| // SPDX-License-Identifier: GPL-2.0+ |
| // ir-rcmm-decoder.c - A decoder for the RCMM IR protocol |
| // |
| // Copyright (C) 2018 by Patrick Lerda <patrick9876@free.fr> |
| |
| #include "rc-core-priv.h" |
| #include <linux/module.h> |
| |
| #define RCMM_UNIT 166667 /* nanosecs */ |
| #define RCMM_PREFIX_PULSE 416666 /* 166666.666666666*2.5 */ |
| #define RCMM_PULSE_0 277777 /* 166666.666666666*(1+2/3) */ |
| #define RCMM_PULSE_1 444444 /* 166666.666666666*(2+2/3) */ |
| #define RCMM_PULSE_2 611111 /* 166666.666666666*(3+2/3) */ |
| #define RCMM_PULSE_3 777778 /* 166666.666666666*(4+2/3) */ |
| |
| enum rcmm_state { |
| STATE_INACTIVE, |
| STATE_LOW, |
| STATE_BUMP, |
| STATE_VALUE, |
| STATE_FINISHED, |
| }; |
| |
| static bool rcmm_mode(const struct rcmm_dec *data) |
| { |
| return !((0x000c0000 & data->bits) == 0x000c0000); |
| } |
| |
| static int rcmm_miscmode(struct rc_dev *dev, struct rcmm_dec *data) |
| { |
| switch (data->count) { |
| case 24: |
| if (dev->enabled_protocols & RC_PROTO_BIT_RCMM24) { |
| rc_keydown(dev, RC_PROTO_RCMM24, data->bits, 0); |
| data->state = STATE_INACTIVE; |
| return 0; |
| } |
| return -1; |
| |
| case 12: |
| if (dev->enabled_protocols & RC_PROTO_BIT_RCMM12) { |
| rc_keydown(dev, RC_PROTO_RCMM12, data->bits, 0); |
| data->state = STATE_INACTIVE; |
| return 0; |
| } |
| return -1; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * ir_rcmm_decode() - Decode one RCMM pulse or space |
| * @dev: the struct rc_dev descriptor of the device |
| * @ev: the struct ir_raw_event descriptor of the pulse/space |
| * |
| * This function returns -EINVAL if the pulse violates the state machine |
| */ |
| static int ir_rcmm_decode(struct rc_dev *dev, struct ir_raw_event ev) |
| { |
| struct rcmm_dec *data = &dev->raw->rcmm; |
| u32 scancode; |
| u8 toggle; |
| int value; |
| |
| if (!(dev->enabled_protocols & (RC_PROTO_BIT_RCMM32 | |
| RC_PROTO_BIT_RCMM24 | |
| RC_PROTO_BIT_RCMM12))) |
| return 0; |
| |
| if (!is_timing_event(ev)) { |
| if (ev.reset) |
| data->state = STATE_INACTIVE; |
| return 0; |
| } |
| |
| switch (data->state) { |
| case STATE_INACTIVE: |
| if (!ev.pulse) |
| break; |
| |
| if (!eq_margin(ev.duration, RCMM_PREFIX_PULSE, RCMM_UNIT / 2)) |
| break; |
| |
| data->state = STATE_LOW; |
| data->count = 0; |
| data->bits = 0; |
| return 0; |
| |
| case STATE_LOW: |
| if (ev.pulse) |
| break; |
| |
| if (!eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2)) |
| break; |
| |
| data->state = STATE_BUMP; |
| return 0; |
| |
| case STATE_BUMP: |
| if (!ev.pulse) |
| break; |
| |
| if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2)) |
| break; |
| |
| data->state = STATE_VALUE; |
| return 0; |
| |
| case STATE_VALUE: |
| if (ev.pulse) |
| break; |
| |
| if (eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2)) |
| value = 0; |
| else if (eq_margin(ev.duration, RCMM_PULSE_1, RCMM_UNIT / 2)) |
| value = 1; |
| else if (eq_margin(ev.duration, RCMM_PULSE_2, RCMM_UNIT / 2)) |
| value = 2; |
| else if (eq_margin(ev.duration, RCMM_PULSE_3, RCMM_UNIT / 2)) |
| value = 3; |
| else |
| value = -1; |
| |
| if (value == -1) { |
| if (!rcmm_miscmode(dev, data)) |
| return 0; |
| break; |
| } |
| |
| data->bits <<= 2; |
| data->bits |= value; |
| |
| data->count += 2; |
| |
| if (data->count < 32) |
| data->state = STATE_BUMP; |
| else |
| data->state = STATE_FINISHED; |
| |
| return 0; |
| |
| case STATE_FINISHED: |
| if (!ev.pulse) |
| break; |
| |
| if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2)) |
| break; |
| |
| if (rcmm_mode(data)) { |
| toggle = !!(0x8000 & data->bits); |
| scancode = data->bits & ~0x8000; |
| } else { |
| toggle = 0; |
| scancode = data->bits; |
| } |
| |
| if (dev->enabled_protocols & RC_PROTO_BIT_RCMM32) { |
| rc_keydown(dev, RC_PROTO_RCMM32, scancode, toggle); |
| data->state = STATE_INACTIVE; |
| return 0; |
| } |
| |
| break; |
| } |
| |
| data->state = STATE_INACTIVE; |
| return -EINVAL; |
| } |
| |
| static const int rcmmspace[] = { |
| RCMM_PULSE_0, |
| RCMM_PULSE_1, |
| RCMM_PULSE_2, |
| RCMM_PULSE_3, |
| }; |
| |
| static int ir_rcmm_rawencoder(struct ir_raw_event **ev, unsigned int max, |
| unsigned int n, u32 data) |
| { |
| int i; |
| int ret; |
| |
| ret = ir_raw_gen_pulse_space(ev, &max, RCMM_PREFIX_PULSE, RCMM_PULSE_0); |
| if (ret) |
| return ret; |
| |
| for (i = n - 2; i >= 0; i -= 2) { |
| const unsigned int space = rcmmspace[(data >> i) & 3]; |
| |
| ret = ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, space); |
| if (ret) |
| return ret; |
| } |
| |
| return ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, RCMM_PULSE_3 * 2); |
| } |
| |
| static int ir_rcmm_encode(enum rc_proto protocol, u32 scancode, |
| struct ir_raw_event *events, unsigned int max) |
| { |
| struct ir_raw_event *e = events; |
| int ret; |
| |
| switch (protocol) { |
| case RC_PROTO_RCMM32: |
| ret = ir_rcmm_rawencoder(&e, max, 32, scancode); |
| break; |
| case RC_PROTO_RCMM24: |
| ret = ir_rcmm_rawencoder(&e, max, 24, scancode); |
| break; |
| case RC_PROTO_RCMM12: |
| ret = ir_rcmm_rawencoder(&e, max, 12, scancode); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| return e - events; |
| } |
| |
| static struct ir_raw_handler rcmm_handler = { |
| .protocols = RC_PROTO_BIT_RCMM32 | |
| RC_PROTO_BIT_RCMM24 | |
| RC_PROTO_BIT_RCMM12, |
| .decode = ir_rcmm_decode, |
| .encode = ir_rcmm_encode, |
| .carrier = 36000, |
| .min_timeout = RCMM_PULSE_3 + RCMM_UNIT, |
| }; |
| |
| static int __init ir_rcmm_decode_init(void) |
| { |
| ir_raw_handler_register(&rcmm_handler); |
| |
| pr_info("IR RCMM protocol handler initialized\n"); |
| return 0; |
| } |
| |
| static void __exit ir_rcmm_decode_exit(void) |
| { |
| ir_raw_handler_unregister(&rcmm_handler); |
| } |
| |
| module_init(ir_rcmm_decode_init); |
| module_exit(ir_rcmm_decode_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Patrick Lerda"); |
| MODULE_DESCRIPTION("RCMM IR protocol decoder"); |