| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 Google LLC |
| */ |
| |
| /* |
| * Refer to Documentation/block/inline-encryption.rst for detailed explanation. |
| */ |
| |
| #define pr_fmt(fmt) "blk-crypto: " fmt |
| |
| #include <linux/blk-crypto.h> |
| #include <linux/keyslot-manager.h> |
| #include <linux/mempool.h> |
| #include <linux/blk-cgroup.h> |
| #include <linux/crypto.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/algapi.h> |
| #include <linux/module.h> |
| #include <linux/sched/mm.h> |
| |
| /* Represents a crypto mode supported by blk-crypto */ |
| struct blk_crypto_mode { |
| const char *cipher_str; /* crypto API name (for fallback case) */ |
| size_t keysize; /* key size in bytes */ |
| }; |
| |
| static const struct blk_crypto_mode blk_crypto_modes[] = { |
| [BLK_ENCRYPTION_MODE_AES_256_XTS] = { |
| .cipher_str = "xts(aes)", |
| .keysize = 64, |
| }, |
| }; |
| |
| static unsigned int num_prealloc_bounce_pg = 32; |
| module_param(num_prealloc_bounce_pg, uint, 0); |
| MODULE_PARM_DESC(num_prealloc_bounce_pg, |
| "Number of preallocated bounce pages for blk-crypto to use during crypto API fallback encryption"); |
| |
| #define BLK_CRYPTO_MAX_KEY_SIZE 64 |
| static int blk_crypto_num_keyslots = 100; |
| module_param_named(num_keyslots, blk_crypto_num_keyslots, int, 0); |
| MODULE_PARM_DESC(num_keyslots, |
| "Number of keyslots for crypto API fallback in blk-crypto."); |
| |
| static struct blk_crypto_keyslot { |
| struct crypto_skcipher *tfm; |
| enum blk_crypto_mode_num crypto_mode; |
| u8 key[BLK_CRYPTO_MAX_KEY_SIZE]; |
| struct crypto_skcipher *tfms[ARRAY_SIZE(blk_crypto_modes)]; |
| } *blk_crypto_keyslots; |
| |
| /* |
| * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate |
| * all of a mode's tfms when that mode starts being used. Since each mode may |
| * need all the keyslots at some point, each mode needs its own tfm for each |
| * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to |
| * match the behavior of real inline encryption hardware (which only supports a |
| * single encryption context per keyslot), we only allow one tfm per keyslot to |
| * be used at a time - the rest of the unused tfms have their keys cleared. |
| */ |
| static struct mutex tfms_lock[ARRAY_SIZE(blk_crypto_modes)]; |
| static bool tfms_inited[ARRAY_SIZE(blk_crypto_modes)]; |
| |
| struct work_mem { |
| struct work_struct crypto_work; |
| struct bio *bio; |
| }; |
| |
| /* The following few vars are only used during the crypto API fallback */ |
| static struct keyslot_manager *blk_crypto_ksm; |
| static struct workqueue_struct *blk_crypto_wq; |
| static mempool_t *blk_crypto_page_pool; |
| static struct kmem_cache *blk_crypto_work_mem_cache; |
| |
| bool bio_crypt_swhandled(struct bio *bio) |
| { |
| return bio_has_crypt_ctx(bio) && |
| bio->bi_crypt_context->processing_ksm == blk_crypto_ksm; |
| } |
| |
| static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; |
| static void evict_keyslot(unsigned int slot) |
| { |
| struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; |
| enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; |
| int err; |
| |
| WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); |
| |
| /* Clear the key in the skcipher */ |
| err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, |
| blk_crypto_modes[crypto_mode].keysize); |
| WARN_ON(err); |
| memzero_explicit(slotp->key, BLK_CRYPTO_MAX_KEY_SIZE); |
| slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| static int blk_crypto_keyslot_program(void *priv, const u8 *key, |
| enum blk_crypto_mode_num crypto_mode, |
| unsigned int data_unit_size, |
| unsigned int slot) |
| { |
| struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; |
| const struct blk_crypto_mode *mode = &blk_crypto_modes[crypto_mode]; |
| size_t keysize = mode->keysize; |
| int err; |
| |
| if (crypto_mode != slotp->crypto_mode && |
| slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) { |
| evict_keyslot(slot); |
| } |
| |
| if (!slotp->tfms[crypto_mode]) |
| return -ENOMEM; |
| slotp->crypto_mode = crypto_mode; |
| err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key, keysize); |
| |
| if (err) { |
| evict_keyslot(slot); |
| return err; |
| } |
| |
| memcpy(slotp->key, key, keysize); |
| |
| return 0; |
| } |
| |
| static int blk_crypto_keyslot_evict(void *priv, const u8 *key, |
| enum blk_crypto_mode_num crypto_mode, |
| unsigned int data_unit_size, |
| unsigned int slot) |
| { |
| evict_keyslot(slot); |
| return 0; |
| } |
| |
| static int blk_crypto_keyslot_find(void *priv, |
| const u8 *key, |
| enum blk_crypto_mode_num crypto_mode, |
| unsigned int data_unit_size_bytes) |
| { |
| int slot; |
| const size_t keysize = blk_crypto_modes[crypto_mode].keysize; |
| |
| for (slot = 0; slot < blk_crypto_num_keyslots; slot++) { |
| if (blk_crypto_keyslots[slot].crypto_mode == crypto_mode && |
| !crypto_memneq(blk_crypto_keyslots[slot].key, key, keysize)) |
| return slot; |
| } |
| |
| return -ENOKEY; |
| } |
| |
| static bool blk_crypto_mode_supported(void *priv, |
| enum blk_crypto_mode_num crypt_mode, |
| unsigned int data_unit_size) |
| { |
| /* All blk_crypto_modes are required to have a crypto API fallback. */ |
| return true; |
| } |
| |
| /* |
| * The crypto API fallback KSM ops - only used for a bio when it specifies a |
| * blk_crypto_mode for which we failed to get a keyslot in the device's inline |
| * encryption hardware (which probably means the device doesn't have inline |
| * encryption hardware that supports that crypto mode). |
| */ |
| static const struct keyslot_mgmt_ll_ops blk_crypto_ksm_ll_ops = { |
| .keyslot_program = blk_crypto_keyslot_program, |
| .keyslot_evict = blk_crypto_keyslot_evict, |
| .keyslot_find = blk_crypto_keyslot_find, |
| .crypto_mode_supported = blk_crypto_mode_supported, |
| }; |
| |
| static void blk_crypto_encrypt_endio(struct bio *enc_bio) |
| { |
| struct bio *src_bio = enc_bio->bi_private; |
| int i; |
| |
| for (i = 0; i < enc_bio->bi_vcnt; i++) |
| mempool_free(enc_bio->bi_io_vec[i].bv_page, |
| blk_crypto_page_pool); |
| |
| src_bio->bi_status = enc_bio->bi_status; |
| |
| bio_put(enc_bio); |
| bio_endio(src_bio); |
| } |
| |
| static struct bio *blk_crypto_clone_bio(struct bio *bio_src) |
| { |
| struct bvec_iter iter; |
| struct bio_vec bv; |
| struct bio *bio; |
| |
| bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL); |
| if (!bio) |
| return NULL; |
| bio->bi_disk = bio_src->bi_disk; |
| bio->bi_opf = bio_src->bi_opf; |
| bio->bi_ioprio = bio_src->bi_ioprio; |
| bio->bi_write_hint = bio_src->bi_write_hint; |
| bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
| bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; |
| |
| bio_for_each_segment(bv, bio_src, iter) |
| bio->bi_io_vec[bio->bi_vcnt++] = bv; |
| |
| if (bio_integrity(bio_src) && |
| bio_integrity_clone(bio, bio_src, GFP_NOIO) < 0) { |
| bio_put(bio); |
| return NULL; |
| } |
| |
| bio_clone_blkg_association(bio, bio_src); |
| blkcg_bio_issue_init(bio); |
| |
| return bio; |
| } |
| |
| /* Check that all I/O segments are data unit aligned */ |
| static int bio_crypt_check_alignment(struct bio *bio) |
| { |
| int data_unit_size = 1 << bio->bi_crypt_context->data_unit_size_bits; |
| struct bvec_iter iter; |
| struct bio_vec bv; |
| |
| bio_for_each_segment(bv, bio, iter) { |
| if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int blk_crypto_alloc_cipher_req(struct bio *src_bio, |
| struct skcipher_request **ciph_req_ptr, |
| struct crypto_wait *wait) |
| { |
| int slot; |
| struct skcipher_request *ciph_req; |
| struct blk_crypto_keyslot *slotp; |
| |
| slot = bio_crypt_get_keyslot(src_bio); |
| slotp = &blk_crypto_keyslots[slot]; |
| ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], |
| GFP_NOIO); |
| if (!ciph_req) { |
| src_bio->bi_status = BLK_STS_RESOURCE; |
| return -ENOMEM; |
| } |
| |
| skcipher_request_set_callback(ciph_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, wait); |
| *ciph_req_ptr = ciph_req; |
| return 0; |
| } |
| |
| static int blk_crypto_split_bio_if_needed(struct bio **bio_ptr) |
| { |
| struct bio *bio = *bio_ptr; |
| unsigned int i = 0; |
| unsigned int num_sectors = 0; |
| struct bio_vec bv; |
| struct bvec_iter iter; |
| |
| bio_for_each_segment(bv, bio, iter) { |
| num_sectors += bv.bv_len >> SECTOR_SHIFT; |
| if (++i == BIO_MAX_PAGES) |
| break; |
| } |
| if (num_sectors < bio_sectors(bio)) { |
| struct bio *split_bio; |
| |
| split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL); |
| if (!split_bio) { |
| bio->bi_status = BLK_STS_RESOURCE; |
| return -ENOMEM; |
| } |
| bio_chain(split_bio, bio); |
| generic_make_request(bio); |
| *bio_ptr = split_bio; |
| } |
| return 0; |
| } |
| |
| /* |
| * The crypto API fallback's encryption routine. |
| * Allocate a bounce bio for encryption, encrypt the input bio using |
| * crypto API, and replace *bio_ptr with the bounce bio. May split input |
| * bio if it's too large. |
| */ |
| static int blk_crypto_encrypt_bio(struct bio **bio_ptr) |
| { |
| struct bio *src_bio; |
| struct skcipher_request *ciph_req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| int err = 0; |
| u64 curr_dun; |
| union { |
| __le64 dun; |
| u8 bytes[16]; |
| } iv; |
| struct scatterlist src, dst; |
| struct bio *enc_bio; |
| struct bio_vec *enc_bvec; |
| int i, j; |
| int data_unit_size; |
| |
| /* Split the bio if it's too big for single page bvec */ |
| err = blk_crypto_split_bio_if_needed(bio_ptr); |
| if (err) |
| return err; |
| |
| src_bio = *bio_ptr; |
| data_unit_size = 1 << src_bio->bi_crypt_context->data_unit_size_bits; |
| |
| /* Allocate bounce bio for encryption */ |
| enc_bio = blk_crypto_clone_bio(src_bio); |
| if (!enc_bio) { |
| src_bio->bi_status = BLK_STS_RESOURCE; |
| return -ENOMEM; |
| } |
| |
| /* |
| * Use the crypto API fallback keyslot manager to get a crypto_skcipher |
| * for the algorithm and key specified for this bio. |
| */ |
| err = bio_crypt_ctx_acquire_keyslot(src_bio, blk_crypto_ksm); |
| if (err) { |
| src_bio->bi_status = BLK_STS_IOERR; |
| goto out_put_enc_bio; |
| } |
| |
| /* and then allocate an skcipher_request for it */ |
| err = blk_crypto_alloc_cipher_req(src_bio, &ciph_req, &wait); |
| if (err) |
| goto out_release_keyslot; |
| |
| curr_dun = bio_crypt_data_unit_num(src_bio); |
| sg_init_table(&src, 1); |
| sg_init_table(&dst, 1); |
| |
| skcipher_request_set_crypt(ciph_req, &src, &dst, |
| data_unit_size, iv.bytes); |
| |
| /* Encrypt each page in the bounce bio */ |
| for (i = 0, enc_bvec = enc_bio->bi_io_vec; i < enc_bio->bi_vcnt; |
| enc_bvec++, i++) { |
| struct page *plaintext_page = enc_bvec->bv_page; |
| struct page *ciphertext_page = |
| mempool_alloc(blk_crypto_page_pool, GFP_NOIO); |
| |
| enc_bvec->bv_page = ciphertext_page; |
| |
| if (!ciphertext_page) { |
| src_bio->bi_status = BLK_STS_RESOURCE; |
| err = -ENOMEM; |
| goto out_free_bounce_pages; |
| } |
| |
| sg_set_page(&src, plaintext_page, data_unit_size, |
| enc_bvec->bv_offset); |
| sg_set_page(&dst, ciphertext_page, data_unit_size, |
| enc_bvec->bv_offset); |
| |
| /* Encrypt each data unit in this page */ |
| for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { |
| memset(&iv, 0, sizeof(iv)); |
| iv.dun = cpu_to_le64(curr_dun); |
| |
| err = crypto_wait_req(crypto_skcipher_encrypt(ciph_req), |
| &wait); |
| if (err) { |
| i++; |
| src_bio->bi_status = BLK_STS_RESOURCE; |
| goto out_free_bounce_pages; |
| } |
| curr_dun++; |
| src.offset += data_unit_size; |
| dst.offset += data_unit_size; |
| } |
| } |
| |
| enc_bio->bi_private = src_bio; |
| enc_bio->bi_end_io = blk_crypto_encrypt_endio; |
| *bio_ptr = enc_bio; |
| |
| enc_bio = NULL; |
| err = 0; |
| goto out_free_ciph_req; |
| |
| out_free_bounce_pages: |
| while (i > 0) |
| mempool_free(enc_bio->bi_io_vec[--i].bv_page, |
| blk_crypto_page_pool); |
| out_free_ciph_req: |
| skcipher_request_free(ciph_req); |
| out_release_keyslot: |
| bio_crypt_ctx_release_keyslot(src_bio); |
| out_put_enc_bio: |
| if (enc_bio) |
| bio_put(enc_bio); |
| |
| return err; |
| } |
| |
| /* |
| * The crypto API fallback's main decryption routine. |
| * Decrypts input bio in place. |
| */ |
| static void blk_crypto_decrypt_bio(struct work_struct *w) |
| { |
| struct work_mem *work_mem = |
| container_of(w, struct work_mem, crypto_work); |
| struct bio *bio = work_mem->bio; |
| struct skcipher_request *ciph_req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct bio_vec bv; |
| struct bvec_iter iter; |
| u64 curr_dun; |
| union { |
| __le64 dun; |
| u8 bytes[16]; |
| } iv; |
| struct scatterlist sg; |
| int data_unit_size = 1 << bio->bi_crypt_context->data_unit_size_bits; |
| int i; |
| int err; |
| |
| /* |
| * Use the crypto API fallback keyslot manager to get a crypto_skcipher |
| * for the algorithm and key specified for this bio. |
| */ |
| if (bio_crypt_ctx_acquire_keyslot(bio, blk_crypto_ksm)) { |
| bio->bi_status = BLK_STS_RESOURCE; |
| goto out_no_keyslot; |
| } |
| |
| /* and then allocate an skcipher_request for it */ |
| err = blk_crypto_alloc_cipher_req(bio, &ciph_req, &wait); |
| if (err) |
| goto out; |
| |
| curr_dun = bio_crypt_sw_data_unit_num(bio); |
| sg_init_table(&sg, 1); |
| skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, |
| iv.bytes); |
| |
| /* Decrypt each segment in the bio */ |
| __bio_for_each_segment(bv, bio, iter, |
| bio->bi_crypt_context->crypt_iter) { |
| struct page *page = bv.bv_page; |
| |
| sg_set_page(&sg, page, data_unit_size, bv.bv_offset); |
| |
| /* Decrypt each data unit in the segment */ |
| for (i = 0; i < bv.bv_len; i += data_unit_size) { |
| memset(&iv, 0, sizeof(iv)); |
| iv.dun = cpu_to_le64(curr_dun); |
| if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), |
| &wait)) { |
| bio->bi_status = BLK_STS_IOERR; |
| goto out; |
| } |
| curr_dun++; |
| sg.offset += data_unit_size; |
| } |
| } |
| |
| out: |
| skcipher_request_free(ciph_req); |
| bio_crypt_ctx_release_keyslot(bio); |
| out_no_keyslot: |
| kmem_cache_free(blk_crypto_work_mem_cache, work_mem); |
| bio_endio(bio); |
| } |
| |
| /* Queue bio for decryption */ |
| static void blk_crypto_queue_decrypt_bio(struct bio *bio) |
| { |
| struct work_mem *work_mem = |
| kmem_cache_zalloc(blk_crypto_work_mem_cache, GFP_ATOMIC); |
| |
| if (!work_mem) { |
| bio->bi_status = BLK_STS_RESOURCE; |
| bio_endio(bio); |
| return; |
| } |
| |
| INIT_WORK(&work_mem->crypto_work, blk_crypto_decrypt_bio); |
| work_mem->bio = bio; |
| queue_work(blk_crypto_wq, &work_mem->crypto_work); |
| } |
| |
| /** |
| * blk_crypto_submit_bio - handle submitting bio for inline encryption |
| * |
| * @bio_ptr: pointer to original bio pointer |
| * |
| * If the bio doesn't have inline encryption enabled or the submitter already |
| * specified a keyslot for the target device, do nothing. Else, a raw key must |
| * have been provided, so acquire a device keyslot for it if supported. Else, |
| * use the crypto API fallback. |
| * |
| * When the crypto API fallback is used for encryption, blk-crypto may choose to |
| * split the bio into 2 - the first one that will continue to be processed and |
| * the second one that will be resubmitted via generic_make_request. |
| * A bounce bio will be allocated to encrypt the contents of the aforementioned |
| * "first one", and *bio_ptr will be updated to this bounce bio. |
| * |
| * Return: 0 if bio submission should continue; nonzero if bio_endio() was |
| * already called so bio submission should abort. |
| */ |
| int blk_crypto_submit_bio(struct bio **bio_ptr) |
| { |
| struct bio *bio = *bio_ptr; |
| struct request_queue *q; |
| int err; |
| struct bio_crypt_ctx *crypt_ctx; |
| |
| if (!bio_has_crypt_ctx(bio) || !bio_has_data(bio)) |
| return 0; |
| |
| /* |
| * When a read bio is marked for sw decryption, its bi_iter is saved |
| * so that when we decrypt the bio later, we know what part of it was |
| * marked for sw decryption (when the bio is passed down after |
| * blk_crypto_submit bio, it may be split or advanced so we cannot rely |
| * on the bi_iter while decrypting in blk_crypto_endio) |
| */ |
| if (bio_crypt_swhandled(bio)) |
| return 0; |
| |
| err = bio_crypt_check_alignment(bio); |
| if (err) { |
| bio->bi_status = BLK_STS_IOERR; |
| goto out; |
| } |
| |
| crypt_ctx = bio->bi_crypt_context; |
| q = bio->bi_disk->queue; |
| |
| if (bio_crypt_has_keyslot(bio)) { |
| /* Key already programmed into device? */ |
| if (q->ksm == crypt_ctx->processing_ksm) |
| return 0; |
| |
| /* Nope, release the existing keyslot. */ |
| bio_crypt_ctx_release_keyslot(bio); |
| } |
| |
| /* Get device keyslot if supported */ |
| if (q->ksm) { |
| err = bio_crypt_ctx_acquire_keyslot(bio, q->ksm); |
| if (!err) |
| return 0; |
| |
| pr_warn_once("Failed to acquire keyslot for %s (err=%d). Falling back to crypto API.\n", |
| bio->bi_disk->disk_name, err); |
| } |
| |
| /* Fallback to crypto API */ |
| if (!READ_ONCE(tfms_inited[bio->bi_crypt_context->crypto_mode])) { |
| err = -EIO; |
| bio->bi_status = BLK_STS_IOERR; |
| goto out; |
| } |
| |
| if (bio_data_dir(bio) == WRITE) { |
| /* Encrypt the data now */ |
| err = blk_crypto_encrypt_bio(bio_ptr); |
| if (err) |
| goto out; |
| } else { |
| /* Mark bio as swhandled */ |
| bio->bi_crypt_context->processing_ksm = blk_crypto_ksm; |
| bio->bi_crypt_context->crypt_iter = bio->bi_iter; |
| bio->bi_crypt_context->sw_data_unit_num = |
| bio->bi_crypt_context->data_unit_num; |
| } |
| return 0; |
| out: |
| bio_endio(*bio_ptr); |
| return err; |
| } |
| |
| /** |
| * blk_crypto_endio - clean up bio w.r.t inline encryption during bio_endio |
| * |
| * @bio - the bio to clean up |
| * |
| * If blk_crypto_submit_bio decided to fallback to crypto API for this |
| * bio, we queue the bio for decryption into a workqueue and return false, |
| * and call bio_endio(bio) at a later time (after the bio has been decrypted). |
| * |
| * If the bio is not to be decrypted by the crypto API, this function releases |
| * the reference to the keyslot that blk_crypto_submit_bio got. |
| * |
| * Return: true if bio_endio should continue; false otherwise (bio_endio will |
| * be called again when bio has been decrypted). |
| */ |
| bool blk_crypto_endio(struct bio *bio) |
| { |
| if (!bio_has_crypt_ctx(bio)) |
| return true; |
| |
| if (bio_crypt_swhandled(bio)) { |
| /* |
| * The only bios that are swhandled when they reach here |
| * are those with bio_data_dir(bio) == READ, since WRITE |
| * bios that are encrypted by the crypto API fallback are |
| * handled by blk_crypto_encrypt_endio. |
| */ |
| |
| /* If there was an IO error, don't decrypt. */ |
| if (bio->bi_status) |
| return true; |
| |
| blk_crypto_queue_decrypt_bio(bio); |
| return false; |
| } |
| |
| if (bio_crypt_has_keyslot(bio)) |
| bio_crypt_ctx_release_keyslot(bio); |
| |
| return true; |
| } |
| |
| /** |
| * blk_crypto_start_using_mode() - Allocate skciphers for a |
| * mode_num for all keyslots |
| * @mode_num - the blk_crypto_mode we want to allocate ciphers for. |
| * |
| * Upper layers (filesystems) should call this function to ensure that a |
| * the crypto API fallback has transforms for this algorithm, if they become |
| * necessary. |
| * |
| * Return: 0 on success and -err on error. |
| */ |
| int blk_crypto_start_using_mode(enum blk_crypto_mode_num mode_num, |
| unsigned int data_unit_size, |
| struct request_queue *q) |
| { |
| struct blk_crypto_keyslot *slotp; |
| int err = 0; |
| int i; |
| |
| /* |
| * Fast path |
| * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
| * for each i are visible before we try to access them. |
| */ |
| if (likely(smp_load_acquire(&tfms_inited[mode_num]))) |
| return 0; |
| |
| /* |
| * If the keyslot manager of the request queue supports this |
| * crypto mode, then we don't need to allocate this mode. |
| */ |
| if (keyslot_manager_crypto_mode_supported(q->ksm, mode_num, |
| data_unit_size)) { |
| return 0; |
| } |
| |
| mutex_lock(&tfms_lock[mode_num]); |
| if (likely(tfms_inited[mode_num])) |
| goto out; |
| |
| for (i = 0; i < blk_crypto_num_keyslots; i++) { |
| slotp = &blk_crypto_keyslots[i]; |
| slotp->tfms[mode_num] = crypto_alloc_skcipher( |
| blk_crypto_modes[mode_num].cipher_str, |
| 0, 0); |
| if (IS_ERR(slotp->tfms[mode_num])) { |
| err = PTR_ERR(slotp->tfms[mode_num]); |
| slotp->tfms[mode_num] = NULL; |
| goto out_free_tfms; |
| } |
| |
| crypto_skcipher_set_flags(slotp->tfms[mode_num], |
| CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
| } |
| |
| /* |
| * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
| * for each i are visible before we set tfms_inited[mode_num]. |
| */ |
| smp_store_release(&tfms_inited[mode_num], true); |
| goto out; |
| |
| out_free_tfms: |
| for (i = 0; i < blk_crypto_num_keyslots; i++) { |
| slotp = &blk_crypto_keyslots[i]; |
| crypto_free_skcipher(slotp->tfms[mode_num]); |
| slotp->tfms[mode_num] = NULL; |
| } |
| out: |
| mutex_unlock(&tfms_lock[mode_num]); |
| return err; |
| } |
| EXPORT_SYMBOL(blk_crypto_start_using_mode); |
| |
| /** |
| * blk_crypto_evict_key() - Evict a key from any inline encryption hardware |
| * it may have been programmed into |
| * @q - The request queue who's keyslot manager this key might have been |
| * programmed into |
| * @key - The key to evict |
| * @mode - The blk_crypto_mode_num used with this key |
| * @data_unit_size - The data unit size used with this key |
| * |
| * Upper layers (filesystems) should call this function to ensure that a key |
| * is evicted from hardware that it might have been programmed into. This |
| * will call keyslot_manager_evict_key on the queue's keyslot manager, if one |
| * exists, and supports the crypto algorithm with the specified data unit size. |
| * Otherwise, it will evict the key from the blk_crypto_ksm. |
| * |
| * Return: 0 on success, -err on error. |
| */ |
| int blk_crypto_evict_key(struct request_queue *q, const u8 *key, |
| enum blk_crypto_mode_num mode, |
| unsigned int data_unit_size) |
| { |
| struct keyslot_manager *ksm = blk_crypto_ksm; |
| |
| if (q && q->ksm && keyslot_manager_crypto_mode_supported(q->ksm, mode, |
| data_unit_size)) { |
| ksm = q->ksm; |
| } |
| |
| return keyslot_manager_evict_key(ksm, key, mode, data_unit_size); |
| } |
| EXPORT_SYMBOL(blk_crypto_evict_key); |
| |
| int __init blk_crypto_init(void) |
| { |
| int i; |
| int err = -ENOMEM; |
| |
| prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); |
| |
| blk_crypto_ksm = keyslot_manager_create(blk_crypto_num_keyslots, |
| &blk_crypto_ksm_ll_ops, |
| NULL); |
| if (!blk_crypto_ksm) |
| goto out; |
| |
| blk_crypto_wq = alloc_workqueue("blk_crypto_wq", |
| WQ_UNBOUND | WQ_HIGHPRI | |
| WQ_MEM_RECLAIM, |
| num_online_cpus()); |
| if (!blk_crypto_wq) |
| goto out_free_ksm; |
| |
| blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, |
| sizeof(*blk_crypto_keyslots), |
| GFP_KERNEL); |
| if (!blk_crypto_keyslots) |
| goto out_free_workqueue; |
| |
| for (i = 0; i < blk_crypto_num_keyslots; i++) { |
| blk_crypto_keyslots[i].crypto_mode = |
| BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(blk_crypto_modes); i++) |
| mutex_init(&tfms_lock[i]); |
| |
| blk_crypto_page_pool = |
| mempool_create_page_pool(num_prealloc_bounce_pg, 0); |
| if (!blk_crypto_page_pool) |
| goto out_free_keyslots; |
| |
| blk_crypto_work_mem_cache = KMEM_CACHE(work_mem, SLAB_RECLAIM_ACCOUNT); |
| if (!blk_crypto_work_mem_cache) |
| goto out_free_page_pool; |
| |
| return 0; |
| |
| out_free_page_pool: |
| mempool_destroy(blk_crypto_page_pool); |
| blk_crypto_page_pool = NULL; |
| out_free_keyslots: |
| kzfree(blk_crypto_keyslots); |
| blk_crypto_keyslots = NULL; |
| out_free_workqueue: |
| destroy_workqueue(blk_crypto_wq); |
| blk_crypto_wq = NULL; |
| out_free_ksm: |
| keyslot_manager_destroy(blk_crypto_ksm); |
| blk_crypto_ksm = NULL; |
| out: |
| pr_warn("No memory for blk-crypto crypto API fallback."); |
| return err; |
| } |