | * | 
|  | *  Reads a 16 bit word from the Shadow Ram using the EERD register. | 
|  | *  Uses necessary synchronization semaphores. | 
|  | **/ | 
|  | static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | s32 status = 0; | 
|  | u16 i, count; | 
|  |  | 
|  | /* We cannot hold synchronization semaphores for too long, | 
|  | * because of forceful takeover procedure. However it is more efficient | 
|  | * to read in bursts than synchronizing access for each word. | 
|  | */ | 
|  | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { | 
|  | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? | 
|  | E1000_EERD_EEWR_MAX_COUNT : (words - i); | 
|  | if (!(hw->nvm.ops.acquire(hw))) { | 
|  | status = igb_read_nvm_eerd(hw, offset, count, | 
|  | data + i); | 
|  | hw->nvm.ops.release(hw); | 
|  | } else { | 
|  | status = E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | if (status) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the Shadow Ram to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the Shadow Ram | 
|  | * | 
|  | *  Writes data to Shadow Ram at offset using EEWR register. | 
|  | * | 
|  | *  If igb_update_nvm_checksum is not called after this function , the | 
|  | *  Shadow Ram will most likely contain an invalid checksum. | 
|  | **/ | 
|  | static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i, k, eewr = 0; | 
|  | u32 attempts = 100000; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * too many words for the offset, and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | | 
|  | (data[i] << E1000_NVM_RW_REG_DATA) | | 
|  | E1000_NVM_RW_REG_START; | 
|  |  | 
|  | wr32(E1000_SRWR, eewr); | 
|  |  | 
|  | for (k = 0; k < attempts; k++) { | 
|  | if (E1000_NVM_RW_REG_DONE & | 
|  | rd32(E1000_SRWR)) { | 
|  | ret_val = 0; | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | hw_dbg("Shadow RAM write EEWR timed out\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the Shadow RAM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the Shadow RAM | 
|  | * | 
|  | *  Writes data to Shadow RAM at offset using EEWR register. | 
|  | * | 
|  | *  If e1000_update_nvm_checksum is not called after this function , the | 
|  | *  data will not be committed to FLASH and also Shadow RAM will most likely | 
|  | *  contain an invalid checksum. | 
|  | * | 
|  | *  If error code is returned, data and Shadow RAM may be inconsistent - buffer | 
|  | *  partially written. | 
|  | **/ | 
|  | static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | s32 status = 0; | 
|  | u16 i, count; | 
|  |  | 
|  | /* We cannot hold synchronization semaphores for too long, | 
|  | * because of forceful takeover procedure. However it is more efficient | 
|  | * to write in bursts than synchronizing access for each word. | 
|  | */ | 
|  | for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { | 
|  | count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? | 
|  | E1000_EERD_EEWR_MAX_COUNT : (words - i); | 
|  | if (!(hw->nvm.ops.acquire(hw))) { | 
|  | status = igb_write_nvm_srwr(hw, offset, count, | 
|  | data + i); | 
|  | hw->nvm.ops.release(hw); | 
|  | } else { | 
|  | status = E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | if (status) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_invm_word_i210 - Reads OTP | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @address: the word address (aka eeprom offset) to read | 
|  | *  @data: pointer to the data read | 
|  | * | 
|  | *  Reads 16-bit words from the OTP. Return error when the word is not | 
|  | *  stored in OTP. | 
|  | **/ | 
|  | static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) | 
|  | { | 
|  | s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; | 
|  | u32 invm_dword; | 
|  | u16 i; | 
|  | u8 record_type, word_address; | 
|  |  | 
|  | for (i = 0; i < E1000_INVM_SIZE; i++) { | 
|  | invm_dword = rd32(E1000_INVM_DATA_REG(i)); | 
|  | /* Get record type */ | 
|  | record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); | 
|  | if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) | 
|  | break; | 
|  | if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) | 
|  | i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; | 
|  | if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) | 
|  | i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; | 
|  | if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { | 
|  | word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); | 
|  | if (word_address == address) { | 
|  | *data = INVM_DWORD_TO_WORD_DATA(invm_dword); | 
|  | hw_dbg("Read INVM Word 0x%02x = %x\n", | 
|  | address, *data); | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (status) | 
|  | hw_dbg("Requested word 0x%02x not found in OTP\n", address); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_read_invm_i210 - Read invm wrapper function for I210/I211 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @words: number of words to read | 
|  | *  @data: pointer to the data read | 
|  | * | 
|  | *  Wrapper function to return data formerly found in the NVM. | 
|  | **/ | 
|  | static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset, | 
|  | u16 words __always_unused, u16 *data) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* Only the MAC addr is required to be present in the iNVM */ | 
|  | switch (offset) { | 
|  | case NVM_MAC_ADDR: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]); | 
|  | ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1, | 
|  | &data[1]); | 
|  | ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2, | 
|  | &data[2]); | 
|  | if (ret_val) | 
|  | hw_dbg("MAC Addr not found in iNVM\n"); | 
|  | break; | 
|  | case NVM_INIT_CTRL_2: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); | 
|  | if (ret_val) { | 
|  | *data = NVM_INIT_CTRL_2_DEFAULT_I211; | 
|  | ret_val = 0; | 
|  | } | 
|  | break; | 
|  | case NVM_INIT_CTRL_4: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); | 
|  | if (ret_val) { | 
|  | *data = NVM_INIT_CTRL_4_DEFAULT_I211; | 
|  | ret_val = 0; | 
|  | } | 
|  | break; | 
|  | case NVM_LED_1_CFG: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); | 
|  | if (ret_val) { | 
|  | *data = NVM_LED_1_CFG_DEFAULT_I211; | 
|  | ret_val = 0; | 
|  | } | 
|  | break; | 
|  | case NVM_LED_0_2_CFG: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); | 
|  | if (ret_val) { | 
|  | *data = NVM_LED_0_2_CFG_DEFAULT_I211; | 
|  | ret_val = 0; | 
|  | } | 
|  | break; | 
|  | case NVM_ID_LED_SETTINGS: | 
|  | ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); | 
|  | if (ret_val) { | 
|  | *data = ID_LED_RESERVED_FFFF; | 
|  | ret_val = 0; | 
|  | } | 
|  | break; | 
|  | case NVM_SUB_DEV_ID: | 
|  | *data = hw->subsystem_device_id; | 
|  | break; | 
|  | case NVM_SUB_VEN_ID: | 
|  | *data = hw->subsystem_vendor_id; | 
|  | break; | 
|  | case NVM_DEV_ID: | 
|  | *data = hw->device_id; | 
|  | break; | 
|  | case NVM_VEN_ID: | 
|  | *data = hw->vendor_id; | 
|  | break; | 
|  | default: | 
|  | hw_dbg("NVM word 0x%02x is not mapped.\n", offset); | 
|  | *data = NVM_RESERVED_WORD; | 
|  | break; | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_invm_version - Reads iNVM version and image type | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @invm_ver: version structure for the version read | 
|  | * | 
|  | *  Reads iNVM version and image type. | 
|  | **/ | 
|  | s32 igb_read_invm_version(struct e1000_hw *hw, | 
|  | struct e1000_fw_version *invm_ver) { | 
|  | u32 *record = NULL; | 
|  | u32 *next_record = NULL; | 
|  | u32 i = 0; | 
|  | u32 invm_dword = 0; | 
|  | u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / | 
|  | E1000_INVM_RECORD_SIZE_IN_BYTES); | 
|  | u32 buffer[E1000_INVM_SIZE]; | 
|  | s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; | 
|  | u16 version = 0; | 
|  |  | 
|  | /* Read iNVM memory */ | 
|  | for (i = 0; i < E1000_INVM_SIZE; i++) { | 
|  | invm_dword = rd32(E1000_INVM_DATA_REG(i)); | 
|  | buffer[i] = invm_dword; | 
|  | } | 
|  |  | 
|  | /* Read version number */ | 
|  | for (i = 1; i < invm_blocks; i++) { | 
|  | record = &buffer[invm_blocks - i]; | 
|  | next_record = &buffer[invm_blocks - i + 1]; | 
|  |  | 
|  | /* Check if we have first version location used */ | 
|  | if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { | 
|  | version = 0; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | /* Check if we have second version location used */ | 
|  | else if ((i == 1) && | 
|  | ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { | 
|  | version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | /* Check if we have odd version location | 
|  | * used and it is the last one used | 
|  | */ | 
|  | else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && | 
|  | ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && | 
|  | (i != 1))) { | 
|  | version = (*next_record & E1000_INVM_VER_FIELD_TWO) | 
|  | >> 13; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | /* Check if we have even version location | 
|  | * used and it is the last one used | 
|  | */ | 
|  | else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && | 
|  | ((*record & 0x3) == 0)) { | 
|  | version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!status) { | 
|  | invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) | 
|  | >> E1000_INVM_MAJOR_SHIFT; | 
|  | invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; | 
|  | } | 
|  | /* Read Image Type */ | 
|  | for (i = 1; i < invm_blocks; i++) { | 
|  | record = &buffer[invm_blocks - i]; | 
|  | next_record = &buffer[invm_blocks - i + 1]; | 
|  |  | 
|  | /* Check if we have image type in first location used */ | 
|  | if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { | 
|  | invm_ver->invm_img_type = 0; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | /* Check if we have image type in first location used */ | 
|  | else if ((((*record & 0x3) == 0) && | 
|  | ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || | 
|  | ((((*record & 0x3) != 0) && (i != 1)))) { | 
|  | invm_ver->invm_img_type = | 
|  | (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 status = 0; | 
|  | s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); | 
|  |  | 
|  | if (!(hw->nvm.ops.acquire(hw))) { | 
|  |  | 
|  | /* Replace the read function with semaphore grabbing with | 
|  | * the one that skips this for a while. | 
|  | * We have semaphore taken already here. | 
|  | */ | 
|  | read_op_ptr = hw->nvm.ops.read; | 
|  | hw->nvm.ops.read = igb_read_nvm_eerd; | 
|  |  | 
|  | status = igb_validate_nvm_checksum(hw); | 
|  |  | 
|  | /* Revert original read operation. */ | 
|  | hw->nvm.ops.read = read_op_ptr; | 
|  |  | 
|  | hw->nvm.ops.release(hw); | 
|  | } else { | 
|  | status = E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_nvm_checksum_i210 - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. Next commit EEPROM data onto the Flash. | 
|  | **/ | 
|  | static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | /* Read the first word from the EEPROM. If this times out or fails, do | 
|  | * not continue or we could be in for a very long wait while every | 
|  | * EEPROM read fails | 
|  | */ | 
|  | ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("EEPROM read failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!(hw->nvm.ops.acquire(hw))) { | 
|  | /* Do not use hw->nvm.ops.write, hw->nvm.ops.read | 
|  | * because we do not want to take the synchronization | 
|  | * semaphores twice here. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | 
|  | ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw->nvm.ops.release(hw); | 
|  | hw_dbg("NVM Read Error while updating checksum.\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  | checksum = (u16) NVM_SUM - checksum; | 
|  | ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, | 
|  | &checksum); | 
|  | if (ret_val) { | 
|  | hw->nvm.ops.release(hw); | 
|  | hw_dbg("NVM Write Error while updating checksum.\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->nvm.ops.release(hw); | 
|  |  | 
|  | ret_val = igb_update_flash_i210(hw); | 
|  | } else { | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_pool_flash_update_done_i210 - Pool FLUDONE status. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | **/ | 
|  | static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  | u32 i, reg; | 
|  |  | 
|  | for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { | 
|  | reg = rd32(E1000_EECD); | 
|  | if (reg & E1000_EECD_FLUDONE_I210) { | 
|  | ret_val = 0; | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_flash_presence_i210 - Check if flash device is detected. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | **/ | 
|  | bool igb_get_flash_presence_i210(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eec = 0; | 
|  | bool ret_val = false; | 
|  |  | 
|  | eec = rd32(E1000_EECD); | 
|  | if (eec & E1000_EECD_FLASH_DETECTED_I210) | 
|  | ret_val = true; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_flash_i210 - Commit EEPROM to the flash | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | **/ | 
|  | static s32 igb_update_flash_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 flup; | 
|  |  | 
|  | ret_val = igb_pool_flash_update_done_i210(hw); | 
|  | if (ret_val == -E1000_ERR_NVM) { | 
|  | hw_dbg("Flash update time out\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210; | 
|  | wr32(E1000_EECD, flup); | 
|  |  | 
|  | ret_val = igb_pool_flash_update_done_i210(hw); | 
|  | if (ret_val) | 
|  | hw_dbg("Flash update complete\n"); | 
|  | else | 
|  | hw_dbg("Flash update time out\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_valid_led_default_i210 - Verify a valid default LED config | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: pointer to the NVM (EEPROM) | 
|  | * | 
|  | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | **/ | 
|  | s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_internal_serdes: | 
|  | *data = ID_LED_DEFAULT_I210_SERDES; | 
|  | break; | 
|  | case e1000_media_type_copper: | 
|  | default: | 
|  | *data = ID_LED_DEFAULT_I210; | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __igb_access_xmdio_reg - Read/write XMDIO register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @address: XMDIO address to program | 
|  | *  @dev_addr: device address to program | 
|  | *  @data: pointer to value to read/write from/to the XMDIO address | 
|  | *  @read: boolean flag to indicate read or write | 
|  | **/ | 
|  | static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address, | 
|  | u8 dev_addr, u16 *data, bool read) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | | 
|  | dev_addr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (read) | 
|  | ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); | 
|  | else | 
|  | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Recalibrate the device back to 0 */ | 
|  | ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_xmdio_reg - Read XMDIO register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @addr: XMDIO address to program | 
|  | *  @dev_addr: device address to program | 
|  | *  @data: value to be read from the EMI address | 
|  | **/ | 
|  | s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) | 
|  | { | 
|  | return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_xmdio_reg - Write XMDIO register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @addr: XMDIO address to program | 
|  | *  @dev_addr: device address to program | 
|  | *  @data: value to be written to the XMDIO address | 
|  | **/ | 
|  | s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) | 
|  | { | 
|  | return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_init_nvm_params_i210 - Init NVM func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | s32 igb_init_nvm_params_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  |  | 
|  | nvm->ops.acquire = igb_acquire_nvm_i210; | 
|  | nvm->ops.release = igb_release_nvm_i210; | 
|  | nvm->ops.valid_led_default = igb_valid_led_default_i210; | 
|  |  | 
|  | /* NVM Function Pointers */ | 
|  | if (igb_get_flash_presence_i210(hw)) { | 
|  | hw->nvm.type = e1000_nvm_flash_hw; | 
|  | nvm->ops.read    = igb_read_nvm_srrd_i210; | 
|  | nvm->ops.write   = igb_write_nvm_srwr_i210; | 
|  | nvm->ops.validate = igb_validate_nvm_checksum_i210; | 
|  | nvm->ops.update   = igb_update_nvm_checksum_i210; | 
|  | } else { | 
|  | hw->nvm.type = e1000_nvm_invm; | 
|  | nvm->ops.read     = igb_read_invm_i210; | 
|  | nvm->ops.write    = NULL; | 
|  | nvm->ops.validate = NULL; | 
|  | nvm->ops.update   = NULL; | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_pll_workaround_i210 | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * Works around an errata in the PLL circuit where it occasionally | 
|  | * provides the wrong clock frequency after power up. | 
|  | **/ | 
|  | s32 igb_pll_workaround_i210(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val; | 
|  | u16 nvm_word, phy_word, pci_word, tmp_nvm; | 
|  | int i; | 
|  |  | 
|  | /* Get and set needed register values */ | 
|  | wuc = rd32(E1000_WUC); | 
|  | mdicnfg = rd32(E1000_MDICNFG); | 
|  | reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; | 
|  | wr32(E1000_MDICNFG, reg_val); | 
|  |  | 
|  | /* Get data from NVM, or set default */ | 
|  | ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, | 
|  | &nvm_word); | 
|  | if (ret_val) | 
|  | nvm_word = E1000_INVM_DEFAULT_AL; | 
|  | tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; | 
|  | for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { | 
|  | /* check current state directly from internal PHY */ | 
|  | igb_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE | | 
|  | E1000_PHY_PLL_FREQ_REG), &phy_word); | 
|  | if ((phy_word & E1000_PHY_PLL_UNCONF) | 
|  | != E1000_PHY_PLL_UNCONF) { | 
|  | ret_val = 0; | 
|  | break; | 
|  | } else { | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | } | 
|  | /* directly reset the internal PHY */ | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST); | 
|  |  | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext); | 
|  |  | 
|  | wr32(E1000_WUC, 0); | 
|  | reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); | 
|  | wr32(E1000_EEARBC_I210, reg_val); | 
|  |  | 
|  | igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); | 
|  | pci_word |= E1000_PCI_PMCSR_D3; | 
|  | igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); | 
|  | usleep_range(1000, 2000); | 
|  | pci_word &= ~E1000_PCI_PMCSR_D3; | 
|  | igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); | 
|  | reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); | 
|  | wr32(E1000_EEARBC_I210, reg_val); | 
|  |  | 
|  | /* restore WUC register */ | 
|  | wr32(E1000_WUC, wuc); | 
|  | } | 
|  | /* restore MDICNFG setting */ | 
|  | wr32(E1000_MDICNFG, mdicnfg); | 
|  | return ret_val; | 
|  | } |