| /* |
| * This file implements the DMA operations for NVLink devices. The NPU |
| * devices all point to the same iommu table as the parent PCI device. |
| * |
| * Copyright Alistair Popple, IBM Corporation 2015. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/mmu_context.h> |
| #include <linux/of.h> |
| #include <linux/export.h> |
| #include <linux/pci.h> |
| #include <linux/memblock.h> |
| #include <linux/iommu.h> |
| |
| #include <asm/tlb.h> |
| #include <asm/powernv.h> |
| #include <asm/reg.h> |
| #include <asm/opal.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/pnv-pci.h> |
| #include <asm/msi_bitmap.h> |
| #include <asm/opal.h> |
| |
| #include "powernv.h" |
| #include "pci.h" |
| |
| #define npu_to_phb(x) container_of(x, struct pnv_phb, npu) |
| |
| /* |
| * spinlock to protect initialisation of an npu_context for a particular |
| * mm_struct. |
| */ |
| static DEFINE_SPINLOCK(npu_context_lock); |
| |
| /* |
| * When an address shootdown range exceeds this threshold we invalidate the |
| * entire TLB on the GPU for the given PID rather than each specific address in |
| * the range. |
| */ |
| #define ATSD_THRESHOLD (2*1024*1024) |
| |
| /* |
| * Other types of TCE cache invalidation are not functional in the |
| * hardware. |
| */ |
| static struct pci_dev *get_pci_dev(struct device_node *dn) |
| { |
| struct pci_dn *pdn = PCI_DN(dn); |
| |
| return pci_get_domain_bus_and_slot(pci_domain_nr(pdn->phb->bus), |
| pdn->busno, pdn->devfn); |
| } |
| |
| /* Given a NPU device get the associated PCI device. */ |
| struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev) |
| { |
| struct device_node *dn; |
| struct pci_dev *gpdev; |
| |
| if (WARN_ON(!npdev)) |
| return NULL; |
| |
| if (WARN_ON(!npdev->dev.of_node)) |
| return NULL; |
| |
| /* Get assoicated PCI device */ |
| dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0); |
| if (!dn) |
| return NULL; |
| |
| gpdev = get_pci_dev(dn); |
| of_node_put(dn); |
| |
| return gpdev; |
| } |
| EXPORT_SYMBOL(pnv_pci_get_gpu_dev); |
| |
| /* Given the real PCI device get a linked NPU device. */ |
| struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index) |
| { |
| struct device_node *dn; |
| struct pci_dev *npdev; |
| |
| if (WARN_ON(!gpdev)) |
| return NULL; |
| |
| /* Not all PCI devices have device-tree nodes */ |
| if (!gpdev->dev.of_node) |
| return NULL; |
| |
| /* Get assoicated PCI device */ |
| dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index); |
| if (!dn) |
| return NULL; |
| |
| npdev = get_pci_dev(dn); |
| of_node_put(dn); |
| |
| return npdev; |
| } |
| EXPORT_SYMBOL(pnv_pci_get_npu_dev); |
| |
| #define NPU_DMA_OP_UNSUPPORTED() \ |
| dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \ |
| __func__) |
| |
| static void *dma_npu_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flag, |
| unsigned long attrs) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| return NULL; |
| } |
| |
| static void dma_npu_free(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t dma_handle, |
| unsigned long attrs) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| } |
| |
| static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| return 0; |
| } |
| |
| static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction direction, |
| unsigned long attrs) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| return 0; |
| } |
| |
| static int dma_npu_dma_supported(struct device *dev, u64 mask) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| return 0; |
| } |
| |
| static u64 dma_npu_get_required_mask(struct device *dev) |
| { |
| NPU_DMA_OP_UNSUPPORTED(); |
| return 0; |
| } |
| |
| static const struct dma_map_ops dma_npu_ops = { |
| .map_page = dma_npu_map_page, |
| .map_sg = dma_npu_map_sg, |
| .alloc = dma_npu_alloc, |
| .free = dma_npu_free, |
| .dma_supported = dma_npu_dma_supported, |
| .get_required_mask = dma_npu_get_required_mask, |
| }; |
| |
| /* |
| * Returns the PE assoicated with the PCI device of the given |
| * NPU. Returns the linked pci device if pci_dev != NULL. |
| */ |
| static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe, |
| struct pci_dev **gpdev) |
| { |
| struct pnv_phb *phb; |
| struct pci_controller *hose; |
| struct pci_dev *pdev; |
| struct pnv_ioda_pe *pe; |
| struct pci_dn *pdn; |
| |
| pdev = pnv_pci_get_gpu_dev(npe->pdev); |
| if (!pdev) |
| return NULL; |
| |
| pdn = pci_get_pdn(pdev); |
| if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) |
| return NULL; |
| |
| hose = pci_bus_to_host(pdev->bus); |
| phb = hose->private_data; |
| pe = &phb->ioda.pe_array[pdn->pe_number]; |
| |
| if (gpdev) |
| *gpdev = pdev; |
| |
| return pe; |
| } |
| |
| long pnv_npu_set_window(struct pnv_ioda_pe *npe, int num, |
| struct iommu_table *tbl) |
| { |
| struct pnv_phb *phb = npe->phb; |
| int64_t rc; |
| const unsigned long size = tbl->it_indirect_levels ? |
| tbl->it_level_size : tbl->it_size; |
| const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; |
| const __u64 win_size = tbl->it_size << tbl->it_page_shift; |
| |
| pe_info(npe, "Setting up window %llx..%llx pg=%lx\n", |
| start_addr, start_addr + win_size - 1, |
| IOMMU_PAGE_SIZE(tbl)); |
| |
| rc = opal_pci_map_pe_dma_window(phb->opal_id, |
| npe->pe_number, |
| npe->pe_number, |
| tbl->it_indirect_levels + 1, |
| __pa(tbl->it_base), |
| size << 3, |
| IOMMU_PAGE_SIZE(tbl)); |
| if (rc) { |
| pe_err(npe, "Failed to configure TCE table, err %lld\n", rc); |
| return rc; |
| } |
| pnv_pci_ioda2_tce_invalidate_entire(phb, false); |
| |
| /* Add the table to the list so its TCE cache will get invalidated */ |
| pnv_pci_link_table_and_group(phb->hose->node, num, |
| tbl, &npe->table_group); |
| |
| return 0; |
| } |
| |
| long pnv_npu_unset_window(struct pnv_ioda_pe *npe, int num) |
| { |
| struct pnv_phb *phb = npe->phb; |
| int64_t rc; |
| |
| pe_info(npe, "Removing DMA window\n"); |
| |
| rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number, |
| npe->pe_number, |
| 0/* levels */, 0/* table address */, |
| 0/* table size */, 0/* page size */); |
| if (rc) { |
| pe_err(npe, "Unmapping failed, ret = %lld\n", rc); |
| return rc; |
| } |
| pnv_pci_ioda2_tce_invalidate_entire(phb, false); |
| |
| pnv_pci_unlink_table_and_group(npe->table_group.tables[num], |
| &npe->table_group); |
| |
| return 0; |
| } |
| |
| /* |
| * Enables 32 bit DMA on NPU. |
| */ |
| static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe) |
| { |
| struct pci_dev *gpdev; |
| struct pnv_ioda_pe *gpe; |
| int64_t rc; |
| |
| /* |
| * Find the assoicated PCI devices and get the dma window |
| * information from there. |
| */ |
| if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV)) |
| return; |
| |
| gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); |
| if (!gpe) |
| return; |
| |
| rc = pnv_npu_set_window(npe, 0, gpe->table_group.tables[0]); |
| |
| /* |
| * We don't initialise npu_pe->tce32_table as we always use |
| * dma_npu_ops which are nops. |
| */ |
| set_dma_ops(&npe->pdev->dev, &dma_npu_ops); |
| } |
| |
| /* |
| * Enables bypass mode on the NPU. The NPU only supports one |
| * window per link, so bypass needs to be explicitly enabled or |
| * disabled. Unlike for a PHB3 bypass and non-bypass modes can't be |
| * active at the same time. |
| */ |
| static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe) |
| { |
| struct pnv_phb *phb = npe->phb; |
| int64_t rc = 0; |
| phys_addr_t top = memblock_end_of_DRAM(); |
| |
| if (phb->type != PNV_PHB_NPU_NVLINK || !npe->pdev) |
| return -EINVAL; |
| |
| rc = pnv_npu_unset_window(npe, 0); |
| if (rc != OPAL_SUCCESS) |
| return rc; |
| |
| /* Enable the bypass window */ |
| |
| top = roundup_pow_of_two(top); |
| dev_info(&npe->pdev->dev, "Enabling bypass for PE %x\n", |
| npe->pe_number); |
| rc = opal_pci_map_pe_dma_window_real(phb->opal_id, |
| npe->pe_number, npe->pe_number, |
| 0 /* bypass base */, top); |
| |
| if (rc == OPAL_SUCCESS) |
| pnv_pci_ioda2_tce_invalidate_entire(phb, false); |
| |
| return rc; |
| } |
| |
| void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass) |
| { |
| int i; |
| struct pnv_phb *phb; |
| struct pci_dn *pdn; |
| struct pnv_ioda_pe *npe; |
| struct pci_dev *npdev; |
| |
| for (i = 0; ; ++i) { |
| npdev = pnv_pci_get_npu_dev(gpdev, i); |
| |
| if (!npdev) |
| break; |
| |
| pdn = pci_get_pdn(npdev); |
| if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) |
| return; |
| |
| phb = pci_bus_to_host(npdev->bus)->private_data; |
| |
| /* We only do bypass if it's enabled on the linked device */ |
| npe = &phb->ioda.pe_array[pdn->pe_number]; |
| |
| if (bypass) { |
| dev_info(&npdev->dev, |
| "Using 64-bit DMA iommu bypass\n"); |
| pnv_npu_dma_set_bypass(npe); |
| } else { |
| dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n"); |
| pnv_npu_dma_set_32(npe); |
| } |
| } |
| } |
| |
| /* Switch ownership from platform code to external user (e.g. VFIO) */ |
| void pnv_npu_take_ownership(struct pnv_ioda_pe *npe) |
| { |
| struct pnv_phb *phb = npe->phb; |
| int64_t rc; |
| |
| /* |
| * Note: NPU has just a single TVE in the hardware which means that |
| * while used by the kernel, it can have either 32bit window or |
| * DMA bypass but never both. So we deconfigure 32bit window only |
| * if it was enabled at the moment of ownership change. |
| */ |
| if (npe->table_group.tables[0]) { |
| pnv_npu_unset_window(npe, 0); |
| return; |
| } |
| |
| /* Disable bypass */ |
| rc = opal_pci_map_pe_dma_window_real(phb->opal_id, |
| npe->pe_number, npe->pe_number, |
| 0 /* bypass base */, 0); |
| if (rc) { |
| pe_err(npe, "Failed to disable bypass, err %lld\n", rc); |
| return; |
| } |
| pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false); |
| } |
| |
| struct pnv_ioda_pe *pnv_pci_npu_setup_iommu(struct pnv_ioda_pe *npe) |
| { |
| struct pnv_phb *phb = npe->phb; |
| struct pci_bus *pbus = phb->hose->bus; |
| struct pci_dev *npdev, *gpdev = NULL, *gptmp; |
| struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(npe, &gpdev); |
| |
| if (!gpe || !gpdev) |
| return NULL; |
| |
| list_for_each_entry(npdev, &pbus->devices, bus_list) { |
| gptmp = pnv_pci_get_gpu_dev(npdev); |
| |
| if (gptmp != gpdev) |
| continue; |
| |
| pe_info(gpe, "Attached NPU %s\n", dev_name(&npdev->dev)); |
| iommu_group_add_device(gpe->table_group.group, &npdev->dev); |
| } |
| |
| return gpe; |
| } |
| |
| /* Maximum number of nvlinks per npu */ |
| #define NV_MAX_LINKS 6 |
| |
| /* Maximum index of npu2 hosts in the system. Always < NV_MAX_NPUS */ |
| static int max_npu2_index; |
| |
| struct npu_context { |
| struct mm_struct *mm; |
| struct pci_dev *npdev[NV_MAX_NPUS][NV_MAX_LINKS]; |
| struct mmu_notifier mn; |
| struct kref kref; |
| bool nmmu_flush; |
| |
| /* Callback to stop translation requests on a given GPU */ |
| void (*release_cb)(struct npu_context *context, void *priv); |
| |
| /* |
| * Private pointer passed to the above callback for usage by |
| * device drivers. |
| */ |
| void *priv; |
| }; |
| |
| struct mmio_atsd_reg { |
| struct npu *npu; |
| int reg; |
| }; |
| |
| /* |
| * Find a free MMIO ATSD register and mark it in use. Return -ENOSPC |
| * if none are available. |
| */ |
| static int get_mmio_atsd_reg(struct npu *npu) |
| { |
| int i; |
| |
| for (i = 0; i < npu->mmio_atsd_count; i++) { |
| if (!test_and_set_bit_lock(i, &npu->mmio_atsd_usage)) |
| return i; |
| } |
| |
| return -ENOSPC; |
| } |
| |
| static void put_mmio_atsd_reg(struct npu *npu, int reg) |
| { |
| clear_bit_unlock(reg, &npu->mmio_atsd_usage); |
| } |
| |
| /* MMIO ATSD register offsets */ |
| #define XTS_ATSD_AVA 1 |
| #define XTS_ATSD_STAT 2 |
| |
| static void mmio_launch_invalidate(struct mmio_atsd_reg *mmio_atsd_reg, |
| unsigned long launch, unsigned long va) |
| { |
| struct npu *npu = mmio_atsd_reg->npu; |
| int reg = mmio_atsd_reg->reg; |
| |
| __raw_writeq_be(va, npu->mmio_atsd_regs[reg] + XTS_ATSD_AVA); |
| eieio(); |
| __raw_writeq_be(launch, npu->mmio_atsd_regs[reg]); |
| } |
| |
| static void mmio_invalidate_pid(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS], |
| unsigned long pid, bool flush) |
| { |
| int i; |
| unsigned long launch; |
| |
| for (i = 0; i <= max_npu2_index; i++) { |
| if (mmio_atsd_reg[i].reg < 0) |
| continue; |
| |
| /* IS set to invalidate matching PID */ |
| launch = PPC_BIT(12); |
| |
| /* PRS set to process-scoped */ |
| launch |= PPC_BIT(13); |
| |
| /* AP */ |
| launch |= (u64) |
| mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17); |
| |
| /* PID */ |
| launch |= pid << PPC_BITLSHIFT(38); |
| |
| /* No flush */ |
| launch |= !flush << PPC_BITLSHIFT(39); |
| |
| /* Invalidating the entire process doesn't use a va */ |
| mmio_launch_invalidate(&mmio_atsd_reg[i], launch, 0); |
| } |
| } |
| |
| static void mmio_invalidate_va(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS], |
| unsigned long va, unsigned long pid, bool flush) |
| { |
| int i; |
| unsigned long launch; |
| |
| for (i = 0; i <= max_npu2_index; i++) { |
| if (mmio_atsd_reg[i].reg < 0) |
| continue; |
| |
| /* IS set to invalidate target VA */ |
| launch = 0; |
| |
| /* PRS set to process scoped */ |
| launch |= PPC_BIT(13); |
| |
| /* AP */ |
| launch |= (u64) |
| mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17); |
| |
| /* PID */ |
| launch |= pid << PPC_BITLSHIFT(38); |
| |
| /* No flush */ |
| launch |= !flush << PPC_BITLSHIFT(39); |
| |
| mmio_launch_invalidate(&mmio_atsd_reg[i], launch, va); |
| } |
| } |
| |
| #define mn_to_npu_context(x) container_of(x, struct npu_context, mn) |
| |
| static void mmio_invalidate_wait( |
| struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) |
| { |
| struct npu *npu; |
| int i, reg; |
| |
| /* Wait for all invalidations to complete */ |
| for (i = 0; i <= max_npu2_index; i++) { |
| if (mmio_atsd_reg[i].reg < 0) |
| continue; |
| |
| /* Wait for completion */ |
| npu = mmio_atsd_reg[i].npu; |
| reg = mmio_atsd_reg[i].reg; |
| while (__raw_readq(npu->mmio_atsd_regs[reg] + XTS_ATSD_STAT)) |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * Acquires all the address translation shootdown (ATSD) registers required to |
| * launch an ATSD on all links this npu_context is active on. |
| */ |
| static void acquire_atsd_reg(struct npu_context *npu_context, |
| struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) |
| { |
| int i, j; |
| struct npu *npu; |
| struct pci_dev *npdev; |
| struct pnv_phb *nphb; |
| |
| for (i = 0; i <= max_npu2_index; i++) { |
| mmio_atsd_reg[i].reg = -1; |
| for (j = 0; j < NV_MAX_LINKS; j++) { |
| /* |
| * There are no ordering requirements with respect to |
| * the setup of struct npu_context, but to ensure |
| * consistent behaviour we need to ensure npdev[][] is |
| * only read once. |
| */ |
| npdev = READ_ONCE(npu_context->npdev[i][j]); |
| if (!npdev) |
| continue; |
| |
| nphb = pci_bus_to_host(npdev->bus)->private_data; |
| npu = &nphb->npu; |
| mmio_atsd_reg[i].npu = npu; |
| mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu); |
| while (mmio_atsd_reg[i].reg < 0) { |
| mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu); |
| cpu_relax(); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Release previously acquired ATSD registers. To avoid deadlocks the registers |
| * must be released in the same order they were acquired above in |
| * acquire_atsd_reg. |
| */ |
| static void release_atsd_reg(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]) |
| { |
| int i; |
| |
| for (i = 0; i <= max_npu2_index; i++) { |
| /* |
| * We can't rely on npu_context->npdev[][] being the same here |
| * as when acquire_atsd_reg() was called, hence we use the |
| * values stored in mmio_atsd_reg during the acquire phase |
| * rather than re-reading npdev[][]. |
| */ |
| if (mmio_atsd_reg[i].reg < 0) |
| continue; |
| |
| put_mmio_atsd_reg(mmio_atsd_reg[i].npu, mmio_atsd_reg[i].reg); |
| } |
| } |
| |
| /* |
| * Invalidate either a single address or an entire PID depending on |
| * the value of va. |
| */ |
| static void mmio_invalidate(struct npu_context *npu_context, int va, |
| unsigned long address, bool flush) |
| { |
| struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS]; |
| unsigned long pid = npu_context->mm->context.id; |
| |
| if (npu_context->nmmu_flush) |
| /* |
| * Unfortunately the nest mmu does not support flushing specific |
| * addresses so we have to flush the whole mm once before |
| * shooting down the GPU translation. |
| */ |
| flush_all_mm(npu_context->mm); |
| |
| /* |
| * Loop over all the NPUs this process is active on and launch |
| * an invalidate. |
| */ |
| acquire_atsd_reg(npu_context, mmio_atsd_reg); |
| if (va) |
| mmio_invalidate_va(mmio_atsd_reg, address, pid, flush); |
| else |
| mmio_invalidate_pid(mmio_atsd_reg, pid, flush); |
| |
| mmio_invalidate_wait(mmio_atsd_reg); |
| if (flush) { |
| /* |
| * The GPU requires two flush ATSDs to ensure all entries have |
| * been flushed. We use PID 0 as it will never be used for a |
| * process on the GPU. |
| */ |
| mmio_invalidate_pid(mmio_atsd_reg, 0, true); |
| mmio_invalidate_wait(mmio_atsd_reg); |
| mmio_invalidate_pid(mmio_atsd_reg, 0, true); |
| mmio_invalidate_wait(mmio_atsd_reg); |
| } |
| release_atsd_reg(mmio_atsd_reg); |
| } |
| |
| static void pnv_npu2_mn_release(struct mmu_notifier *mn, |
| struct mm_struct *mm) |
| { |
| struct npu_context *npu_context = mn_to_npu_context(mn); |
| |
| /* Call into device driver to stop requests to the NMMU */ |
| if (npu_context->release_cb) |
| npu_context->release_cb(npu_context, npu_context->priv); |
| |
| /* |
| * There should be no more translation requests for this PID, but we |
| * need to ensure any entries for it are removed from the TLB. |
| */ |
| mmio_invalidate(npu_context, 0, 0, true); |
| } |
| |
| static void pnv_npu2_mn_change_pte(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long address, |
| pte_t pte) |
| { |
| struct npu_context *npu_context = mn_to_npu_context(mn); |
| |
| mmio_invalidate(npu_context, 1, address, true); |
| } |
| |
| static void pnv_npu2_mn_invalidate_range(struct mmu_notifier *mn, |
| struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| struct npu_context *npu_context = mn_to_npu_context(mn); |
| unsigned long address; |
| |
| if (end - start > ATSD_THRESHOLD) { |
| /* |
| * Just invalidate the entire PID if the address range is too |
| * large. |
| */ |
| mmio_invalidate(npu_context, 0, 0, true); |
| } else { |
| for (address = start; address < end; address += PAGE_SIZE) |
| mmio_invalidate(npu_context, 1, address, false); |
| |
| /* Do the flush only on the final addess == end */ |
| mmio_invalidate(npu_context, 1, address, true); |
| } |
| } |
| |
| static const struct mmu_notifier_ops nv_nmmu_notifier_ops = { |
| .release = pnv_npu2_mn_release, |
| .change_pte = pnv_npu2_mn_change_pte, |
| .invalidate_range = pnv_npu2_mn_invalidate_range, |
| }; |
| |
| /* |
| * Call into OPAL to setup the nmmu context for the current task in |
| * the NPU. This must be called to setup the context tables before the |
| * GPU issues ATRs. pdev should be a pointed to PCIe GPU device. |
| * |
| * A release callback should be registered to allow a device driver to |
| * be notified that it should not launch any new translation requests |
| * as the final TLB invalidate is about to occur. |
| * |
| * Returns an error if there no contexts are currently available or a |
| * npu_context which should be passed to pnv_npu2_handle_fault(). |
| * |
| * mmap_sem must be held in write mode and must not be called from interrupt |
| * context. |
| */ |
| struct npu_context *pnv_npu2_init_context(struct pci_dev *gpdev, |
| unsigned long flags, |
| void (*cb)(struct npu_context *, void *), |
| void *priv) |
| { |
| int rc; |
| u32 nvlink_index; |
| struct device_node *nvlink_dn; |
| struct mm_struct *mm = current->mm; |
| struct pnv_phb *nphb; |
| struct npu *npu; |
| struct npu_context *npu_context; |
| |
| /* |
| * At present we don't support GPUs connected to multiple NPUs and I'm |
| * not sure the hardware does either. |
| */ |
| struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0); |
| |
| if (!firmware_has_feature(FW_FEATURE_OPAL)) |
| return ERR_PTR(-ENODEV); |
| |
| if (!npdev) |
| /* No nvlink associated with this GPU device */ |
| return ERR_PTR(-ENODEV); |
| |
| nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0); |
| if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index", |
| &nvlink_index))) |
| return ERR_PTR(-ENODEV); |
| |
| if (!mm || mm->context.id == 0) { |
| /* |
| * Kernel thread contexts are not supported and context id 0 is |
| * reserved on the GPU. |
| */ |
| return ERR_PTR(-EINVAL); |
| } |
| |
| nphb = pci_bus_to_host(npdev->bus)->private_data; |
| npu = &nphb->npu; |
| |
| /* |
| * Setup the NPU context table for a particular GPU. These need to be |
| * per-GPU as we need the tables to filter ATSDs when there are no |
| * active contexts on a particular GPU. It is safe for these to be |
| * called concurrently with destroy as the OPAL call takes appropriate |
| * locks and refcounts on init/destroy. |
| */ |
| rc = opal_npu_init_context(nphb->opal_id, mm->context.id, flags, |
| PCI_DEVID(gpdev->bus->number, gpdev->devfn)); |
| if (rc < 0) |
| return ERR_PTR(-ENOSPC); |
| |
| /* |
| * We store the npu pci device so we can more easily get at the |
| * associated npus. |
| */ |
| spin_lock(&npu_context_lock); |
| npu_context = mm->context.npu_context; |
| if (npu_context) { |
| if (npu_context->release_cb != cb || |
| npu_context->priv != priv) { |
| spin_unlock(&npu_context_lock); |
| opal_npu_destroy_context(nphb->opal_id, mm->context.id, |
| PCI_DEVID(gpdev->bus->number, |
| gpdev->devfn)); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| WARN_ON(!kref_get_unless_zero(&npu_context->kref)); |
| } |
| spin_unlock(&npu_context_lock); |
| |
| if (!npu_context) { |
| /* |
| * We can set up these fields without holding the |
| * npu_context_lock as the npu_context hasn't been returned to |
| * the caller meaning it can't be destroyed. Parallel allocation |
| * is protected against by mmap_sem. |
| */ |
| rc = -ENOMEM; |
| npu_context = kzalloc(sizeof(struct npu_context), GFP_KERNEL); |
| if (npu_context) { |
| kref_init(&npu_context->kref); |
| npu_context->mm = mm; |
| npu_context->mn.ops = &nv_nmmu_notifier_ops; |
| rc = __mmu_notifier_register(&npu_context->mn, mm); |
| } |
| |
| if (rc) { |
| kfree(npu_context); |
| opal_npu_destroy_context(nphb->opal_id, mm->context.id, |
| PCI_DEVID(gpdev->bus->number, |
| gpdev->devfn)); |
| return ERR_PTR(rc); |
| } |
| |
| mm->context.npu_context = npu_context; |
| } |
| |
| npu_context->release_cb = cb; |
| npu_context->priv = priv; |
| |
| /* |
| * npdev is a pci_dev pointer setup by the PCI code. We assign it to |
| * npdev[][] to indicate to the mmu notifiers that an invalidation |
| * should also be sent over this nvlink. The notifiers don't use any |
| * other fields in npu_context, so we just need to ensure that when they |
| * deference npu_context->npdev[][] it is either a valid pointer or |
| * NULL. |
| */ |
| WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], npdev); |
| |
| if (!nphb->npu.nmmu_flush) { |
| /* |
| * If we're not explicitly flushing ourselves we need to mark |
| * the thread for global flushes |
| */ |
| npu_context->nmmu_flush = false; |
| mm_context_add_copro(mm); |
| } else |
| npu_context->nmmu_flush = true; |
| |
| return npu_context; |
| } |
| EXPORT_SYMBOL(pnv_npu2_init_context); |
| |
| static void pnv_npu2_release_context(struct kref *kref) |
| { |
| struct npu_context *npu_context = |
| container_of(kref, struct npu_context, kref); |
| |
| if (!npu_context->nmmu_flush) |
| mm_context_remove_copro(npu_context->mm); |
| |
| npu_context->mm->context.npu_context = NULL; |
| } |
| |
| /* |
| * Destroy a context on the given GPU. May free the npu_context if it is no |
| * longer active on any GPUs. Must not be called from interrupt context. |
| */ |
| void pnv_npu2_destroy_context(struct npu_context *npu_context, |
| struct pci_dev *gpdev) |
| { |
| int removed; |
| struct pnv_phb *nphb; |
| struct npu *npu; |
| struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0); |
| struct device_node *nvlink_dn; |
| u32 nvlink_index; |
| |
| if (WARN_ON(!npdev)) |
| return; |
| |
| if (!firmware_has_feature(FW_FEATURE_OPAL)) |
| return; |
| |
| nphb = pci_bus_to_host(npdev->bus)->private_data; |
| npu = &nphb->npu; |
| nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0); |
| if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index", |
| &nvlink_index))) |
| return; |
| WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], NULL); |
| opal_npu_destroy_context(nphb->opal_id, npu_context->mm->context.id, |
| PCI_DEVID(gpdev->bus->number, gpdev->devfn)); |
| spin_lock(&npu_context_lock); |
| removed = kref_put(&npu_context->kref, pnv_npu2_release_context); |
| spin_unlock(&npu_context_lock); |
| |
| /* |
| * We need to do this outside of pnv_npu2_release_context so that it is |
| * outside the spinlock as mmu_notifier_destroy uses SRCU. |
| */ |
| if (removed) { |
| mmu_notifier_unregister(&npu_context->mn, |
| npu_context->mm); |
| |
| kfree(npu_context); |
| } |
| |
| } |
| EXPORT_SYMBOL(pnv_npu2_destroy_context); |
| |
| /* |
| * Assumes mmap_sem is held for the contexts associated mm. |
| */ |
| int pnv_npu2_handle_fault(struct npu_context *context, uintptr_t *ea, |
| unsigned long *flags, unsigned long *status, int count) |
| { |
| u64 rc = 0, result = 0; |
| int i, is_write; |
| struct page *page[1]; |
| |
| /* mmap_sem should be held so the struct_mm must be present */ |
| struct mm_struct *mm = context->mm; |
| |
| if (!firmware_has_feature(FW_FEATURE_OPAL)) |
| return -ENODEV; |
| |
| WARN_ON(!rwsem_is_locked(&mm->mmap_sem)); |
| |
| for (i = 0; i < count; i++) { |
| is_write = flags[i] & NPU2_WRITE; |
| rc = get_user_pages_remote(NULL, mm, ea[i], 1, |
| is_write ? FOLL_WRITE : 0, |
| page, NULL, NULL); |
| |
| /* |
| * To support virtualised environments we will have to do an |
| * access to the page to ensure it gets faulted into the |
| * hypervisor. For the moment virtualisation is not supported in |
| * other areas so leave the access out. |
| */ |
| if (rc != 1) { |
| status[i] = rc; |
| result = -EFAULT; |
| continue; |
| } |
| |
| status[i] = 0; |
| put_page(page[0]); |
| } |
| |
| return result; |
| } |
| EXPORT_SYMBOL(pnv_npu2_handle_fault); |
| |
| int pnv_npu2_init(struct pnv_phb *phb) |
| { |
| unsigned int i; |
| u64 mmio_atsd; |
| struct device_node *dn; |
| struct pci_dev *gpdev; |
| static int npu_index; |
| uint64_t rc = 0; |
| |
| phb->npu.nmmu_flush = |
| of_property_read_bool(phb->hose->dn, "ibm,nmmu-flush"); |
| for_each_child_of_node(phb->hose->dn, dn) { |
| gpdev = pnv_pci_get_gpu_dev(get_pci_dev(dn)); |
| if (gpdev) { |
| rc = opal_npu_map_lpar(phb->opal_id, |
| PCI_DEVID(gpdev->bus->number, gpdev->devfn), |
| 0, 0); |
| if (rc) |
| dev_err(&gpdev->dev, |
| "Error %lld mapping device to LPAR\n", |
| rc); |
| } |
| } |
| |
| for (i = 0; !of_property_read_u64_index(phb->hose->dn, "ibm,mmio-atsd", |
| i, &mmio_atsd); i++) |
| phb->npu.mmio_atsd_regs[i] = ioremap(mmio_atsd, 32); |
| |
| pr_info("NPU%lld: Found %d MMIO ATSD registers", phb->opal_id, i); |
| phb->npu.mmio_atsd_count = i; |
| phb->npu.mmio_atsd_usage = 0; |
| npu_index++; |
| if (WARN_ON(npu_index >= NV_MAX_NPUS)) |
| return -ENOSPC; |
| max_npu2_index = npu_index; |
| phb->npu.index = npu_index; |
| |
| return 0; |
| } |