blob: da73a06c20a39df687d199ab63f3b6af9063eb77 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* USB Peripheral Controller driver for Aeroflex Gaisler GRUSBDC.
*
* 2013 (c) Aeroflex Gaisler AB
*
* This driver supports GRUSBDC USB Device Controller cores available in the
* GRLIB VHDL IP core library.
*
* Full documentation of the GRUSBDC core can be found here:
* http://www.gaisler.com/products/grlib/grip.pdf
*
* Contributors:
* - Andreas Larsson <andreas@gaisler.com>
* - Marko Isomaki
*/
/*
* A GRUSBDC core can have up to 16 IN endpoints and 16 OUT endpoints each
* individually configurable to any of the four USB transfer types. This driver
* only supports cores in DMA mode.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <asm/byteorder.h>
#include "gr_udc.h"
#define DRIVER_NAME "gr_udc"
#define DRIVER_DESC "Aeroflex Gaisler GRUSBDC USB Peripheral Controller"
static const char driver_name[] = DRIVER_NAME;
static const char driver_desc[] = DRIVER_DESC;
#define gr_read32(x) (ioread32be((x)))
#define gr_write32(x, v) (iowrite32be((v), (x)))
/* USB speed and corresponding string calculated from status register value */
#define GR_SPEED(status) \
((status & GR_STATUS_SP) ? USB_SPEED_FULL : USB_SPEED_HIGH)
#define GR_SPEED_STR(status) usb_speed_string(GR_SPEED(status))
/* Size of hardware buffer calculated from epctrl register value */
#define GR_BUFFER_SIZE(epctrl) \
((((epctrl) & GR_EPCTRL_BUFSZ_MASK) >> GR_EPCTRL_BUFSZ_POS) * \
GR_EPCTRL_BUFSZ_SCALER)
/* ---------------------------------------------------------------------- */
/* Debug printout functionality */
static const char * const gr_modestring[] = {"control", "iso", "bulk", "int"};
static const char *gr_ep0state_string(enum gr_ep0state state)
{
static const char *const names[] = {
[GR_EP0_DISCONNECT] = "disconnect",
[GR_EP0_SETUP] = "setup",
[GR_EP0_IDATA] = "idata",
[GR_EP0_ODATA] = "odata",
[GR_EP0_ISTATUS] = "istatus",
[GR_EP0_OSTATUS] = "ostatus",
[GR_EP0_STALL] = "stall",
[GR_EP0_SUSPEND] = "suspend",
};
if (state < 0 || state >= ARRAY_SIZE(names))
return "UNKNOWN";
return names[state];
}
#ifdef VERBOSE_DEBUG
static void gr_dbgprint_request(const char *str, struct gr_ep *ep,
struct gr_request *req)
{
int buflen = ep->is_in ? req->req.length : req->req.actual;
int rowlen = 32;
int plen = min(rowlen, buflen);
dev_dbg(ep->dev->dev, "%s: 0x%p, %d bytes data%s:\n", str, req, buflen,
(buflen > plen ? " (truncated)" : ""));
print_hex_dump_debug(" ", DUMP_PREFIX_NONE,
rowlen, 4, req->req.buf, plen, false);
}
static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request,
u16 value, u16 index, u16 length)
{
dev_vdbg(dev->dev, "REQ: %02x.%02x v%04x i%04x l%04x\n",
type, request, value, index, length);
}
#else /* !VERBOSE_DEBUG */
static void gr_dbgprint_request(const char *str, struct gr_ep *ep,
struct gr_request *req) {}
static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request,
u16 value, u16 index, u16 length) {}
#endif /* VERBOSE_DEBUG */
/* ---------------------------------------------------------------------- */
/* Debugfs functionality */
#ifdef CONFIG_USB_GADGET_DEBUG_FS
static void gr_seq_ep_show(struct seq_file *seq, struct gr_ep *ep)
{
u32 epctrl = gr_read32(&ep->regs->epctrl);
u32 epstat = gr_read32(&ep->regs->epstat);
int mode = (epctrl & GR_EPCTRL_TT_MASK) >> GR_EPCTRL_TT_POS;
struct gr_request *req;
seq_printf(seq, "%s:\n", ep->ep.name);
seq_printf(seq, " mode = %s\n", gr_modestring[mode]);
seq_printf(seq, " halted: %d\n", !!(epctrl & GR_EPCTRL_EH));
seq_printf(seq, " disabled: %d\n", !!(epctrl & GR_EPCTRL_ED));
seq_printf(seq, " valid: %d\n", !!(epctrl & GR_EPCTRL_EV));
seq_printf(seq, " dma_start = %d\n", ep->dma_start);
seq_printf(seq, " stopped = %d\n", ep->stopped);
seq_printf(seq, " wedged = %d\n", ep->wedged);
seq_printf(seq, " callback = %d\n", ep->callback);
seq_printf(seq, " maxpacket = %d\n", ep->ep.maxpacket);
seq_printf(seq, " maxpacket_limit = %d\n", ep->ep.maxpacket_limit);
seq_printf(seq, " bytes_per_buffer = %d\n", ep->bytes_per_buffer);
if (mode == 1 || mode == 3)
seq_printf(seq, " nt = %d\n",
(epctrl & GR_EPCTRL_NT_MASK) >> GR_EPCTRL_NT_POS);
seq_printf(seq, " Buffer 0: %s %s%d\n",
epstat & GR_EPSTAT_B0 ? "valid" : "invalid",
epstat & GR_EPSTAT_BS ? " " : "selected ",
(epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS);
seq_printf(seq, " Buffer 1: %s %s%d\n",
epstat & GR_EPSTAT_B1 ? "valid" : "invalid",
epstat & GR_EPSTAT_BS ? "selected " : " ",
(epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS);
if (list_empty(&ep->queue)) {
seq_puts(seq, " Queue: empty\n\n");
return;
}
seq_puts(seq, " Queue:\n");
list_for_each_entry(req, &ep->queue, queue) {
struct gr_dma_desc *desc;
struct gr_dma_desc *next;
seq_printf(seq, " 0x%p: 0x%p %d %d\n", req,
&req->req.buf, req->req.actual, req->req.length);
next = req->first_desc;
do {
desc = next;
next = desc->next_desc;
seq_printf(seq, " %c 0x%p (0x%08x): 0x%05x 0x%08x\n",
desc == req->curr_desc ? 'c' : ' ',
desc, desc->paddr, desc->ctrl, desc->data);
} while (desc != req->last_desc);
}
seq_puts(seq, "\n");
}
static int gr_dfs_show(struct seq_file *seq, void *v)
{
struct gr_udc *dev = seq->private;
u32 control = gr_read32(&dev->regs->control);
u32 status = gr_read32(&dev->regs->status);
struct gr_ep *ep;
seq_printf(seq, "usb state = %s\n",
usb_state_string(dev->gadget.state));
seq_printf(seq, "address = %d\n",
(control & GR_CONTROL_UA_MASK) >> GR_CONTROL_UA_POS);
seq_printf(seq, "speed = %s\n", GR_SPEED_STR(status));
seq_printf(seq, "ep0state = %s\n", gr_ep0state_string(dev->ep0state));
seq_printf(seq, "irq_enabled = %d\n", dev->irq_enabled);
seq_printf(seq, "remote_wakeup = %d\n", dev->remote_wakeup);
seq_printf(seq, "test_mode = %d\n", dev->test_mode);
seq_puts(seq, "\n");
list_for_each_entry(ep, &dev->ep_list, ep_list)
gr_seq_ep_show(seq, ep);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(gr_dfs);
static void gr_dfs_create(struct gr_udc *dev)
{
const char *name = "gr_udc_state";
dev->dfs_root = debugfs_create_dir(dev_name(dev->dev), NULL);
debugfs_create_file(name, 0444, dev->dfs_root, dev, &gr_dfs_fops);
}
static void gr_dfs_delete(struct gr_udc *dev)
{
debugfs_remove_recursive(dev->dfs_root);
}
#else /* !CONFIG_USB_GADGET_DEBUG_FS */
static void gr_dfs_create(struct gr_udc *dev) {}
static void gr_dfs_delete(struct gr_udc *dev) {}
#endif /* CONFIG_USB_GADGET_DEBUG_FS */
/* ---------------------------------------------------------------------- */
/* DMA and request handling */
/* Allocates a new struct gr_dma_desc, sets paddr and zeroes the rest */
static struct gr_dma_desc *gr_alloc_dma_desc(struct gr_ep *ep, gfp_t gfp_flags)
{
dma_addr_t paddr;
struct gr_dma_desc *dma_desc;
dma_desc = dma_pool_zalloc(ep->dev->desc_pool, gfp_flags, &paddr);
if (!dma_desc) {
dev_err(ep->dev->dev, "Could not allocate from DMA pool\n");
return NULL;
}
dma_desc->paddr = paddr;
return dma_desc;
}
static inline void gr_free_dma_desc(struct gr_udc *dev,
struct gr_dma_desc *desc)
{
dma_pool_free(dev->desc_pool, desc, (dma_addr_t)desc->paddr);
}
/* Frees the chain of struct gr_dma_desc for the given request */
static void gr_free_dma_desc_chain(struct gr_udc *dev, struct gr_request *req)
{
struct gr_dma_desc *desc;
struct gr_dma_desc *next;
next = req->first_desc;
if (!next)
return;
do {
desc = next;
next = desc->next_desc;
gr_free_dma_desc(dev, desc);
} while (desc != req->last_desc);
req->first_desc = NULL;
req->curr_desc = NULL;
req->last_desc = NULL;
}
static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req);
/*
* Frees allocated resources and calls the appropriate completion function/setup
* package handler for a finished request.
*
* Must be called with dev->lock held and irqs disabled.
*/
static void gr_finish_request(struct gr_ep *ep, struct gr_request *req,
int status)
__releases(&dev->lock)
__acquires(&dev->lock)
{
struct gr_udc *dev;
list_del_init(&req->queue);
if (likely(req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
dev = ep->dev;
usb_gadget_unmap_request(&dev->gadget, &req->req, ep->is_in);
gr_free_dma_desc_chain(dev, req);
if (ep->is_in) { /* For OUT, req->req.actual gets updated bit by bit */
req->req.actual = req->req.length;
} else if (req->oddlen && req->req.actual > req->evenlen) {
/*
* Copy to user buffer in this case where length was not evenly
* divisible by ep->ep.maxpacket and the last descriptor was
* actually used.
*/
char *buftail = ((char *)req->req.buf + req->evenlen);
memcpy(buftail, ep->tailbuf, req->oddlen);
if (req->req.actual > req->req.length) {
/* We got more data than was requested */
dev_dbg(ep->dev->dev, "Overflow for ep %s\n",
ep->ep.name);
gr_dbgprint_request("OVFL", ep, req);
req->req.status = -EOVERFLOW;
}
}
if (!status) {
if (ep->is_in)
gr_dbgprint_request("SENT", ep, req);
else
gr_dbgprint_request("RECV", ep, req);
}
/* Prevent changes to ep->queue during callback */
ep->callback = 1;
if (req == dev->ep0reqo && !status) {
if (req->setup)
gr_ep0_setup(dev, req);
else
dev_err(dev->dev,
"Unexpected non setup packet on ep0in\n");
} else if (req->req.complete) {
spin_unlock(&dev->lock);
usb_gadget_giveback_request(&ep->ep, &req->req);
spin_lock(&dev->lock);
}
ep->callback = 0;
}
static struct usb_request *gr_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct gr_request *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
/*
* Starts DMA for endpoint ep if there are requests in the queue.
*
* Must be called with dev->lock held and with !ep->stopped.
*/
static void gr_start_dma(struct gr_ep *ep)
{
struct gr_request *req;
u32 dmactrl;
if (list_empty(&ep->queue)) {
ep->dma_start = 0;
return;
}
req = list_first_entry(&ep->queue, struct gr_request, queue);
/* A descriptor should already have been allocated */
BUG_ON(!req->curr_desc);
/*
* The DMA controller can not handle smaller OUT buffers than
* ep->ep.maxpacket. It could lead to buffer overruns if an unexpectedly
* long packet are received. Therefore an internal bounce buffer gets
* used when such a request gets enabled.
*/
if (!ep->is_in && req->oddlen)
req->last_desc->data = ep->tailbuf_paddr;
wmb(); /* Make sure all is settled before handing it over to DMA */
/* Set the descriptor pointer in the hardware */
gr_write32(&ep->regs->dmaaddr, req->curr_desc->paddr);
/* Announce available descriptors */
dmactrl = gr_read32(&ep->regs->dmactrl);
gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_DA);
ep->dma_start = 1;
}
/*
* Finishes the first request in the ep's queue and, if available, starts the
* next request in queue.
*
* Must be called with dev->lock held, irqs disabled and with !ep->stopped.
*/
static void gr_dma_advance(struct gr_ep *ep, int status)
{
struct gr_request *req;
req = list_first_entry(&ep->queue, struct gr_request, queue);
gr_finish_request(ep, req, status);
gr_start_dma(ep); /* Regardless of ep->dma_start */
}
/*
* Abort DMA for an endpoint. Sets the abort DMA bit which causes an ongoing DMA
* transfer to be canceled and clears GR_DMACTRL_DA.
*
* Must be called with dev->lock held.
*/
static void gr_abort_dma(struct gr_ep *ep)
{
u32 dmactrl;
dmactrl = gr_read32(&ep->regs->dmactrl);
gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_AD);
}
/*
* Allocates and sets up a struct gr_dma_desc and putting it on the descriptor
* chain.
*
* Size is not used for OUT endpoints. Hardware can not be instructed to handle
* smaller buffer than MAXPL in the OUT direction.
*/
static int gr_add_dma_desc(struct gr_ep *ep, struct gr_request *req,
dma_addr_t data, unsigned size, gfp_t gfp_flags)
{
struct gr_dma_desc *desc;
desc = gr_alloc_dma_desc(ep, gfp_flags);
if (!desc)
return -ENOMEM;
desc->data = data;
if (ep->is_in)
desc->ctrl =
(GR_DESC_IN_CTRL_LEN_MASK & size) | GR_DESC_IN_CTRL_EN;
else
desc->ctrl = GR_DESC_OUT_CTRL_IE;
if (!req->first_desc) {
req->first_desc = desc;
req->curr_desc = desc;
} else {
req->last_desc->next_desc = desc;
req->last_desc->next = desc->paddr;
req->last_desc->ctrl |= GR_DESC_OUT_CTRL_NX;
}
req->last_desc = desc;
return 0;
}
/*
* Sets up a chain of struct gr_dma_descriptors pointing to buffers that
* together covers req->req.length bytes of the buffer at DMA address
* req->req.dma for the OUT direction.
*
* The first descriptor in the chain is enabled, the rest disabled. The
* interrupt handler will later enable them one by one when needed so we can
* find out when the transfer is finished. For OUT endpoints, all descriptors
* therefore generate interrutps.
*/
static int gr_setup_out_desc_list(struct gr_ep *ep, struct gr_request *req,
gfp_t gfp_flags)
{
u16 bytes_left; /* Bytes left to provide descriptors for */
u16 bytes_used; /* Bytes accommodated for */
int ret = 0;
req->first_desc = NULL; /* Signals that no allocation is done yet */
bytes_left = req->req.length;
bytes_used = 0;
while (bytes_left > 0) {
dma_addr_t start = req->req.dma + bytes_used;
u16 size = min(bytes_left, ep->bytes_per_buffer);
if (size < ep->bytes_per_buffer) {
/* Prepare using bounce buffer */
req->evenlen = req->req.length - bytes_left;
req->oddlen = size;
}
ret = gr_add_dma_desc(ep, req, start, size, gfp_flags);
if (ret)
goto alloc_err;
bytes_left -= size;
bytes_used += size;
}
req->first_desc->ctrl |= GR_DESC_OUT_CTRL_EN;
return 0;
alloc_err:
gr_free_dma_desc_chain(ep->dev, req);
return ret;
}
/*
* Sets up a chain of struct gr_dma_descriptors pointing to buffers that
* together covers req->req.length bytes of the buffer at DMA address
* req->req.dma for the IN direction.
*
* When more data is provided than the maximum payload size, the hardware splits
* this up into several payloads automatically. Moreover, ep->bytes_per_buffer
* is always set to a multiple of the maximum payload (restricted to the valid
* number of maximum payloads during high bandwidth isochronous or interrupt
* transfers)
*
* All descriptors are enabled from the beginning and we only generate an
* interrupt for the last one indicating that the entire request has been pushed
* to hardware.
*/
static int gr_setup_in_desc_list(struct gr_ep *ep, struct gr_request *req,
gfp_t gfp_flags)
{
u16 bytes_left; /* Bytes left in req to provide descriptors for */
u16 bytes_used; /* Bytes in req accommodated for */
int ret = 0;
req->first_desc = NULL; /* Signals that no allocation is done yet */
bytes_left = req->req.length;
bytes_used = 0;
do { /* Allow for zero length packets */
dma_addr_t start = req->req.dma + bytes_used;
u16 size = min(bytes_left, ep->bytes_per_buffer);
ret = gr_add_dma_desc(ep, req, start, size, gfp_flags);
if (ret)
goto alloc_err;
bytes_left -= size;
bytes_used += size;
} while (bytes_left > 0);
/*
* Send an extra zero length packet to indicate that no more data is
* available when req->req.zero is set and the data length is even
* multiples of ep->ep.maxpacket.
*/
if (req->req.zero && (req->req.length % ep->ep.maxpacket == 0)) {
ret = gr_add_dma_desc(ep, req, 0, 0, gfp_flags);
if (ret)
goto alloc_err;
}
/*
* For IN packets we only want to know when the last packet has been
* transmitted (not just put into internal buffers).
*/
req->last_desc->ctrl |= GR_DESC_IN_CTRL_PI;
return 0;
alloc_err:
gr_free_dma_desc_chain(ep->dev, req);
return ret;
}
/* Must be called with dev->lock held */
static int gr_queue(struct gr_ep *ep, struct gr_request *req, gfp_t gfp_flags)
{
struct gr_udc *dev = ep->dev;
int ret;
if (unlikely(!ep->ep.desc && ep->num != 0)) {
dev_err(dev->dev, "No ep descriptor for %s\n", ep->ep.name);
return -EINVAL;
}
if (unlikely(!req->req.buf || !list_empty(&req->queue))) {
dev_err(dev->dev,
"Invalid request for %s: buf=%p list_empty=%d\n",
ep->ep.name, req->req.buf, list_empty(&req->queue));
return -EINVAL;
}
if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
dev_err(dev->dev, "-ESHUTDOWN");
return -ESHUTDOWN;
}
/* Can't touch registers when suspended */
if (dev->ep0state == GR_EP0_SUSPEND) {
dev_err(dev->dev, "-EBUSY");
return -EBUSY;
}
/* Set up DMA mapping in case the caller didn't */
ret = usb_gadget_map_request(&dev->gadget, &req->req, ep->is_in);
if (ret) {
dev_err(dev->dev, "usb_gadget_map_request");
return ret;
}
if (ep->is_in)
ret = gr_setup_in_desc_list(ep, req, gfp_flags);
else
ret = gr_setup_out_desc_list(ep, req, gfp_flags);
if (ret)
return ret;
req->req.status = -EINPROGRESS;
req->req.actual = 0;
list_add_tail(&req->queue, &ep->queue);
/* Start DMA if not started, otherwise interrupt handler handles it */
if (!ep->dma_start && likely(!ep->stopped))
gr_start_dma(ep);
return 0;
}
/*
* Queue a request from within the driver.
*
* Must be called with dev->lock held.
*/
static inline int gr_queue_int(struct gr_ep *ep, struct gr_request *req,
gfp_t gfp_flags)
{
if (ep->is_in)
gr_dbgprint_request("RESP", ep, req);
return gr_queue(ep, req, gfp_flags);
}
/* ---------------------------------------------------------------------- */
/* General helper functions */
/*
* Dequeue ALL requests.
*
* Must be called with dev->lock held and irqs disabled.
*/
static void gr_ep_nuke(struct gr_ep *ep)
{
struct gr_request *req;
ep->stopped = 1;
ep->dma_start = 0;
gr_abort_dma(ep);
while (!list_empty(&ep->queue)) {
req = list_first_entry(&ep->queue, struct gr_request, queue);
gr_finish_request(ep, req, -ESHUTDOWN);
}
}
/*
* Reset the hardware state of this endpoint.
*
* Must be called with dev->lock held.
*/
static void gr_ep_reset(struct gr_ep *ep)
{
gr_write32(&ep->regs->epctrl, 0);
gr_write32(&ep->regs->dmactrl, 0);
ep->ep.maxpacket = MAX_CTRL_PL_SIZE;
ep->ep.desc = NULL;
ep->stopped = 1;
ep->dma_start = 0;
}
/*
* Generate STALL on ep0in/out.
*
* Must be called with dev->lock held.
*/
static void gr_control_stall(struct gr_udc *dev)
{
u32 epctrl;
epctrl = gr_read32(&dev->epo[0].regs->epctrl);
gr_write32(&dev->epo[0].regs->epctrl, epctrl | GR_EPCTRL_CS);
epctrl = gr_read32(&dev->epi[0].regs->epctrl);
gr_write32(&dev->epi[0].regs->epctrl, epctrl | GR_EPCTRL_CS);
dev->ep0state = GR_EP0_STALL;
}
/*
* Halts, halts and wedges, or clears halt for an endpoint.
*
* Must be called with dev->lock held.
*/
static int gr_ep_halt_wedge(struct gr_ep *ep, int halt, int wedge, int fromhost)
{
u32 epctrl;
int retval = 0;
if (ep->num && !ep->ep.desc)
return -EINVAL;
if (ep->num && ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC)
return -EOPNOTSUPP;
/* Never actually halt ep0, and therefore never clear halt for ep0 */
if (!ep->num) {
if (halt && !fromhost) {
/* ep0 halt from gadget - generate protocol stall */
gr_control_stall(ep->dev);
dev_dbg(ep->dev->dev, "EP: stall ep0\n");
return 0;
}
return -EINVAL;
}
dev_dbg(ep->dev->dev, "EP: %s halt %s\n",
(halt ? (wedge ? "wedge" : "set") : "clear"), ep->ep.name);
epctrl = gr_read32(&ep->regs->epctrl);
if (halt) {
/* Set HALT */
gr_write32(&ep->regs->epctrl, epctrl | GR_EPCTRL_EH);
ep->stopped = 1;
if (wedge)
ep->wedged = 1;
} else {
gr_write32(&ep->regs->epctrl, epctrl & ~GR_EPCTRL_EH);
ep->stopped = 0;
ep->wedged = 0;
/* Things might have been queued up in the meantime */
if (!ep->dma_start)
gr_start_dma(ep);
}
return retval;
}
/* Must be called with dev->lock held */
static inline void gr_set_ep0state(struct gr_udc *dev, enum gr_ep0state value)
{
if (dev->ep0state != value)
dev_vdbg(dev->dev, "STATE: ep0state=%s\n",
gr_ep0state_string(value));
dev->ep0state = value;
}
/*
* Should only be called when endpoints can not generate interrupts.
*
* Must be called with dev->lock held.
*/
static void gr_disable_interrupts_and_pullup(struct gr_udc *dev)
{
gr_write32(&dev->regs->control, 0);
wmb(); /* Make sure that we do not deny one of our interrupts */
dev->irq_enabled = 0;
}
/*
* Stop all device activity and disable data line pullup.
*
* Must be called with dev->lock held and irqs disabled.
*/
static void gr_stop_activity(struct gr_udc *dev)
{
struct gr_ep *ep;
list_for_each_entry(ep, &dev->ep_list, ep_list)
gr_ep_nuke(ep);
gr_disable_interrupts_and_pullup(dev);
gr_set_ep0state(dev, GR_EP0_DISCONNECT);
usb_gadget_set_state(&dev->gadget, USB_STATE_NOTATTACHED);
}
/* ---------------------------------------------------------------------- */
/* ep0 setup packet handling */
static void gr_ep0_testmode_complete(struct usb_ep *_ep,
struct usb_request *_req)
{
struct gr_ep *ep;
struct gr_udc *dev;
u32 control;
ep = container_of(_ep, struct gr_ep, ep);
dev = ep->dev;
spin_lock(&dev->lock);
control = gr_read32(&dev->regs->control);
control |= GR_CONTROL_TM | (dev->test_mode << GR_CONTROL_TS_POS);
gr_write32(&dev->regs->control, control);
spin_unlock(&dev->lock);
}
static void gr_ep0_dummy_complete(struct usb_ep *_ep, struct usb_request *_req)
{
/* Nothing needs to be done here */
}
/*
* Queue a response on ep0in.
*
* Must be called with dev->lock held.
*/
static int gr_ep0_respond(struct gr_udc *dev, u8 *buf, int length,
void (*complete)(struct usb_ep *ep,
struct usb_request *req))
{
u8 *reqbuf = dev->ep0reqi->req.buf;
int status;
int i;
for (i = 0; i < length; i++)
reqbuf[i] = buf[i];
dev->ep0reqi->req.length = length;
dev->ep0reqi->req.complete = complete;
status = gr_queue_int(&dev->epi[0], dev->ep0reqi, GFP_ATOMIC);
if (status < 0)
dev_err(dev->dev,
"Could not queue ep0in setup response: %d\n", status);
return status;
}
/*
* Queue a 2 byte response on ep0in.
*
* Must be called with dev->lock held.
*/
static inline int gr_ep0_respond_u16(struct gr_udc *dev, u16 response)
{
__le16 le_response = cpu_to_le16(response);
return gr_ep0_respond(dev, (u8 *)&le_response, 2,
gr_ep0_dummy_complete);
}
/*
* Queue a ZLP response on ep0in.
*
* Must be called with dev->lock held.
*/
static inline int gr_ep0_respond_empty(struct gr_udc *dev)
{
return gr_ep0_respond(dev, NULL, 0, gr_ep0_dummy_complete);
}
/*
* This is run when a SET_ADDRESS request is received. First writes
* the new address to the control register which is updated internally
* when the next IN packet is ACKED.
*
* Must be called with dev->lock held.
*/
static void gr_set_address(struct gr_udc *dev, u8 address)
{
u32 control;
control = gr_read32(&dev->regs->control) & ~GR_CONTROL_UA_MASK;
control |= (address << GR_CONTROL_UA_POS) & GR_CONTROL_UA_MASK;
control |= GR_CONTROL_SU;
gr_write32(&dev->regs->control, control);
}
/*
* Returns negative for STALL, 0 for successful handling and positive for
* delegation.
*
* Must be called with dev->lock held.
*/
static int gr_device_request(struct gr_udc *dev, u8 type, u8 request,
u16 value, u16 index)
{
u16 response;
u8 test;
switch (request) {
case USB_REQ_SET_ADDRESS:
dev_dbg(dev->dev, "STATUS: address %d\n", value & 0xff);
gr_set_address(dev, value & 0xff);
if (value)
usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS);
else
usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT);
return gr_ep0_respond_empty(dev);
case USB_REQ_GET_STATUS:
/* Self powered | remote wakeup */
response = 0x0001 | (dev->remote_wakeup ? 0x0002 : 0);
return gr_ep0_respond_u16(dev, response);
case USB_REQ_SET_FEATURE:
switch (value) {
case USB_DEVICE_REMOTE_WAKEUP:
/* Allow remote wakeup */
dev->remote_wakeup = 1;
return gr_ep0_respond_empty(dev);
case USB_DEVICE_TEST_MODE:
/* The hardware does not support TEST_FORCE_EN */
test = index >> 8;
if (test >= TEST_J && test <= TEST_PACKET) {
dev->test_mode = test;
return gr_ep0_respond(dev, NULL, 0,
gr_ep0_testmode_complete);
}
}
break;
case USB_REQ_CLEAR_FEATURE:
switch (value) {
case USB_DEVICE_REMOTE_WAKEUP:
/* Disallow remote wakeup */
dev->remote_wakeup = 0;
return gr_ep0_respond_empty(dev);
}
break;
}
return 1; /* Delegate the rest */
}
/*
* Returns negative for STALL, 0 for successful handling and positive for
* delegation.
*
* Must be called with dev->lock held.
*/
static int gr_interface_request(struct gr_udc *dev, u8 type, u8 request,
u16 value, u16 index)
{
if (dev->gadget.state != USB_STATE_CONFIGURED)
return -1;
/*
* Should return STALL for invalid interfaces, but udc driver does not
* know anything about that. However, many gadget drivers do not handle
* GET_STATUS so we need to take care of that.
*/
switch (request) {
case USB_REQ_GET_STATUS:
return gr_ep0_respond_u16(dev, 0x0000);
case USB_REQ_SET_FEATURE:
case USB_REQ_CLEAR_FEATURE:
/*
* No possible valid standard requests. Still let gadget drivers
* have a go at it.
*/
break;
}
return 1; /* Delegate the rest */
}
/*
* Returns negative for STALL, 0 for successful handling and positive for
* delegation.
*
* Must be called with dev->lock held.
*/
static int gr_endpoint_request(struct gr_udc *dev, u8 type, u8 request,
u16 value, u16 index)
{
struct gr_ep *ep;
int status;
int halted;
u8 epnum = index & USB_ENDPOINT_NUMBER_MASK;
u8 is_in = index & USB_ENDPOINT_DIR_MASK;
if ((is_in && epnum >= dev->nepi) || (!is_in && epnum >= dev->nepo))
return -1;
if (dev->gadget.state != USB_STATE_CONFIGURED && epnum != 0)
return -1;
ep = (is_in ? &dev->epi[epnum] : &dev->epo[epnum]);
switch (request) {
case USB_REQ_GET_STATUS:
halted = gr_read32(&ep->regs->epctrl) & GR_EPCTRL_EH;
return gr_ep0_respond_u16(dev, halted ? 0x0001 : 0);
case USB_REQ_SET_FEATURE:
switch (value) {
case USB_ENDPOINT_HALT:
status = gr_ep_halt_wedge(ep, 1, 0, 1);
if (status >= 0)
status = gr_ep0_respond_empty(dev);
return status;
}
break;
case USB_REQ_CLEAR_FEATURE:
switch (value) {
case USB_ENDPOINT_HALT:
if (ep->wedged)
return -1;
status = gr_ep_halt_wedge(ep, 0, 0, 1);
if (status >= 0)
status = gr_ep0_respond_empty(dev);
return status;
}
break;
}
return 1; /* Delegate the rest */
}
/* Must be called with dev->lock held */
static void gr_ep0out_requeue(struct gr_udc *dev)
{
int ret = gr_queue_int(&dev->epo[0], dev->ep0reqo, GFP_ATOMIC);
if (ret)
dev_err(dev->dev, "Could not queue ep0out setup request: %d\n",
ret);
}
/*
* The main function dealing with setup requests on ep0.
*
* Must be called with dev->lock held and irqs disabled
*/
static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req)
__releases(&dev->lock)
__acquires(&dev->lock)
{
union {
struct usb_ctrlrequest ctrl;
u8 raw[8];
u32 word[2];
} u;
u8 type;
u8 request;
u16 value;
u16 index;
u16 length;
int i;
int status;
/* Restore from ep0 halt */
if (dev->ep0state == GR_EP0_STALL) {
gr_set_ep0state(dev, GR_EP0_SETUP);
if (!req->req.actual)
goto out;
}
if (dev->ep0state == GR_EP0_ISTATUS) {
gr_set_ep0state(dev, GR_EP0_SETUP);
if (req->req.actual > 0)
dev_dbg(dev->dev,
"Unexpected setup packet at state %s\n",
gr_ep0state_string(GR_EP0_ISTATUS));
else
goto out; /* Got expected ZLP */
} else if (dev->ep0state != GR_EP0_SETUP) {
dev_info(dev->dev,
"Unexpected ep0out request at state %s - stalling\n",
gr_ep0state_string(dev->ep0state));
gr_control_stall(dev);
gr_set_ep0state(dev, GR_EP0_SETUP);
goto out;
} else if (!req->req.actual) {
dev_dbg(dev->dev, "Unexpected ZLP at state %s\n",
gr_ep0state_string(dev->ep0state));
goto out;
}
/* Handle SETUP packet */
for (i = 0; i < req->req.actual; i++)
u.raw[i] = ((u8 *)req->req.buf)[i];
type = u.ctrl.bRequestType;
request = u.ctrl.bRequest;
value = le16_to_cpu(u.ctrl.wValue);
index = le16_to_cpu(u.ctrl.wIndex);
length = le16_to_cpu(u.ctrl.wLength);
gr_dbgprint_devreq(dev, type, request, value, index, length);
/* Check for data stage */
if (length) {
if (type & USB_DIR_IN)
gr_set_ep0state(dev, GR_EP0_IDATA);
else
gr_set_ep0state(dev, GR_EP0_ODATA);
}
status = 1; /* Positive status flags delegation */
if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (type & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
status = gr_device_request(dev, type, request,
value, index);
break;
case USB_RECIP_ENDPOINT:
status = gr_endpoint_request(dev, type, request,
value, index);
break;
case USB_RECIP_INTERFACE:
status = gr_interface_request(dev, type, request,
value, index);
break;
}
}
if (status > 0) {
spin_unlock(&dev->lock);
dev_vdbg(dev->dev, "DELEGATE\n");
status = dev->driver->setup(&dev->gadget, &u.ctrl);
spin_lock(&dev->lock);
}
/* Generate STALL on both ep0out and ep0in if requested */
if (unlikely(status < 0)) {
dev_vdbg(dev->dev, "STALL\n");
gr_control_stall(dev);
}
if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD &&
request == USB_REQ_SET_CONFIGURATION) {
if (!value) {
dev_dbg(dev->dev, "STATUS: deconfigured\n");
usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS);
} else if (status >= 0) {
/* Not configured unless gadget OK:s it */
dev_dbg(dev->dev, "STATUS: configured: %d\n", value);
usb_gadget_set_state(&dev->gadget,
USB_STATE_CONFIGURED);
}
}
/* Get ready for next stage */
if (dev->ep0state == GR_EP0_ODATA)
gr_set_ep0state(dev, GR_EP0_OSTATUS);
else if (dev->ep0state == GR_EP0_IDATA)
gr_set_ep0state(dev, GR_EP0_ISTATUS);
else
gr_set_ep0state(dev, GR_EP0_SETUP);
out:
gr_ep0out_requeue(dev);
}
/* ---------------------------------------------------------------------- */
/* VBUS and USB reset handling */
/* Must be called with dev->lock held and irqs disabled */
static void gr_vbus_connected(struct gr_udc *dev, u32 status)
{
u32 control;
dev->gadget.speed = GR_SPEED(status);
usb_gadget_set_state(&dev->gadget, USB_STATE_POWERED);
/* Turn on full interrupts and pullup */
control = (GR_CONTROL_SI | GR_CONTROL_UI | GR_CONTROL_VI |
GR_CONTROL_SP | GR_CONTROL_EP);
gr_write32(&dev->regs->control, control);
}
/* Must be called with dev->lock held */
static void gr_enable_vbus_detect(struct gr_udc *dev)
{
u32 status;
dev->irq_enabled = 1;
wmb(); /* Make sure we do not ignore an interrupt */
gr_write32(&dev->regs->control, GR_CONTROL_VI);
/* Take care of the case we are already plugged in at this point */
status = gr_read32(&dev->regs->status);
if (status & GR_STATUS_VB)
gr_vbus_connected(dev, status);
}
/* Must be called with dev->lock held and irqs disabled */
static void gr_vbus_disconnected(struct gr_udc *dev)
{
gr_stop_activity(dev);
/* Report disconnect */
if (dev->driver && dev->driver->disconnect) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
gr_enable_vbus_detect(dev);
}
/* Must be called with dev->lock held and irqs disabled */
static void gr_udc_usbreset(struct gr_udc *dev, u32 status)
{
gr_set_address(dev, 0);
gr_set_ep0state(dev, GR_EP0_SETUP);
usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT);
dev->gadget.speed = GR_SPEED(status);
gr_ep_nuke(&dev->epo[0]);
gr_ep_nuke(&dev->epi[0]);
dev->epo[0].stopped = 0;
dev->epi[0].stopped = 0;
gr_ep0out_requeue(dev);
}
/* ---------------------------------------------------------------------- */
/* Irq handling */
/*
* Handles interrupts from in endpoints. Returns whether something was handled.
*
* Must be called with dev->lock held, irqs disabled and with !ep->stopped.
*/
static int gr_handle_in_ep(struct gr_ep *ep)
{
struct gr_request *req;
req = list_first_entry(&ep->queue, struct gr_request, queue);
if (!req->last_desc)
return 0;
if (READ_ONCE(req->last_desc->ctrl) & GR_DESC_IN_CTRL_EN)
return 0; /* Not put in hardware buffers yet */
if (gr_read32(&ep->regs->epstat) & (GR_EPSTAT_B1 | GR_EPSTAT_B0))
return 0; /* Not transmitted yet, still in hardware buffers */
/* Write complete */
gr_dma_advance(ep, 0);
return 1;
}
/*
* Handles interrupts from out endpoints. Returns whether something was handled.
*
* Must be called with dev->lock held, irqs disabled and with !ep->stopped.
*/
static int gr_handle_out_ep(struct gr_ep *ep)
{
u32 ep_dmactrl;
u32 ctrl;
u16 len;
struct gr_request *req;
struct gr_udc *dev = ep->dev;
req = list_first_entry(&ep->queue, struct gr_request, queue);
if (!req->curr_desc)
return 0;
ctrl = READ_ONCE(req->curr_desc->ctrl);
if (ctrl & GR_DESC_OUT_CTRL_EN)
return 0; /* Not received yet */
/* Read complete */
len = ctrl & GR_DESC_OUT_CTRL_LEN_MASK;
req->req.actual += len;
if (ctrl & GR_DESC_OUT_CTRL_SE)
req->setup = 1;
if (len < ep->ep.maxpacket || req->req.actual >= req->req.length) {
/* Short packet or >= expected size - we are done */
if ((ep == &dev->epo[0]) && (dev->ep0state == GR_EP0_OSTATUS)) {
/*
* Send a status stage ZLP to ack the DATA stage in the
* OUT direction. This needs to be done before
* gr_dma_advance as that can lead to a call to
* ep0_setup that can change dev->ep0state.
*/
gr_ep0_respond_empty(dev);
gr_set_ep0state(dev, GR_EP0_SETUP);
}
gr_dma_advance(ep, 0);
} else {
/* Not done yet. Enable the next descriptor to receive more. */
req->curr_desc = req->curr_desc->next_desc;
req->curr_desc->ctrl |= GR_DESC_OUT_CTRL_EN;
ep_dmactrl = gr_read32(&ep->regs->dmactrl);
gr_write32(&ep->regs->dmactrl, ep_dmactrl | GR_DMACTRL_DA);
}
return 1;
}
/*
* Handle state changes. Returns whether something was handled.
*
* Must be called with dev->lock held and irqs disabled.
*/
static int gr_handle_state_changes(struct gr_udc *dev)
{
u32 status = gr_read32(&dev->regs->status);
int handled = 0;
int powstate = !(dev->gadget.state == USB_STATE_NOTATTACHED ||
dev->gadget.state == USB_STATE_ATTACHED);
/* VBUS valid detected */
if (!powstate && (status & GR_STATUS_VB)) {
dev_dbg(dev->dev, "STATUS: vbus valid detected\n");
gr_vbus_connected(dev, status);
handled = 1;
}
/* Disconnect */
if (powstate && !(status & GR_STATUS_VB)) {
dev_dbg(dev->dev, "STATUS: vbus invalid detected\n");
gr_vbus_disconnected(dev);
handled = 1;
}
/* USB reset detected */
if (status & GR_STATUS_UR) {
dev_dbg(dev->dev, "STATUS: USB reset - speed is %s\n",
GR_SPEED_STR(status));
gr_write32(&dev->regs->status, GR_STATUS_UR);
gr_udc_usbreset(dev, status);
handled = 1;
}
/* Speed change */
if (dev->gadget.speed != GR_SPEED(status)) {
dev_dbg(dev->dev, "STATUS: USB Speed change to %s\n",
GR_SPEED_STR(status));
dev->gadget.speed = GR_SPEED(status);
handled = 1;
}
/* Going into suspend */
if ((dev->ep0state != GR_EP0_SUSPEND) && !(status & GR_STATUS_SU)) {
dev_dbg(dev->dev, "STATUS: USB suspend\n");
gr_set_ep0state(dev, GR_EP0_SUSPEND);
dev->suspended_from = dev->gadget.state;
usb_gadget_set_state(&dev->gadget, USB_STATE_SUSPENDED);
if ((dev->gadget.speed != USB_SPEED_UNKNOWN) &&
dev->driver && dev->driver->suspend) {
spin_unlock(&dev->lock);
dev->driver->suspend(&dev->gadget);
spin_lock(&dev->lock);
}
handled = 1;
}
/* Coming out of suspend */
if ((dev->ep0state == GR_EP0_SUSPEND) && (status & GR_STATUS_SU)) {
dev_dbg(dev->dev, "STATUS: USB resume\n");
if (dev->suspended_from == USB_STATE_POWERED)
gr_set_ep0state(dev, GR_EP0_DISCONNECT);
else
gr_set_ep0state(dev, GR_EP0_SETUP);
usb_gadget_set_state(&dev->gadget, dev->suspended_from);
if ((dev->gadget.speed != USB_SPEED_UNKNOWN) &&
dev->driver && dev->driver->resume) {
spin_unlock(&dev->lock);
dev->driver->resume(&dev->gadget);
spin_lock(&dev->lock);
}
handled = 1;
}
return handled;
}
/* Non-interrupt context irq handler */
static irqreturn_t gr_irq_handler(int irq, void *_dev)
{
struct gr_udc *dev = _dev;
struct gr_ep *ep;
int handled = 0;
int i;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (!dev->irq_enabled)
goto out;
/*
* Check IN ep interrupts. We check these before the OUT eps because
* some gadgets reuse the request that might already be currently
* outstanding and needs to be completed (mainly setup requests).
*/
for (i = 0; i < dev->nepi; i++) {
ep = &dev->epi[i];
if (!ep->stopped && !ep->callback && !list_empty(&ep->queue))
handled = gr_handle_in_ep(ep) || handled;
}
/* Check OUT ep interrupts */
for (i = 0; i < dev->nepo; i++) {
ep = &dev->epo[i];
if (!ep->stopped && !ep->callback && !list_empty(&ep->queue))
handled = gr_handle_out_ep(ep) || handled;
}
/* Check status interrupts */
handled = gr_handle_state_changes(dev) || handled;
/*
* Check AMBA DMA errors. Only check if we didn't find anything else to
* handle because this shouldn't happen if we did everything right.
*/
if (!handled) {
list_for_each_entry(ep, &dev->ep_list, ep_list) {
if (gr_read32(&ep->regs->dmactrl) & GR_DMACTRL_AE) {
dev_err(dev->dev,
"AMBA Error occurred for %s\n",
ep->ep.name);
handled = 1;
}
}
}
out:
spin_unlock_irqrestore(&dev->lock, flags);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
/* Interrupt context irq handler */
static irqreturn_t gr_irq(int irq, void *_dev)
{
struct gr_udc *dev = _dev;
if (!dev->irq_enabled)
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
/* ---------------------------------------------------------------------- */
/* USB ep ops */
/* Enable endpoint. Not for ep0in and ep0out that are handled separately. */
static int gr_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct gr_udc *dev;
struct gr_ep *ep;
u8 mode;
u8 nt;
u16 max;
u16 buffer_size = 0;
u32 epctrl;
ep = container_of(_ep, struct gr_ep, ep);
if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT)
return -EINVAL;
dev = ep->dev;
/* 'ep0' IN and OUT are reserved */
if (ep == &dev->epo[0] || ep == &dev->epi[0])
return -EINVAL;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
/* Make sure we are clear for enabling */
epctrl = gr_read32(&ep->regs->epctrl);
if (epctrl & GR_EPCTRL_EV)
return -EBUSY;
/* Check that directions match */
if (!ep->is_in != !usb_endpoint_dir_in(desc))
return -EINVAL;
/* Check ep num */
if ((!ep->is_in && ep->num >= dev->nepo) ||
(ep->is_in && ep->num >= dev->nepi))
return -EINVAL;
if (usb_endpoint_xfer_control(desc)) {
mode = 0;
} else if (usb_endpoint_xfer_isoc(desc)) {
mode = 1;
} else if (usb_endpoint_xfer_bulk(desc)) {
mode = 2;
} else if (usb_endpoint_xfer_int(desc)) {
mode = 3;
} else {
dev_err(dev->dev, "Unknown transfer type for %s\n",
ep->ep.name);
return -EINVAL;
}
/*
* Bits 10-0 set the max payload. 12-11 set the number of
* additional transactions.
*/
max = usb_endpoint_maxp(desc);
nt = usb_endpoint_maxp_mult(desc) - 1;
buffer_size = GR_BUFFER_SIZE(epctrl);
if (nt && (mode == 0 || mode == 2)) {
dev_err(dev->dev,
"%s mode: multiple trans./microframe not valid\n",
(mode == 2 ? "Bulk" : "Control"));
return -EINVAL;
} else if (nt == 0x3) {
dev_err(dev->dev,
"Invalid value 0x3 for additional trans./microframe\n");
return -EINVAL;
} else if ((nt + 1) * max > buffer_size) {
dev_err(dev->dev, "Hw buffer size %d < max payload %d * %d\n",
buffer_size, (nt + 1), max);
return -EINVAL;
} else if (max == 0) {
dev_err(dev->dev, "Max payload cannot be set to 0\n");
return -EINVAL;
} else if (max > ep->ep.maxpacket_limit) {
dev_err(dev->dev, "Requested max payload %d > limit %d\n",
max, ep->ep.maxpacket_limit);
return -EINVAL;
}
spin_lock(&ep->dev->lock);
if (!ep->stopped) {
spin_unlock(&ep->dev->lock);
return -EBUSY;
}
ep->stopped = 0;
ep->wedged = 0;
ep->ep.desc = desc;
ep->ep.maxpacket = max;
ep->dma_start = 0;
if (nt) {
/*
* Maximum possible size of all payloads in one microframe
* regardless of direction when using high-bandwidth mode.
*/
ep->bytes_per_buffer = (nt + 1) * max;
} else if (ep->is_in) {
/*
* The biggest multiple of maximum packet size that fits into
* the buffer. The hardware will split up into many packets in
* the IN direction.
*/
ep->bytes_per_buffer = (buffer_size / max) * max;
} else {
/*
* Only single packets will be placed the buffers in the OUT
* direction.
*/
ep->bytes_per_buffer = max;
}
epctrl = (max << GR_EPCTRL_MAXPL_POS)
| (nt << GR_EPCTRL_NT_POS)
| (mode << GR_EPCTRL_TT_POS)
| GR_EPCTRL_EV;
if (ep->is_in)
epctrl |= GR_EPCTRL_PI;
gr_write32(&ep->regs->epctrl, epctrl);
gr_write32(&ep->regs->dmactrl, GR_DMACTRL_IE | GR_DMACTRL_AI);
spin_unlock(&ep->dev->lock);
dev_dbg(ep->dev->dev, "EP: %s enabled - %s with %d bytes/buffer\n",
ep->ep.name, gr_modestring[mode], ep->bytes_per_buffer);
return 0;
}
/* Disable endpoint. Not for ep0in and ep0out that are handled separately. */
static int gr_ep_disable(struct usb_ep *_ep)
{
struct gr_ep *ep;
struct gr_udc *dev;
unsigned long flags;
ep = container_of(_ep, struct gr_ep, ep);
if (!_ep || !ep->ep.desc)
return -ENODEV;
dev = ep->dev;
/* 'ep0' IN and OUT are reserved */
if (ep == &dev->epo[0] || ep == &dev->epi[0])
return -EINVAL;
if (dev->ep0state == GR_EP0_SUSPEND)
return -EBUSY;
dev_dbg(ep->dev->dev, "EP: disable %s\n", ep->ep.name);
spin_lock_irqsave(&dev->lock, flags);
gr_ep_nuke(ep);
gr_ep_reset(ep);
ep->ep.desc = NULL;
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/*
* Frees a request, but not any DMA buffers associated with it
* (gr_finish_request should already have taken care of that).
*/
static void gr_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct gr_request *req;
if (!_ep || !_req)
return;
req = container_of(_req, struct gr_request, req);
/* Leads to memory leak */
WARN(!list_empty(&req->queue),
"request not dequeued properly before freeing\n");
kfree(req);
}
/* Queue a request from the gadget */
static int gr_queue_ext(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct gr_ep *ep;
struct gr_request *req;
struct gr_udc *dev;
int ret;
if (unlikely(!_ep || !_req))
return -EINVAL;
ep = container_of(_ep, struct gr_ep, ep);
req = container_of(_req, struct gr_request, req);
dev = ep->dev;
spin_lock(&ep->dev->lock);
/*
* The ep0 pointer in the gadget struct is used both for ep0in and
* ep0out. In a data stage in the out direction ep0out needs to be used
* instead of the default ep0in. Completion functions might use
* driver_data, so that needs to be copied as well.
*/
if ((ep == &dev->epi[0]) && (dev->ep0state == GR_EP0_ODATA)) {
ep = &dev->epo[0];
ep->ep.driver_data = dev->epi[0].ep.driver_data;
}
if (ep->is_in)
gr_dbgprint_request("EXTERN", ep, req);
ret = gr_queue(ep, req, GFP_ATOMIC);
spin_unlock(&ep->dev->lock);
return ret;
}
/* Dequeue JUST ONE request */
static int gr_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct gr_request *req;
struct gr_ep *ep;
struct gr_udc *dev;
int ret = 0;
unsigned long flags;
ep = container_of(_ep, struct gr_ep, ep);
if (!_ep || !_req || (!ep->ep.desc && ep->num != 0))
return -EINVAL;
dev = ep->dev;
if (!dev->driver)
return -ESHUTDOWN;
/* We can't touch (DMA) registers when suspended */
if (dev->ep0state == GR_EP0_SUSPEND)
return -EBUSY;
spin_lock_irqsave(&dev->lock, flags);
/* Make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
ret = -EINVAL;
goto out;
}
if (list_first_entry(&ep->queue, struct gr_request, queue) == req) {
/* This request is currently being processed */
gr_abort_dma(ep);
if (ep->stopped)
gr_finish_request(ep, req, -ECONNRESET);
else
gr_dma_advance(ep, -ECONNRESET);
} else if (!list_empty(&req->queue)) {
/* Not being processed - gr_finish_request dequeues it */
gr_finish_request(ep, req, -ECONNRESET);
} else {
ret = -EOPNOTSUPP;
}
out:
spin_unlock_irqrestore(&dev->lock, flags);
return ret;
}
/* Helper for gr_set_halt and gr_set_wedge */
static int gr_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
{
int ret;
struct gr_ep *ep;
if (!_ep)
return -ENODEV;
ep = container_of(_ep, struct gr_ep, ep);
spin_lock(&ep->dev->lock);
/* Halting an IN endpoint should fail if queue is not empty */
if (halt && ep->is_in && !list_empty(&ep->queue)) {
ret = -EAGAIN;
goto out;
}
ret = gr_ep_halt_wedge(ep, halt, wedge, 0);
out:
spin_unlock(&ep->dev->lock);
return ret;
}
/* Halt endpoint */
static int gr_set_halt(struct usb_ep *_ep, int halt)
{
return gr_set_halt_wedge(_ep, halt, 0);
}
/* Halt and wedge endpoint */
static int gr_set_wedge(struct usb_ep *_ep)
{
return gr_set_halt_wedge(_ep, 1, 1);
}
/*
* Return the total number of bytes currently stored in the internal buffers of
* the endpoint.
*/
static int gr_fifo_status(struct usb_ep *_ep)
{
struct gr_ep *ep;
u32 epstat;
u32 bytes = 0;
if (!_ep)
return -ENODEV;
ep = container_of(_ep, struct gr_ep, ep);
epstat = gr_read32(&ep->regs->epstat);
if (epstat & GR_EPSTAT_B0)
bytes += (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS;
if (epstat & GR_EPSTAT_B1)
bytes += (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS;
return bytes;
}
/* Empty data from internal buffers of an endpoint. */
static void gr_fifo_flush(struct usb_ep *_ep)
{
struct gr_ep *ep;
u32 epctrl;
if (!_ep)
return;
ep = container_of(_ep, struct gr_ep, ep);
dev_vdbg(ep->dev->dev, "EP: flush fifo %s\n", ep->ep.name);
spin_lock(&ep->dev->lock);
epctrl = gr_read32(&ep->regs->epctrl);
epctrl |= GR_EPCTRL_CB;
gr_write32(&ep->regs->epctrl, epctrl);
spin_unlock(&ep->dev->lock);
}
static const struct usb_ep_ops gr_ep_ops = {
.enable = gr_ep_enable,
.disable = gr_ep_disable,
.alloc_request = gr_alloc_request,
.free_request = gr_free_request,
.queue = gr_queue_ext,
.dequeue = gr_dequeue,
.set_halt = gr_set_halt,
.set_wedge = gr_set_wedge,
.fifo_status = gr_fifo_status,
.fifo_flush = gr_fifo_flush,
};
/* ---------------------------------------------------------------------- */
/* USB Gadget ops */
static int gr_get_frame(struct usb_gadget *_gadget)
{
struct gr_udc *dev;
if (!_gadget)
return -ENODEV;
dev = container_of(_gadget, struct gr_udc, gadget);
return gr_read32(&dev->regs->status) & GR_STATUS_FN_MASK;
}
static int gr_wakeup(struct usb_gadget *_gadget)
{
struct gr_udc *dev;
if (!_gadget)
return -ENODEV;
dev = container_of(_gadget, struct gr_udc, gadget);
/* Remote wakeup feature not enabled by host*/
if (!dev->remote_wakeup)
return -EINVAL;
spin_lock(&dev->lock);
gr_write32(&dev->regs->control,
gr_read32(&dev->regs->control) | GR_CONTROL_RW);
spin_unlock(&dev->lock);
return 0;
}
static int gr_pullup(struct usb_gadget *_gadget, int is_on)
{
struct gr_udc *dev;
u32 control;
if (!_gadget)
return -ENODEV;
dev = container_of(_gadget, struct gr_udc, gadget);
spin_lock(&dev->lock);
control = gr_read32(&dev->regs->control);
if (is_on)
control |= GR_CONTROL_EP;
else
control &= ~GR_CONTROL_EP;
gr_write32(&dev->regs->control, control);
spin_unlock(&dev->lock);
return 0;
}
static int gr_udc_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct gr_udc *dev = to_gr_udc(gadget);
spin_lock(&dev->lock);
/* Hook up the driver */
driver->driver.bus = NULL;
dev->driver = driver;
/* Get ready for host detection */
gr_enable_vbus_detect(dev);
spin_unlock(&dev->lock);
return 0;
}
static int gr_udc_stop(struct usb_gadget *gadget)
{
struct gr_udc *dev = to_gr_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
dev->driver = NULL;
gr_stop_activity(dev);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
static const struct usb_gadget_ops gr_ops = {
.get_frame = gr_get_frame,
.wakeup = gr_wakeup,
.pullup = gr_pullup,
.udc_start = gr_udc_start,
.udc_stop = gr_udc_stop,
/* Other operations not supported */
};
/* ---------------------------------------------------------------------- */
/* Module probe, removal and of-matching */
static const char * const onames[] = {
"ep0out", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out",
"ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out",
"ep12out", "ep13out", "ep14out", "ep15out"
};
static const char * const inames[] = {
"ep0in", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in",
"ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in",
"ep12in", "ep13in", "ep14in", "ep15in"
};
/* Must be called with dev->lock held */
static int gr_ep_init(struct gr_udc *dev, int num, int is_in, u32 maxplimit)
{
struct gr_ep *ep;
struct gr_request *req;
struct usb_request *_req;
void *buf;
if (is_in) {
ep = &dev->epi[num];
ep->ep.name = inames[num];
ep->regs = &dev->regs->epi[num];
} else {
ep = &dev->epo[num];
ep->ep.name = onames[num];
ep->regs = &dev->regs->epo[num];
}
gr_ep_reset(ep);
ep->num = num;
ep->is_in = is_in;
ep->dev = dev;
ep->ep.ops = &gr_ep_ops;
INIT_LIST_HEAD(&ep->queue);
if (num == 0) {
_req = gr_alloc_request(&ep->ep, GFP_ATOMIC);
if (!_req)
return -ENOMEM;
buf = devm_kzalloc(dev->dev, PAGE_SIZE, GFP_DMA | GFP_ATOMIC);
if (!buf) {
gr_free_request(&ep->ep, _req);
return -ENOMEM;
}
req = container_of(_req, struct gr_request, req);
req->req.buf = buf;
req->req.length = MAX_CTRL_PL_SIZE;
if (is_in)
dev->ep0reqi = req; /* Complete gets set as used */
else
dev->ep0reqo = req; /* Completion treated separately */
usb_ep_set_maxpacket_limit(&ep->ep, MAX_CTRL_PL_SIZE);
ep->bytes_per_buffer = MAX_CTRL_PL_SIZE;
ep->ep.caps.type_control = true;
} else {
usb_ep_set_maxpacket_limit(&ep->ep, (u16)maxplimit);
list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
ep->ep.caps.type_iso = true;
ep->ep.caps.type_bulk = true;
ep->ep.caps.type_int = true;
}
list_add_tail(&ep->ep_list, &dev->ep_list);
if (is_in)
ep->ep.caps.dir_in = true;
else
ep->ep.caps.dir_out = true;
ep->tailbuf = dma_alloc_coherent(dev->dev, ep->ep.maxpacket_limit,
&ep->tailbuf_paddr, GFP_ATOMIC);
if (!ep->tailbuf)
return -ENOMEM;
return 0;
}
/* Must be called with dev->lock held */
static int gr_udc_init(struct gr_udc *dev)
{
struct device_node *np = dev->dev->of_node;
u32 epctrl_val;
u32 dmactrl_val;
int i;
int ret = 0;
u32 bufsize;
gr_set_address(dev, 0);
INIT_LIST_HEAD(&dev->gadget.ep_list);
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->gadget.ep0 = &dev->epi[0].ep;
INIT_LIST_HEAD(&dev->ep_list);
gr_set_ep0state(dev, GR_EP0_DISCONNECT);
for (i = 0; i < dev->nepo; i++) {
if (of_property_read_u32_index(np, "epobufsizes", i, &bufsize))
bufsize = 1024;
ret = gr_ep_init(dev, i, 0, bufsize);
if (ret)
return ret;
}
for (i = 0; i < dev->nepi; i++) {
if (of_property_read_u32_index(np, "epibufsizes", i, &bufsize))
bufsize = 1024;
ret = gr_ep_init(dev, i, 1, bufsize);
if (ret)
return ret;
}
/* Must be disabled by default */
dev->remote_wakeup = 0;
/* Enable ep0out and ep0in */
epctrl_val = (MAX_CTRL_PL_SIZE << GR_EPCTRL_MAXPL_POS) | GR_EPCTRL_EV;
dmactrl_val = GR_DMACTRL_IE | GR_DMACTRL_AI;
gr_write32(&dev->epo[0].regs->epctrl, epctrl_val);
gr_write32(&dev->epi[0].regs->epctrl, epctrl_val | GR_EPCTRL_PI);
gr_write32(&dev->epo[0].regs->dmactrl, dmactrl_val);
gr_write32(&dev->epi[0].regs->dmactrl, dmactrl_val);
return 0;
}
static void gr_ep_remove(struct gr_udc *dev, int num, int is_in)
{
struct gr_ep *ep;
if (is_in)
ep = &dev->epi[num];
else
ep = &dev->epo[num];
if (ep->tailbuf)
dma_free_coherent(dev->dev, ep->ep.maxpacket_limit,
ep->tailbuf, ep->tailbuf_paddr);
}
static int gr_remove(struct platform_device *pdev)
{
struct gr_udc *dev = platform_get_drvdata(pdev);
int i;
if (dev->added)
usb_del_gadget_udc(&dev->gadget); /* Shuts everything down */
if (dev->driver)
return -EBUSY;
gr_dfs_delete(dev);
dma_pool_destroy(dev->desc_pool);
platform_set_drvdata(pdev, NULL);
gr_free_request(&dev->epi[0].ep, &dev->ep0reqi->req);
gr_free_request(&dev->epo[0].ep, &dev->ep0reqo->req);
for (i = 0; i < dev->nepo; i++)
gr_ep_remove(dev, i, 0);
for (i = 0; i < dev->nepi; i++)
gr_ep_remove(dev, i, 1);
return 0;
}
static int gr_request_irq(struct gr_udc *dev, int irq)
{
return devm_request_threaded_irq(dev->dev, irq, gr_irq, gr_irq_handler,
IRQF_SHARED, driver_name, dev);
}
static int gr_probe(struct platform_device *pdev)
{
struct gr_udc *dev;
struct resource *res;
struct gr_regs __iomem *regs;
int retval;
u32 status;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
dev->irq = platform_get_irq(pdev, 0);
if (dev->irq <= 0)
return -ENODEV;
/* Some core configurations has separate irqs for IN and OUT events */
dev->irqi = platform_get_irq(pdev, 1);
if (dev->irqi > 0) {
dev->irqo = platform_get_irq(pdev, 2);
if (dev->irqo <= 0)
return -ENODEV;
} else {
dev->irqi = 0;
}
dev->gadget.name = driver_name;
dev->gadget.max_speed = USB_SPEED_HIGH;
dev->gadget.ops = &gr_ops;
spin_lock_init(&dev->lock);
dev->regs = regs;
platform_set_drvdata(pdev, dev);
/* Determine number of endpoints and data interface mode */
status = gr_read32(&dev->regs->status);
dev->nepi = ((status & GR_STATUS_NEPI_MASK) >> GR_STATUS_NEPI_POS) + 1;
dev->nepo = ((status & GR_STATUS_NEPO_MASK) >> GR_STATUS_NEPO_POS) + 1;
if (!(status & GR_STATUS_DM)) {
dev_err(dev->dev, "Slave mode cores are not supported\n");
return -ENODEV;
}
/* --- Effects of the following calls might need explicit cleanup --- */
/* Create DMA pool for descriptors */
dev->desc_pool = dma_pool_create("desc_pool", dev->dev,
sizeof(struct gr_dma_desc), 4, 0);
if (!dev->desc_pool) {
dev_err(dev->dev, "Could not allocate DMA pool");
return -ENOMEM;
}
/* Inside lock so that no gadget can use this udc until probe is done */
retval = usb_add_gadget_udc(dev->dev, &dev->gadget);
if (retval) {
dev_err(dev->dev, "Could not add gadget udc");
goto out;
}
dev->added = 1;
spin_lock(&dev->lock);
retval = gr_udc_init(dev);
if (retval) {
spin_unlock(&dev->lock);
goto out;
}
/* Clear all interrupt enables that might be left on since last boot */
gr_disable_interrupts_and_pullup(dev);
spin_unlock(&dev->lock);
gr_dfs_create(dev);
retval = gr_request_irq(dev, dev->irq);
if (retval) {
dev_err(dev->dev, "Failed to request irq %d\n", dev->irq);
goto out;
}
if (dev->irqi) {
retval = gr_request_irq(dev, dev->irqi);
if (retval) {
dev_err(dev->dev, "Failed to request irqi %d\n",
dev->irqi);
goto out;
}
retval = gr_request_irq(dev, dev->irqo);
if (retval) {
dev_err(dev->dev, "Failed to request irqo %d\n",
dev->irqo);
goto out;
}
}
if (dev->irqi)
dev_info(dev->dev, "regs: %p, irqs %d, %d, %d\n", dev->regs,
dev->irq, dev->irqi, dev->irqo);
else
dev_info(dev->dev, "regs: %p, irq %d\n", dev->regs, dev->irq);
out:
if (retval)
gr_remove(pdev);
return retval;
}
static const struct of_device_id gr_match[] = {
{.name = "GAISLER_USBDC"},
{.name = "01_021"},
{},
};
MODULE_DEVICE_TABLE(of, gr_match);
static struct platform_driver gr_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = gr_match,
},
.probe = gr_probe,
.remove = gr_remove,
};
module_platform_driver(gr_driver);
MODULE_AUTHOR("Aeroflex Gaisler AB.");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");