| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2016 |
| * |
| * Author: Gerald Baeza <gerald.baeza@st.com> |
| * |
| * Inspired by timer-stm32.c from Maxime Coquelin |
| * pwm-atmel.c from Bo Shen |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/mfd/stm32-timers.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pwm.h> |
| |
| #define CCMR_CHANNEL_SHIFT 8 |
| #define CCMR_CHANNEL_MASK 0xFF |
| #define MAX_BREAKINPUT 2 |
| |
| struct stm32_pwm { |
| struct pwm_chip chip; |
| struct mutex lock; /* protect pwm config/enable */ |
| struct clk *clk; |
| struct regmap *regmap; |
| u32 max_arr; |
| bool have_complementary_output; |
| u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ |
| }; |
| |
| struct stm32_breakinput { |
| u32 index; |
| u32 level; |
| u32 filter; |
| }; |
| |
| static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) |
| { |
| return container_of(chip, struct stm32_pwm, chip); |
| } |
| |
| static u32 active_channels(struct stm32_pwm *dev) |
| { |
| u32 ccer; |
| |
| regmap_read(dev->regmap, TIM_CCER, &ccer); |
| |
| return ccer & TIM_CCER_CCXE; |
| } |
| |
| static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value) |
| { |
| switch (ch) { |
| case 0: |
| return regmap_write(dev->regmap, TIM_CCR1, value); |
| case 1: |
| return regmap_write(dev->regmap, TIM_CCR2, value); |
| case 2: |
| return regmap_write(dev->regmap, TIM_CCR3, value); |
| case 3: |
| return regmap_write(dev->regmap, TIM_CCR4, value); |
| } |
| return -EINVAL; |
| } |
| |
| #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) |
| #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) |
| #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) |
| #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) |
| |
| /* |
| * Capture using PWM input mode: |
| * ___ ___ |
| * TI[1, 2, 3 or 4]: ........._| |________| |
| * ^0 ^1 ^2 |
| * . . . |
| * . . XXXXX |
| * . . XXXXX | |
| * . XXXXX . | |
| * XXXXX . . | |
| * COUNTER: ______XXXXX . . . |_XXX |
| * start^ . . . ^stop |
| * . . . . |
| * v v . v |
| * v |
| * CCR1/CCR3: tx..........t0...........t2 |
| * CCR2/CCR4: tx..............t1......... |
| * |
| * DMA burst transfer: | | |
| * v v |
| * DMA buffer: { t0, tx } { t2, t1 } |
| * DMA done: ^ |
| * |
| * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 |
| * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) |
| * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 |
| * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 |
| * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) |
| * |
| * DMA done, compute: |
| * - Period = t2 - t0 |
| * - Duty cycle = t1 - t0 |
| */ |
| static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm, |
| unsigned long tmo_ms, u32 *raw_prd, |
| u32 *raw_dty) |
| { |
| struct device *parent = priv->chip.dev->parent; |
| enum stm32_timers_dmas dma_id; |
| u32 ccen, ccr; |
| int ret; |
| |
| /* Ensure registers have been updated, enable counter and capture */ |
| regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); |
| |
| /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ |
| dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; |
| ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; |
| ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; |
| regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen); |
| |
| /* |
| * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both |
| * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. |
| * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } |
| * or { CCR3, CCR4 }, { CCR3, CCR4 } |
| */ |
| ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, |
| 2, tmo_ms); |
| if (ret) |
| goto stop; |
| |
| /* Period: t2 - t0 (take care of counter overflow) */ |
| if (priv->capture[0] <= priv->capture[2]) |
| *raw_prd = priv->capture[2] - priv->capture[0]; |
| else |
| *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; |
| |
| /* Duty cycle capture requires at least two capture units */ |
| if (pwm->chip->npwm < 2) |
| *raw_dty = 0; |
| else if (priv->capture[0] <= priv->capture[3]) |
| *raw_dty = priv->capture[3] - priv->capture[0]; |
| else |
| *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; |
| |
| if (*raw_dty > *raw_prd) { |
| /* |
| * Race beetween PWM input and DMA: it may happen |
| * falling edge triggers new capture on TI2/4 before DMA |
| * had a chance to read CCR2/4. It means capture[1] |
| * contains period + duty_cycle. So, subtract period. |
| */ |
| *raw_dty -= *raw_prd; |
| } |
| |
| stop: |
| regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0); |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); |
| |
| return ret; |
| } |
| |
| static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, |
| struct pwm_capture *result, unsigned long tmo_ms) |
| { |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned long long prd, div, dty; |
| unsigned long rate; |
| unsigned int psc = 0, icpsc, scale; |
| u32 raw_prd = 0, raw_dty = 0; |
| int ret = 0; |
| |
| mutex_lock(&priv->lock); |
| |
| if (active_channels(priv)) { |
| ret = -EBUSY; |
| goto unlock; |
| } |
| |
| ret = clk_enable(priv->clk); |
| if (ret) { |
| dev_err(priv->chip.dev, "failed to enable counter clock\n"); |
| goto unlock; |
| } |
| |
| rate = clk_get_rate(priv->clk); |
| if (!rate) { |
| ret = -EINVAL; |
| goto clk_dis; |
| } |
| |
| /* prescaler: fit timeout window provided by upper layer */ |
| div = (unsigned long long)rate * (unsigned long long)tmo_ms; |
| do_div(div, MSEC_PER_SEC); |
| prd = div; |
| while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { |
| psc++; |
| div = prd; |
| do_div(div, psc + 1); |
| } |
| regmap_write(priv->regmap, TIM_ARR, priv->max_arr); |
| regmap_write(priv->regmap, TIM_PSC, psc); |
| |
| /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ |
| regmap_update_bits(priv->regmap, |
| pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, |
| TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? |
| TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : |
| TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); |
| |
| /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ |
| regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? |
| TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? |
| TIM_CCER_CC2P : TIM_CCER_CC4P); |
| |
| ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); |
| if (ret) |
| goto stop; |
| |
| /* |
| * Got a capture. Try to improve accuracy at high rates: |
| * - decrease counter clock prescaler, scale up to max rate. |
| * - use input prescaler, capture once every /2 /4 or /8 edges. |
| */ |
| if (raw_prd) { |
| u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ |
| |
| scale = max_arr / min(max_arr, raw_prd); |
| } else { |
| scale = priv->max_arr; /* bellow resolution, use max scale */ |
| } |
| |
| if (psc && scale > 1) { |
| /* 2nd measure with new scale */ |
| psc /= scale; |
| regmap_write(priv->regmap, TIM_PSC, psc); |
| ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, |
| &raw_dty); |
| if (ret) |
| goto stop; |
| } |
| |
| /* Compute intermediate period not to exceed timeout at low rates */ |
| prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; |
| do_div(prd, rate); |
| |
| for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { |
| /* input prescaler: also keep arbitrary margin */ |
| if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) |
| break; |
| if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) |
| break; |
| } |
| |
| if (!icpsc) |
| goto done; |
| |
| /* Last chance to improve period accuracy, using input prescaler */ |
| regmap_update_bits(priv->regmap, |
| pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, |
| TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, |
| FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | |
| FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); |
| |
| ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); |
| if (ret) |
| goto stop; |
| |
| if (raw_dty >= (raw_prd >> icpsc)) { |
| /* |
| * We may fall here using input prescaler, when input |
| * capture starts on high side (before falling edge). |
| * Example with icpsc to capture on each 4 events: |
| * |
| * start 1st capture 2nd capture |
| * v v v |
| * ___ _____ _____ _____ _____ ____ |
| * TI1..4 |__| |__| |__| |__| |__| |
| * v v . . . . . v v |
| * icpsc1/3: . 0 . 1 . 2 . 3 . 0 |
| * icpsc2/4: 0 1 2 3 0 |
| * v v v v |
| * CCR1/3 ......t0..............................t2 |
| * CCR2/4 ..t1..............................t1'... |
| * . . . |
| * Capture0: .<----------------------------->. |
| * Capture1: .<-------------------------->. . |
| * . . . |
| * Period: .<------> . . |
| * Low side: .<>. |
| * |
| * Result: |
| * - Period = Capture0 / icpsc |
| * - Duty = Period - Low side = Period - (Capture0 - Capture1) |
| */ |
| raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); |
| } |
| |
| done: |
| prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; |
| result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); |
| dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; |
| result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); |
| stop: |
| regmap_write(priv->regmap, TIM_CCER, 0); |
| regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); |
| regmap_write(priv->regmap, TIM_PSC, 0); |
| clk_dis: |
| clk_disable(priv->clk); |
| unlock: |
| mutex_unlock(&priv->lock); |
| |
| return ret; |
| } |
| |
| static int stm32_pwm_config(struct stm32_pwm *priv, int ch, |
| int duty_ns, int period_ns) |
| { |
| unsigned long long prd, div, dty; |
| unsigned int prescaler = 0; |
| u32 ccmr, mask, shift; |
| |
| /* Period and prescaler values depends on clock rate */ |
| div = (unsigned long long)clk_get_rate(priv->clk) * period_ns; |
| |
| do_div(div, NSEC_PER_SEC); |
| prd = div; |
| |
| while (div > priv->max_arr) { |
| prescaler++; |
| div = prd; |
| do_div(div, prescaler + 1); |
| } |
| |
| prd = div; |
| |
| if (prescaler > MAX_TIM_PSC) |
| return -EINVAL; |
| |
| /* |
| * All channels share the same prescaler and counter so when two |
| * channels are active at the same time we can't change them |
| */ |
| if (active_channels(priv) & ~(1 << ch * 4)) { |
| u32 psc, arr; |
| |
| regmap_read(priv->regmap, TIM_PSC, &psc); |
| regmap_read(priv->regmap, TIM_ARR, &arr); |
| |
| if ((psc != prescaler) || (arr != prd - 1)) |
| return -EBUSY; |
| } |
| |
| regmap_write(priv->regmap, TIM_PSC, prescaler); |
| regmap_write(priv->regmap, TIM_ARR, prd - 1); |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE); |
| |
| /* Calculate the duty cycles */ |
| dty = prd * duty_ns; |
| do_div(dty, period_ns); |
| |
| write_ccrx(priv, ch, dty); |
| |
| /* Configure output mode */ |
| shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; |
| ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; |
| mask = CCMR_CHANNEL_MASK << shift; |
| |
| if (ch < 2) |
| regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); |
| else |
| regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); |
| |
| regmap_update_bits(priv->regmap, TIM_BDTR, |
| TIM_BDTR_MOE | TIM_BDTR_AOE, |
| TIM_BDTR_MOE | TIM_BDTR_AOE); |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch, |
| enum pwm_polarity polarity) |
| { |
| u32 mask; |
| |
| mask = TIM_CCER_CC1P << (ch * 4); |
| if (priv->have_complementary_output) |
| mask |= TIM_CCER_CC1NP << (ch * 4); |
| |
| regmap_update_bits(priv->regmap, TIM_CCER, mask, |
| polarity == PWM_POLARITY_NORMAL ? 0 : mask); |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_enable(struct stm32_pwm *priv, int ch) |
| { |
| u32 mask; |
| int ret; |
| |
| ret = clk_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| /* Enable channel */ |
| mask = TIM_CCER_CC1E << (ch * 4); |
| if (priv->have_complementary_output) |
| mask |= TIM_CCER_CC1NE << (ch * 4); |
| |
| regmap_update_bits(priv->regmap, TIM_CCER, mask, mask); |
| |
| /* Make sure that registers are updated */ |
| regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); |
| |
| /* Enable controller */ |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); |
| |
| return 0; |
| } |
| |
| static void stm32_pwm_disable(struct stm32_pwm *priv, int ch) |
| { |
| u32 mask; |
| |
| /* Disable channel */ |
| mask = TIM_CCER_CC1E << (ch * 4); |
| if (priv->have_complementary_output) |
| mask |= TIM_CCER_CC1NE << (ch * 4); |
| |
| regmap_update_bits(priv->regmap, TIM_CCER, mask, 0); |
| |
| /* When all channels are disabled, we can disable the controller */ |
| if (!active_channels(priv)) |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); |
| |
| clk_disable(priv->clk); |
| } |
| |
| static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| bool enabled; |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| int ret; |
| |
| enabled = pwm->state.enabled; |
| |
| if (enabled && !state->enabled) { |
| stm32_pwm_disable(priv, pwm->hwpwm); |
| return 0; |
| } |
| |
| if (state->polarity != pwm->state.polarity) |
| stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity); |
| |
| ret = stm32_pwm_config(priv, pwm->hwpwm, |
| state->duty_cycle, state->period); |
| if (ret) |
| return ret; |
| |
| if (!enabled && state->enabled) |
| ret = stm32_pwm_enable(priv, pwm->hwpwm); |
| |
| return ret; |
| } |
| |
| static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| int ret; |
| |
| /* protect common prescaler for all active channels */ |
| mutex_lock(&priv->lock); |
| ret = stm32_pwm_apply(chip, pwm, state); |
| mutex_unlock(&priv->lock); |
| |
| return ret; |
| } |
| |
| static const struct pwm_ops stm32pwm_ops = { |
| .owner = THIS_MODULE, |
| .apply = stm32_pwm_apply_locked, |
| .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, |
| }; |
| |
| static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, |
| int index, int level, int filter) |
| { |
| u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E; |
| int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT; |
| u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF |
| : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F; |
| u32 bdtr = bke; |
| |
| /* |
| * The both bits could be set since only one will be wrote |
| * due to mask value. |
| */ |
| if (level) |
| bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P; |
| |
| bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift; |
| |
| regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); |
| |
| regmap_read(priv->regmap, TIM_BDTR, &bdtr); |
| |
| return (bdtr & bke) ? 0 : -EINVAL; |
| } |
| |
| static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv, |
| struct device_node *np) |
| { |
| struct stm32_breakinput breakinput[MAX_BREAKINPUT]; |
| int nb, ret, i, array_size; |
| |
| nb = of_property_count_elems_of_size(np, "st,breakinput", |
| sizeof(struct stm32_breakinput)); |
| |
| /* |
| * Because "st,breakinput" parameter is optional do not make probe |
| * failed if it doesn't exist. |
| */ |
| if (nb <= 0) |
| return 0; |
| |
| if (nb > MAX_BREAKINPUT) |
| return -EINVAL; |
| |
| array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); |
| ret = of_property_read_u32_array(np, "st,breakinput", |
| (u32 *)breakinput, array_size); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < nb && !ret; i++) { |
| ret = stm32_pwm_set_breakinput(priv, |
| breakinput[i].index, |
| breakinput[i].level, |
| breakinput[i].filter); |
| } |
| |
| return ret; |
| } |
| |
| static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) |
| { |
| u32 ccer; |
| |
| /* |
| * If complementary bit doesn't exist writing 1 will have no |
| * effect so we can detect it. |
| */ |
| regmap_update_bits(priv->regmap, |
| TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE); |
| regmap_read(priv->regmap, TIM_CCER, &ccer); |
| regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0); |
| |
| priv->have_complementary_output = (ccer != 0); |
| } |
| |
| static int stm32_pwm_detect_channels(struct stm32_pwm *priv) |
| { |
| u32 ccer; |
| int npwm = 0; |
| |
| /* |
| * If channels enable bits don't exist writing 1 will have no |
| * effect so we can detect and count them. |
| */ |
| regmap_update_bits(priv->regmap, |
| TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE); |
| regmap_read(priv->regmap, TIM_CCER, &ccer); |
| regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0); |
| |
| if (ccer & TIM_CCER_CC1E) |
| npwm++; |
| |
| if (ccer & TIM_CCER_CC2E) |
| npwm++; |
| |
| if (ccer & TIM_CCER_CC3E) |
| npwm++; |
| |
| if (ccer & TIM_CCER_CC4E) |
| npwm++; |
| |
| return npwm; |
| } |
| |
| static int stm32_pwm_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); |
| struct stm32_pwm *priv; |
| int ret; |
| |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| mutex_init(&priv->lock); |
| priv->regmap = ddata->regmap; |
| priv->clk = ddata->clk; |
| priv->max_arr = ddata->max_arr; |
| priv->chip.of_xlate = of_pwm_xlate_with_flags; |
| priv->chip.of_pwm_n_cells = 3; |
| |
| if (!priv->regmap || !priv->clk) |
| return -EINVAL; |
| |
| ret = stm32_pwm_apply_breakinputs(priv, np); |
| if (ret) |
| return ret; |
| |
| stm32_pwm_detect_complementary(priv); |
| |
| priv->chip.base = -1; |
| priv->chip.dev = dev; |
| priv->chip.ops = &stm32pwm_ops; |
| priv->chip.npwm = stm32_pwm_detect_channels(priv); |
| |
| ret = pwmchip_add(&priv->chip); |
| if (ret < 0) |
| return ret; |
| |
| platform_set_drvdata(pdev, priv); |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_remove(struct platform_device *pdev) |
| { |
| struct stm32_pwm *priv = platform_get_drvdata(pdev); |
| unsigned int i; |
| |
| for (i = 0; i < priv->chip.npwm; i++) |
| pwm_disable(&priv->chip.pwms[i]); |
| |
| pwmchip_remove(&priv->chip); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id stm32_pwm_of_match[] = { |
| { .compatible = "st,stm32-pwm", }, |
| { /* end node */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); |
| |
| static struct platform_driver stm32_pwm_driver = { |
| .probe = stm32_pwm_probe, |
| .remove = stm32_pwm_remove, |
| .driver = { |
| .name = "stm32-pwm", |
| .of_match_table = stm32_pwm_of_match, |
| }, |
| }; |
| module_platform_driver(stm32_pwm_driver); |
| |
| MODULE_ALIAS("platform:stm32-pwm"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); |
| MODULE_LICENSE("GPL v2"); |