blob: 57a4b5b65a21e569a5826c070b0190eb4a54145e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* cros_ec_light_prox - Driver for light and prox sensors behing CrosEC.
*
* Copyright (C) 2017 Google, Inc
*/
#include <linux/device.h>
#include <linux/iio/buffer.h>
#include <linux/iio/common/cros_ec_sensors_core.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/cros_ec_commands.h>
#include <linux/platform_data/cros_ec_proto.h>
#include <linux/platform_data/cros_ec_sensorhub.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/*
* At least We only represent one entry for light or proximity.
* For proximity, we currently support only one light source.
* For light we support single sensor or 4 channels (C + RGB).
*/
#define CROS_EC_LIGHT_PROX_MIN_CHANNELS (1 + 1)
/* State data for ec_sensors iio driver. */
struct cros_ec_light_prox_state {
/* Shared by all sensors */
struct cros_ec_sensors_core_state core;
struct iio_chan_spec *channel;
u16 rgb_space[CROS_EC_SENSOR_MAX_AXIS];
struct calib_data rgb_calib[CROS_EC_SENSOR_MAX_AXIS];
};
static void cros_ec_light_channel_common(struct iio_chan_spec *channel)
{
channel->info_mask_shared_by_all =
BIT(IIO_CHAN_INFO_SAMP_FREQ);
channel->info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_CALIBSCALE);
channel->info_mask_shared_by_all_available =
BIT(IIO_CHAN_INFO_SAMP_FREQ);
channel->scan_type.realbits = CROS_EC_SENSOR_BITS;
channel->scan_type.storagebits = CROS_EC_SENSOR_BITS;
channel->scan_type.shift = 0;
channel->scan_index = 0;
channel->ext_info = cros_ec_sensors_ext_info;
channel->scan_type.sign = 'u';
}
static int cros_ec_light_extra_send_host_cmd(
struct cros_ec_sensors_core_state *state,
int increment,
u16 opt_length)
{
uint8_t save_sensor_num = state->param.info.sensor_num;
int ret;
state->param.info.sensor_num += increment;
ret = cros_ec_motion_send_host_cmd(state, opt_length);
state->param.info.sensor_num = save_sensor_num;
return ret;
}
static int cros_ec_light_prox_read_data(
struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct cros_ec_light_prox_state *st = iio_priv(indio_dev);
int i, ret;
int idx = chan->scan_index;
st->core.param.cmd = MOTIONSENSE_CMD_DATA;
/*
* The data coming from the light sensor is
* pre-processed and represents the ambient light
* illuminance reading expressed in lux.
*/
if (idx == 0) {
ret = cros_ec_motion_send_host_cmd(
&st->core, sizeof(st->core.resp->data));
if (ret)
return ret;
*val = (u16)st->core.resp->data.data[0];
} else {
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, sizeof(st->core.resp->data));
if (ret)
return ret;
for (i = 0; i < CROS_EC_SENSOR_MAX_AXIS; i++)
st->rgb_space[i] =
st->core.resp->data.data[i];
*val = st->rgb_space[idx - 1];
}
return IIO_VAL_INT;
}
static int cros_ec_light_prox_read(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct cros_ec_light_prox_state *st = iio_priv(indio_dev);
int i, ret = IIO_VAL_INT;
int idx = chan->scan_index;
s64 val64;
mutex_lock(&st->core.cmd_lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
ret = cros_ec_light_prox_read_data(indio_dev, chan, val);
break;
case IIO_CHAN_INFO_CALIBBIAS:
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_OFFSET;
st->core.param.sensor_offset.flags = 0;
if (idx == 0)
ret = cros_ec_motion_send_host_cmd(&st->core, 0);
else
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, 0);
if (ret)
break;
if (idx == 0) {
*val = st->core.calib[0].offset =
st->core.resp->sensor_offset.offset[0];
} else {
for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS;
i++)
st->rgb_calib[i].offset =
st->core.resp->sensor_offset.offset[i];
*val = st->rgb_calib[idx - 1].offset;
}
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (indio_dev->num_channels > CROS_EC_LIGHT_PROX_MIN_CHANNELS) {
u16 scale;
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_SCALE;
st->core.param.sensor_scale.flags = 0;
if (idx == 0)
ret = cros_ec_motion_send_host_cmd(
&st->core, 0);
else
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, 0);
if (ret)
break;
if (idx == 0) {
scale = st->core.calib[0].scale =
st->core.resp->sensor_scale.scale[0];
} else {
for (i = CROS_EC_SENSOR_X;
i < CROS_EC_SENSOR_MAX_AXIS;
i++)
st->rgb_calib[i].scale =
st->core.resp->sensor_scale.scale[i];
scale = st->rgb_calib[idx - 1].scale;
}
/*
* scale is a number x.y, where x is coded on 1 bit,
* y coded on 15 bits, between 0 and 9999.
*/
*val = scale >> 15;
*val2 = ((scale & 0x7FFF) * 1000000LL) /
MOTION_SENSE_DEFAULT_SCALE;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
}
/* RANGE is used for calibration in 1 channel sensors. */
/* Fall through */
case IIO_CHAN_INFO_SCALE:
/*
* RANGE is used for calibration
* scale is a number x.y, where x is coded on 16 bits,
* y coded on 16 bits, between 0 and 9999.
*/
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
st->core.param.sensor_range.data = EC_MOTION_SENSE_NO_VALUE;
ret = cros_ec_motion_send_host_cmd(&st->core, 0);
if (ret)
break;
val64 = st->core.resp->sensor_range.ret;
*val = val64 >> 16;
*val2 = (val64 & 0xffff) * 100;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = cros_ec_sensors_core_read(&st->core, chan, val, val2,
mask);
break;
}
mutex_unlock(&st->core.cmd_lock);
return ret;
}
static int cros_ec_light_prox_write(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct cros_ec_light_prox_state *st = iio_priv(indio_dev);
int ret, i;
int idx = chan->scan_index;
mutex_lock(&st->core.cmd_lock);
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
/* Send to EC for each axis, even if not complete */
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_OFFSET;
st->core.param.sensor_offset.flags = MOTION_SENSE_SET_OFFSET;
st->core.param.sensor_offset.temp =
EC_MOTION_SENSE_INVALID_CALIB_TEMP;
if (idx == 0) {
st->core.calib[0].offset = val;
st->core.param.sensor_offset.offset[0] = val;
ret = cros_ec_motion_send_host_cmd(&st->core, 0);
} else {
st->rgb_calib[idx - 1].offset = val;
for (i = CROS_EC_SENSOR_X;
i < CROS_EC_SENSOR_MAX_AXIS;
i++)
st->core.param.sensor_offset.offset[i] =
st->rgb_calib[i].offset;
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, 0);
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (indio_dev->num_channels >
CROS_EC_LIGHT_PROX_MIN_CHANNELS) {
u16 scale;
if (val >= 2) {
/*
* The user space is sending values already
* multiplied by MOTION_SENSE_DEFAULT_SCALE.
*/
scale = val;
} else {
u64 val64 = val2 * MOTION_SENSE_DEFAULT_SCALE;
do_div(val64, 1000000);
scale = (val << 15) | val64;
}
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_SCALE;
st->core.param.sensor_offset.flags =
MOTION_SENSE_SET_OFFSET;
st->core.param.sensor_offset.temp =
EC_MOTION_SENSE_INVALID_CALIB_TEMP;
if (idx == 0) {
st->core.calib[0].scale = scale;
st->core.param.sensor_scale.scale[0] = scale;
ret = cros_ec_motion_send_host_cmd(
&st->core, 0);
} else {
st->rgb_calib[idx - 1].scale = scale;
for (i = CROS_EC_SENSOR_X;
i < CROS_EC_SENSOR_MAX_AXIS;
i++)
st->core.param.sensor_scale.scale[i] =
st->rgb_calib[i].scale;
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, 0);
}
break;
}
/*
* For sensors with only one channel, _RANGE is used
* instead of _SCALE.
*/
/* Fall through */
case IIO_CHAN_INFO_SCALE:
st->core.param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
st->core.curr_range = (val << 16) | (val2 / 100);
st->core.param.sensor_range.data = st->core.curr_range;
ret = cros_ec_motion_send_host_cmd(&st->core, 0);
if (ret == 0)
st->core.range_updated = true;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = cros_ec_sensors_core_write(&st->core, chan, val, val2,
mask);
/* Repeat the same command to the RGB sensor. */
if (!ret && indio_dev->num_channels >
CROS_EC_LIGHT_PROX_MIN_CHANNELS)
ret = cros_ec_light_extra_send_host_cmd(
&st->core, 1, 0);
break;
default:
ret = cros_ec_sensors_core_write(&st->core, chan, val, val2,
mask);
break;
}
mutex_unlock(&st->core.cmd_lock);
return ret;
}
static int cros_ec_light_push_data(
struct iio_dev *indio_dev,
s16 *data,
s64 timestamp)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
s16 *out = (s16 *)st->samples;
if (!st || !indio_dev->active_scan_mask)
return 0;
/* Save clear channel, will be used when RGB data arrives. */
if (test_bit(0, indio_dev->active_scan_mask))
*out = data[0];
/* Wait for RGB callback to send samples upstream. */
return 0;
}
static int cros_ec_light_push_data_rgb(
struct iio_dev *indio_dev,
s16 *data,
s64 timestamp)
{
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
s16 *out;
s64 delta;
unsigned int i = 1;
if (!st || !indio_dev->active_scan_mask)
return 0;
/*
* Send all data needed.
*/
out = (s16 *)st->samples;
if (test_bit(0, indio_dev->active_scan_mask))
out++;
for_each_set_bit_from(i,
indio_dev->active_scan_mask,
indio_dev->masklength) {
*out = data[i - 1];
out++;
}
if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME)
delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns();
else
delta = 0;
iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
timestamp + delta);
return 0;
}
static irqreturn_t cros_ec_light_capture(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
int ret, i, idx = 0;
s16 data = 0;
const unsigned long scan_mask = *(indio_dev->active_scan_mask);
mutex_lock(&st->cmd_lock);
/* Clear capture data. */
memset(st->samples, 0, indio_dev->scan_bytes);
/* Read first channel. */
ret = cros_ec_sensors_read_cmd(indio_dev, 1, &data);
if (ret < 0)
goto done;
if (test_bit(0, indio_dev->active_scan_mask))
((s16 *)st->samples)[idx++] = data;
/* Read remaining channels. */
if (scan_mask & ((1 << indio_dev->num_channels) - 2)) {
ret = cros_ec_light_extra_send_host_cmd(
st, 1, sizeof(st->resp->data));
if (ret < 0)
goto done;
for (i = 0; i < CROS_EC_SENSOR_MAX_AXIS; i++)
if (test_bit(i + 1, indio_dev->active_scan_mask))
((s16 *)st->samples)[idx++] =
st->resp->data.data[i];
}
iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
iio_get_time_ns(indio_dev));
done:
/*
* Tell the core we are done with this trigger and ready for the
* next one.
*/
iio_trigger_notify_done(indio_dev->trig);
mutex_unlock(&st->cmd_lock);
return IRQ_HANDLED;
}
static const struct iio_info cros_ec_light_prox_info = {
.read_raw = &cros_ec_light_prox_read,
.write_raw = &cros_ec_light_prox_write,
.read_avail = &cros_ec_sensors_core_read_avail,
};
static void cros_ec_light_clean_callback(void *arg)
{
struct platform_device *pdev = (struct platform_device *)arg;
struct cros_ec_sensorhub *sensor_hub =
dev_get_drvdata(pdev->dev.parent);
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
u8 sensor_num = st->param.info.sensor_num;
cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num + 1);
}
static int cros_ec_light_prox_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
struct iio_dev *indio_dev;
struct cros_ec_light_prox_state *state;
struct iio_chan_spec *channel;
int ret, i, num_channels = CROS_EC_LIGHT_PROX_MIN_CHANNELS;
indio_dev = devm_iio_device_alloc(dev, sizeof(*state));
if (!indio_dev)
return -ENOMEM;
ret = cros_ec_sensors_core_init(pdev, indio_dev, true,
cros_ec_light_capture);
if (ret)
return ret;
iio_buffer_set_attrs(indio_dev->buffer, cros_ec_sensor_fifo_attributes);
indio_dev->info = &cros_ec_light_prox_info;
state = iio_priv(indio_dev);
/* Check if we need more sensors for RGB (or XYZ). */
state->core.param.cmd = MOTIONSENSE_CMD_INFO;
if (cros_ec_light_extra_send_host_cmd(&state->core, 1, 0) == 0 &&
state->core.resp->info.type == MOTIONSENSE_TYPE_LIGHT_RGB)
num_channels += CROS_EC_SENSOR_MAX_AXIS;
channel = devm_kcalloc(dev, num_channels, sizeof(*channel), 0);
if (channel == NULL)
return -ENOMEM;
indio_dev->channels = channel;
indio_dev->num_channels = num_channels;
cros_ec_light_channel_common(channel);
/* Sensor specific */
switch (state->core.type) {
case MOTIONSENSE_TYPE_LIGHT:
channel->type = IIO_LIGHT;
if (num_channels < CROS_EC_LIGHT_PROX_MIN_CHANNELS +
CROS_EC_SENSOR_MAX_AXIS) {
/* For backward compatibility. */
channel->info_mask_separate =
BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_CALIBSCALE);
} else {
/*
* To set a global scale, as CALIB_SCALE for RGB sensor
* is limited between 0 and 2.
*/
channel->info_mask_shared_by_all |=
BIT(IIO_CHAN_INFO_SCALE);
}
break;
case MOTIONSENSE_TYPE_PROX:
channel->type = IIO_PROXIMITY;
break;
default:
dev_warn(dev, "Unknown motion sensor\n");
return -EINVAL;
}
channel++;
if (num_channels > CROS_EC_LIGHT_PROX_MIN_CHANNELS) {
for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS;
i++, channel++) {
cros_ec_light_channel_common(channel);
channel->scan_index = i + 1;
channel->modified = 1;
channel->channel2 = IIO_MOD_LIGHT_RED + i;
channel->type = IIO_LIGHT;
}
}
/* Timestamp */
channel->type = IIO_TIMESTAMP;
channel->channel = -1;
channel->scan_index = num_channels - 1;
channel->scan_type.sign = 's';
channel->scan_type.realbits = 64;
channel->scan_type.storagebits = 64;
state->core.read_ec_sensors_data = cros_ec_sensors_read_cmd;
if (num_channels > CROS_EC_LIGHT_PROX_MIN_CHANNELS) {
u8 sensor_num = state->core.param.info.sensor_num;
ret = cros_ec_sensors_core_register(dev, indio_dev,
cros_ec_light_push_data);
if (ret)
return ret;
ret = cros_ec_sensorhub_register_push_data(
sensor_hub, sensor_num + 1,
indio_dev,
cros_ec_light_push_data_rgb);
if (ret)
return ret;
return devm_add_action_or_reset(dev, cros_ec_light_clean_callback,
pdev);
} else {
return cros_ec_sensors_core_register(dev, indio_dev,
cros_ec_sensors_push_data);
}
}
static const struct platform_device_id cros_ec_light_prox_ids[] = {
{
.name = "cros-ec-prox",
},
{
.name = "cros-ec-light",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, cros_ec_light_prox_ids);
static struct platform_driver cros_ec_light_prox_platform_driver = {
.driver = {
.name = "cros-ec-light-prox",
.pm = &cros_ec_sensors_pm_ops,
},
.probe = cros_ec_light_prox_probe,
.id_table = cros_ec_light_prox_ids,
};
module_platform_driver(cros_ec_light_prox_platform_driver);
MODULE_DESCRIPTION("ChromeOS EC light/proximity sensors driver");
MODULE_LICENSE("GPL v2");