| /* | 
 |  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
 |  * | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  *  Interactivity improvements by Mike Galbraith | 
 |  *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
 |  * | 
 |  *  Various enhancements by Dmitry Adamushko. | 
 |  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
 |  * | 
 |  *  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  Copyright IBM Corporation, 2007 | 
 |  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
 |  * | 
 |  *  Scaled math optimizations by Thomas Gleixner | 
 |  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  */ | 
 |  | 
 | #include <linux/latencytop.h> | 
 |  | 
 | /* | 
 |  * Targeted preemption latency for CPU-bound tasks: | 
 |  * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * NOTE: this latency value is not the same as the concept of | 
 |  * 'timeslice length' - timeslices in CFS are of variable length | 
 |  * and have no persistent notion like in traditional, time-slice | 
 |  * based scheduling concepts. | 
 |  * | 
 |  * (to see the precise effective timeslice length of your workload, | 
 |  *  run vmstat and monitor the context-switches (cs) field) | 
 |  */ | 
 | unsigned int sysctl_sched_latency = 20000000ULL; | 
 |  | 
 | /* | 
 |  * Minimal preemption granularity for CPU-bound tasks: | 
 |  * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  */ | 
 | unsigned int sysctl_sched_min_granularity = 4000000ULL; | 
 |  | 
 | /* | 
 |  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
 |  */ | 
 | static unsigned int sched_nr_latency = 5; | 
 |  | 
 | /* | 
 |  * After fork, child runs first. (default) If set to 0 then | 
 |  * parent will (try to) run first. | 
 |  */ | 
 | const_debug unsigned int sysctl_sched_child_runs_first = 1; | 
 |  | 
 | /* | 
 |  * sys_sched_yield() compat mode | 
 |  * | 
 |  * This option switches the agressive yield implementation of the | 
 |  * old scheduler back on. | 
 |  */ | 
 | unsigned int __read_mostly sysctl_sched_compat_yield; | 
 |  | 
 | /* | 
 |  * SCHED_OTHER wake-up granularity. | 
 |  * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * This option delays the preemption effects of decoupled workloads | 
 |  * and reduces their over-scheduling. Synchronous workloads will still | 
 |  * have immediate wakeup/sleep latencies. | 
 |  */ | 
 | unsigned int sysctl_sched_wakeup_granularity = 5000000UL; | 
 |  | 
 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
 |  | 
 | static const struct sched_class fair_sched_class; | 
 |  | 
 | /************************************************************** | 
 |  * CFS operations on generic schedulable entities: | 
 |  */ | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | /* cpu runqueue to which this cfs_rq is attached */ | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->rq; | 
 | } | 
 |  | 
 | /* An entity is a task if it doesn't "own" a runqueue */ | 
 | #define entity_is_task(se)	(!se->my_q) | 
 |  | 
 | /* Walk up scheduling entities hierarchy */ | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = se->parent) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return p->se.cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue on which this entity is (to be) queued */ | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	return se->cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return grp->my_q; | 
 | } | 
 |  | 
 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | 
 |  * another cpu ('this_cpu') | 
 |  */ | 
 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
 | { | 
 | 	return cfs_rq->tg->cfs_rq[this_cpu]; | 
 | } | 
 |  | 
 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
 |  | 
 | /* Do the two (enqueued) entities belong to the same group ? */ | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	if (se->cfs_rq == pse->cfs_rq) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return se->parent; | 
 | } | 
 |  | 
 | /* return depth at which a sched entity is present in the hierarchy */ | 
 | static inline int depth_se(struct sched_entity *se) | 
 | { | 
 | 	int depth = 0; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		depth++; | 
 |  | 
 | 	return depth; | 
 | } | 
 |  | 
 | static void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | 	int se_depth, pse_depth; | 
 |  | 
 | 	/* | 
 | 	 * preemption test can be made between sibling entities who are in the | 
 | 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
 | 	 * both tasks until we find their ancestors who are siblings of common | 
 | 	 * parent. | 
 | 	 */ | 
 |  | 
 | 	/* First walk up until both entities are at same depth */ | 
 | 	se_depth = depth_se(*se); | 
 | 	pse_depth = depth_se(*pse); | 
 |  | 
 | 	while (se_depth > pse_depth) { | 
 | 		se_depth--; | 
 | 		*se = parent_entity(*se); | 
 | 	} | 
 |  | 
 | 	while (pse_depth > se_depth) { | 
 | 		pse_depth--; | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 |  | 
 | 	while (!is_same_group(*se, *pse)) { | 
 | 		*se = parent_entity(*se); | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return container_of(cfs_rq, struct rq, cfs); | 
 | } | 
 |  | 
 | #define entity_is_task(se)	1 | 
 |  | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = NULL) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return &task_rq(p)->cfs; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	struct task_struct *p = task_of(se); | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	return &rq->cfs; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 
 | { | 
 | 	return &cpu_rq(this_cpu)->cfs; | 
 | } | 
 |  | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
 |  | 
 | static inline int | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class tree data structure manipulation methods: | 
 |  */ | 
 |  | 
 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta > 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta < 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return se->vruntime - cfs_rq->min_vruntime; | 
 | } | 
 |  | 
 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	if (cfs_rq->curr) | 
 | 		vruntime = cfs_rq->curr->vruntime; | 
 |  | 
 | 	if (cfs_rq->rb_leftmost) { | 
 | 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 
 | 						   struct sched_entity, | 
 | 						   run_node); | 
 |  | 
 | 		if (!cfs_rq->curr) | 
 | 			vruntime = se->vruntime; | 
 | 		else | 
 | 			vruntime = min_vruntime(vruntime, se->vruntime); | 
 | 	} | 
 |  | 
 | 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue an entity into the rb-tree: | 
 |  */ | 
 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sched_entity *entry; | 
 | 	s64 key = entity_key(cfs_rq, se); | 
 | 	int leftmost = 1; | 
 |  | 
 | 	/* | 
 | 	 * Find the right place in the rbtree: | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct sched_entity, run_node); | 
 | 		/* | 
 | 		 * We dont care about collisions. Nodes with | 
 | 		 * the same key stay together. | 
 | 		 */ | 
 | 		if (key < entity_key(cfs_rq, entry)) { | 
 | 			link = &parent->rb_left; | 
 | 		} else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Maintain a cache of leftmost tree entries (it is frequently | 
 | 	 * used): | 
 | 	 */ | 
 | 	if (leftmost) | 
 | 		cfs_rq->rb_leftmost = &se->run_node; | 
 |  | 
 | 	rb_link_node(&se->run_node, parent, link); | 
 | 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->rb_leftmost == &se->run_node) { | 
 | 		struct rb_node *next_node; | 
 |  | 
 | 		next_node = rb_next(&se->run_node); | 
 | 		cfs_rq->rb_leftmost = next_node; | 
 | 	} | 
 |  | 
 | 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *left = cfs_rq->rb_leftmost; | 
 |  | 
 | 	if (!left) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(left, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
 |  | 
 | 	if (!last) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(last, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class statistics methods: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 
 | 		struct file *filp, void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
 | 					sysctl_sched_min_granularity); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * delta /= w | 
 |  */ | 
 | static inline unsigned long | 
 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | 
 | { | 
 | 	if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* | 
 |  * The idea is to set a period in which each task runs once. | 
 |  * | 
 |  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 
 |  * this period because otherwise the slices get too small. | 
 |  * | 
 |  * p = (nr <= nl) ? l : l*nr/nl | 
 |  */ | 
 | static u64 __sched_period(unsigned long nr_running) | 
 | { | 
 | 	u64 period = sysctl_sched_latency; | 
 | 	unsigned long nr_latency = sched_nr_latency; | 
 |  | 
 | 	if (unlikely(nr_running > nr_latency)) { | 
 | 		period = sysctl_sched_min_granularity; | 
 | 		period *= nr_running; | 
 | 	} | 
 |  | 
 | 	return period; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the wall-time slice from the period by taking a part | 
 |  * proportional to the weight. | 
 |  * | 
 |  * s = p*P[w/rw] | 
 |  */ | 
 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct load_weight *load; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		load = &cfs_rq->load; | 
 |  | 
 | 		if (unlikely(!se->on_rq)) { | 
 | 			struct load_weight lw = cfs_rq->load; | 
 |  | 
 | 			update_load_add(&lw, se->load.weight); | 
 | 			load = &lw; | 
 | 		} | 
 | 		slice = calc_delta_mine(slice, se->load.weight, load); | 
 | 	} | 
 | 	return slice; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the vruntime slice of a to be inserted task | 
 |  * | 
 |  * vs = s/w | 
 |  */ | 
 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics. Skip current tasks that | 
 |  * are not in our scheduling class. | 
 |  */ | 
 | static inline void | 
 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | 
 | 	      unsigned long delta_exec) | 
 | { | 
 | 	unsigned long delta_exec_weighted; | 
 |  | 
 | 	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 
 |  | 
 | 	curr->sum_exec_runtime += delta_exec; | 
 | 	schedstat_add(cfs_rq, exec_clock, delta_exec); | 
 | 	delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 
 | 	curr->vruntime += delta_exec_weighted; | 
 | 	update_min_vruntime(cfs_rq); | 
 | } | 
 |  | 
 | static void update_curr(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *curr = cfs_rq->curr; | 
 | 	u64 now = rq_of(cfs_rq)->clock; | 
 | 	unsigned long delta_exec; | 
 |  | 
 | 	if (unlikely(!curr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Get the amount of time the current task was running | 
 | 	 * since the last time we changed load (this cannot | 
 | 	 * overflow on 32 bits): | 
 | 	 */ | 
 | 	delta_exec = (unsigned long)(now - curr->exec_start); | 
 | 	if (!delta_exec) | 
 | 		return; | 
 |  | 
 | 	__update_curr(cfs_rq, curr, delta_exec); | 
 | 	curr->exec_start = now; | 
 |  | 
 | 	if (entity_is_task(curr)) { | 
 | 		struct task_struct *curtask = task_of(curr); | 
 |  | 
 | 		cpuacct_charge(curtask, delta_exec); | 
 | 		account_group_exec_runtime(curtask, delta_exec); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 
 | } | 
 |  | 
 | /* | 
 |  * Task is being enqueued - update stats: | 
 |  */ | 
 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Are we enqueueing a waiting task? (for current tasks | 
 | 	 * a dequeue/enqueue event is a NOP) | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_start(cfs_rq, se); | 
 | } | 
 |  | 
 | static void | 
 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	schedstat_set(se->wait_max, max(se->wait_max, | 
 | 			rq_of(cfs_rq)->clock - se->wait_start)); | 
 | 	schedstat_set(se->wait_count, se->wait_count + 1); | 
 | 	schedstat_set(se->wait_sum, se->wait_sum + | 
 | 			rq_of(cfs_rq)->clock - se->wait_start); | 
 | 	schedstat_set(se->wait_start, 0); | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Mark the end of the wait period if dequeueing a | 
 | 	 * waiting task: | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | } | 
 |  | 
 | /* | 
 |  * We are picking a new current task - update its stats: | 
 |  */ | 
 | static inline void | 
 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * We are starting a new run period: | 
 | 	 */ | 
 | 	se->exec_start = rq_of(cfs_rq)->clock; | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * Scheduling class queueing methods: | 
 |  */ | 
 |  | 
 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 
 | static void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | 	cfs_rq->task_weight += weight; | 
 | } | 
 | #else | 
 | static inline void | 
 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void | 
 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_add(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		inc_cpu_load(rq_of(cfs_rq), se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, se->load.weight); | 
 | 		list_add(&se->group_node, &cfs_rq->tasks); | 
 | 	} | 
 | 	cfs_rq->nr_running++; | 
 | 	se->on_rq = 1; | 
 | } | 
 |  | 
 | static void | 
 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_sub(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		dec_cpu_load(rq_of(cfs_rq), se->load.weight); | 
 | 	if (entity_is_task(se)) { | 
 | 		add_cfs_task_weight(cfs_rq, -se->load.weight); | 
 | 		list_del_init(&se->group_node); | 
 | 	} | 
 | 	cfs_rq->nr_running--; | 
 | 	se->on_rq = 0; | 
 | } | 
 |  | 
 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (se->sleep_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 
 | 		struct task_struct *tsk = task_of(se); | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->sleep_max)) | 
 | 			se->sleep_max = delta; | 
 |  | 
 | 		se->sleep_start = 0; | 
 | 		se->sum_sleep_runtime += delta; | 
 |  | 
 | 		account_scheduler_latency(tsk, delta >> 10, 1); | 
 | 	} | 
 | 	if (se->block_start) { | 
 | 		u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 
 | 		struct task_struct *tsk = task_of(se); | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->block_max)) | 
 | 			se->block_max = delta; | 
 |  | 
 | 		se->block_start = 0; | 
 | 		se->sum_sleep_runtime += delta; | 
 |  | 
 | 		/* | 
 | 		 * Blocking time is in units of nanosecs, so shift by 20 to | 
 | 		 * get a milliseconds-range estimation of the amount of | 
 | 		 * time that the task spent sleeping: | 
 | 		 */ | 
 | 		if (unlikely(prof_on == SLEEP_PROFILING)) { | 
 |  | 
 | 			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), | 
 | 				     delta >> 20); | 
 | 		} | 
 | 		account_scheduler_latency(tsk, delta >> 10, 0); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	s64 d = se->vruntime - cfs_rq->min_vruntime; | 
 |  | 
 | 	if (d < 0) | 
 | 		d = -d; | 
 |  | 
 | 	if (d > 3*sysctl_sched_latency) | 
 | 		schedstat_inc(cfs_rq, nr_spread_over); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * The 'current' period is already promised to the current tasks, | 
 | 	 * however the extra weight of the new task will slow them down a | 
 | 	 * little, place the new task so that it fits in the slot that | 
 | 	 * stays open at the end. | 
 | 	 */ | 
 | 	if (initial && sched_feat(START_DEBIT)) | 
 | 		vruntime += sched_vslice(cfs_rq, se); | 
 |  | 
 | 	if (!initial) { | 
 | 		/* sleeps upto a single latency don't count. */ | 
 | 		if (sched_feat(NEW_FAIR_SLEEPERS)) { | 
 | 			unsigned long thresh = sysctl_sched_latency; | 
 |  | 
 | 			/* | 
 | 			 * Convert the sleeper threshold into virtual time. | 
 | 			 * SCHED_IDLE is a special sub-class.  We care about | 
 | 			 * fairness only relative to other SCHED_IDLE tasks, | 
 | 			 * all of which have the same weight. | 
 | 			 */ | 
 | 			if (sched_feat(NORMALIZED_SLEEPER) && | 
 | 					task_of(se)->policy != SCHED_IDLE) | 
 | 				thresh = calc_delta_fair(thresh, se); | 
 |  | 
 | 			vruntime -= thresh; | 
 | 		} | 
 |  | 
 | 		/* ensure we never gain time by being placed backwards. */ | 
 | 		vruntime = max_vruntime(se->vruntime, vruntime); | 
 | 	} | 
 |  | 
 | 	se->vruntime = vruntime; | 
 | } | 
 |  | 
 | static void | 
 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 | 	account_entity_enqueue(cfs_rq, se); | 
 |  | 
 | 	if (wakeup) { | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		enqueue_sleeper(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_enqueue(cfs_rq, se); | 
 | 	check_spread(cfs_rq, se); | 
 | 	if (se != cfs_rq->curr) | 
 | 		__enqueue_entity(cfs_rq, se); | 
 | } | 
 |  | 
 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->last == se) | 
 | 		cfs_rq->last = NULL; | 
 |  | 
 | 	if (cfs_rq->next == se) | 
 | 		cfs_rq->next = NULL; | 
 | } | 
 |  | 
 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) | 
 | 		__clear_buddies(cfs_rq_of(se), se); | 
 | } | 
 |  | 
 | static void | 
 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	update_stats_dequeue(cfs_rq, se); | 
 | 	if (sleep) { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		if (entity_is_task(se)) { | 
 | 			struct task_struct *tsk = task_of(se); | 
 |  | 
 | 			if (tsk->state & TASK_INTERRUPTIBLE) | 
 | 				se->sleep_start = rq_of(cfs_rq)->clock; | 
 | 			if (tsk->state & TASK_UNINTERRUPTIBLE) | 
 | 				se->block_start = rq_of(cfs_rq)->clock; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (se != cfs_rq->curr) | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	account_entity_dequeue(cfs_rq, se); | 
 | 	update_min_vruntime(cfs_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void | 
 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
 | { | 
 | 	unsigned long ideal_runtime, delta_exec; | 
 |  | 
 | 	ideal_runtime = sched_slice(cfs_rq, curr); | 
 | 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
 | 	if (delta_exec > ideal_runtime) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		/* | 
 | 		 * The current task ran long enough, ensure it doesn't get | 
 | 		 * re-elected due to buddy favours. | 
 | 		 */ | 
 | 		clear_buddies(cfs_rq, curr); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* 'current' is not kept within the tree. */ | 
 | 	if (se->on_rq) { | 
 | 		/* | 
 | 		 * Any task has to be enqueued before it get to execute on | 
 | 		 * a CPU. So account for the time it spent waiting on the | 
 | 		 * runqueue. | 
 | 		 */ | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_stats_curr_start(cfs_rq, se); | 
 | 	cfs_rq->curr = se; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* | 
 | 	 * Track our maximum slice length, if the CPU's load is at | 
 | 	 * least twice that of our own weight (i.e. dont track it | 
 | 	 * when there are only lesser-weight tasks around): | 
 | 	 */ | 
 | 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
 | 		se->slice_max = max(se->slice_max, | 
 | 			se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
 | 	} | 
 | #endif | 
 | 	se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
 | } | 
 |  | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 
 |  | 
 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *se = __pick_next_entity(cfs_rq); | 
 |  | 
 | 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1) | 
 | 		return cfs_rq->next; | 
 |  | 
 | 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1) | 
 | 		return cfs_rq->last; | 
 |  | 
 | 	return se; | 
 | } | 
 |  | 
 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
 | { | 
 | 	/* | 
 | 	 * If still on the runqueue then deactivate_task() | 
 | 	 * was not called and update_curr() has to be done: | 
 | 	 */ | 
 | 	if (prev->on_rq) | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 	check_spread(cfs_rq, prev); | 
 | 	if (prev->on_rq) { | 
 | 		update_stats_wait_start(cfs_rq, prev); | 
 | 		/* Put 'current' back into the tree. */ | 
 | 		__enqueue_entity(cfs_rq, prev); | 
 | 	} | 
 | 	cfs_rq->curr = NULL; | 
 | } | 
 |  | 
 | static void | 
 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | 	/* | 
 | 	 * queued ticks are scheduled to match the slice, so don't bother | 
 | 	 * validating it and just reschedule. | 
 | 	 */ | 
 | 	if (queued) { | 
 | 		resched_task(rq_of(cfs_rq)->curr); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * don't let the period tick interfere with the hrtick preemption | 
 | 	 */ | 
 | 	if (!sched_feat(DOUBLE_TICK) && | 
 | 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | 
 | 		check_preempt_tick(cfs_rq, curr); | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * CFS operations on tasks: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	WARN_ON(task_rq(p) != rq); | 
 |  | 
 | 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | 
 | 		u64 slice = sched_slice(cfs_rq, se); | 
 | 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
 | 		s64 delta = slice - ran; | 
 |  | 
 | 		if (delta < 0) { | 
 | 			if (rq->curr == p) | 
 | 				resched_task(p); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't schedule slices shorter than 10000ns, that just | 
 | 		 * doesn't make sense. Rely on vruntime for fairness. | 
 | 		 */ | 
 | 		if (rq->curr != p) | 
 | 			delta = max_t(s64, 10000LL, delta); | 
 |  | 
 | 		hrtick_start(rq, delta); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called from enqueue/dequeue and updates the hrtick when the | 
 |  * current task is from our class and nr_running is low enough | 
 |  * to matter. | 
 |  */ | 
 | static void hrtick_update(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	if (curr->sched_class != &fair_sched_class) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
 | 		hrtick_start_fair(rq, curr); | 
 | } | 
 | #else /* !CONFIG_SCHED_HRTICK */ | 
 | static inline void | 
 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void hrtick_update(struct rq *rq) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The enqueue_task method is called before nr_running is | 
 |  * increased. Here we update the fair scheduling stats and | 
 |  * then put the task into the rbtree: | 
 |  */ | 
 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			break; | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		enqueue_entity(cfs_rq, se, wakeup); | 
 | 		wakeup = 1; | 
 | 	} | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * The dequeue_task method is called before nr_running is | 
 |  * decreased. We remove the task from the rbtree and | 
 |  * update the fair scheduling stats: | 
 |  */ | 
 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		dequeue_entity(cfs_rq, se, sleep); | 
 | 		/* Don't dequeue parent if it has other entities besides us */ | 
 | 		if (cfs_rq->load.weight) | 
 | 			break; | 
 | 		sleep = 1; | 
 | 	} | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * sched_yield() support is very simple - we dequeue and enqueue. | 
 |  * | 
 |  * If compat_yield is turned on then we requeue to the end of the tree. | 
 |  */ | 
 | static void yield_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	struct sched_entity *rightmost, *se = &curr->se; | 
 |  | 
 | 	/* | 
 | 	 * Are we the only task in the tree? | 
 | 	 */ | 
 | 	if (unlikely(cfs_rq->nr_running == 1)) | 
 | 		return; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { | 
 | 		update_rq_clock(rq); | 
 | 		/* | 
 | 		 * Update run-time statistics of the 'current'. | 
 | 		 */ | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * Find the rightmost entry in the rbtree: | 
 | 	 */ | 
 | 	rightmost = __pick_last_entity(cfs_rq); | 
 | 	/* | 
 | 	 * Already in the rightmost position? | 
 | 	 */ | 
 | 	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Minimally necessary key value to be last in the tree: | 
 | 	 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 	 * 'current' within the tree based on its new key value. | 
 | 	 */ | 
 | 	se->vruntime = rightmost->vruntime + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * wake_idle() will wake a task on an idle cpu if task->cpu is | 
 |  * not idle and an idle cpu is available.  The span of cpus to | 
 |  * search starts with cpus closest then further out as needed, | 
 |  * so we always favor a closer, idle cpu. | 
 |  * Domains may include CPUs that are not usable for migration, | 
 |  * hence we need to mask them out (cpu_active_mask) | 
 |  * | 
 |  * Returns the CPU we should wake onto. | 
 |  */ | 
 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
 | static int wake_idle(int cpu, struct task_struct *p) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 | 	unsigned int chosen_wakeup_cpu; | 
 | 	int this_cpu; | 
 |  | 
 | 	/* | 
 | 	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | 
 | 	 * are idle and this is not a kernel thread and this task's affinity | 
 | 	 * allows it to be moved to preferred cpu, then just move! | 
 | 	 */ | 
 |  | 
 | 	this_cpu = smp_processor_id(); | 
 | 	chosen_wakeup_cpu = | 
 | 		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | 
 |  | 
 | 	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | 
 | 		idle_cpu(cpu) && idle_cpu(this_cpu) && | 
 | 		p->mm && !(p->flags & PF_KTHREAD) && | 
 | 		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | 
 | 		return chosen_wakeup_cpu; | 
 |  | 
 | 	/* | 
 | 	 * If it is idle, then it is the best cpu to run this task. | 
 | 	 * | 
 | 	 * This cpu is also the best, if it has more than one task already. | 
 | 	 * Siblings must be also busy(in most cases) as they didn't already | 
 | 	 * pickup the extra load from this cpu and hence we need not check | 
 | 	 * sibling runqueue info. This will avoid the checks and cache miss | 
 | 	 * penalities associated with that. | 
 | 	 */ | 
 | 	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | 
 | 		return cpu; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if ((sd->flags & SD_WAKE_IDLE) | 
 | 		    || ((sd->flags & SD_WAKE_IDLE_FAR) | 
 | 			&& !task_hot(p, task_rq(p)->clock, sd))) { | 
 | 			for_each_cpu_and(i, sched_domain_span(sd), | 
 | 					 &p->cpus_allowed) { | 
 | 				if (cpu_active(i) && idle_cpu(i)) { | 
 | 					if (i != task_cpu(p)) { | 
 | 						schedstat_inc(p, | 
 | 						       se.nr_wakeups_idle); | 
 | 					} | 
 | 					return i; | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return cpu; | 
 | } | 
 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | 
 | static inline int wake_idle(int cpu, struct task_struct *p) | 
 | { | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * effective_load() calculates the load change as seen from the root_task_group | 
 |  * | 
 |  * Adding load to a group doesn't make a group heavier, but can cause movement | 
 |  * of group shares between cpus. Assuming the shares were perfectly aligned one | 
 |  * can calculate the shift in shares. | 
 |  * | 
 |  * The problem is that perfectly aligning the shares is rather expensive, hence | 
 |  * we try to avoid doing that too often - see update_shares(), which ratelimits | 
 |  * this change. | 
 |  * | 
 |  * We compensate this by not only taking the current delta into account, but | 
 |  * also considering the delta between when the shares were last adjusted and | 
 |  * now. | 
 |  * | 
 |  * We still saw a performance dip, some tracing learned us that between | 
 |  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased | 
 |  * significantly. Therefore try to bias the error in direction of failing | 
 |  * the affine wakeup. | 
 |  * | 
 |  */ | 
 | static long effective_load(struct task_group *tg, int cpu, | 
 | 		long wl, long wg) | 
 | { | 
 | 	struct sched_entity *se = tg->se[cpu]; | 
 |  | 
 | 	if (!tg->parent) | 
 | 		return wl; | 
 |  | 
 | 	/* | 
 | 	 * By not taking the decrease of shares on the other cpu into | 
 | 	 * account our error leans towards reducing the affine wakeups. | 
 | 	 */ | 
 | 	if (!wl && sched_feat(ASYM_EFF_LOAD)) | 
 | 		return wl; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		long S, rw, s, a, b; | 
 | 		long more_w; | 
 |  | 
 | 		/* | 
 | 		 * Instead of using this increment, also add the difference | 
 | 		 * between when the shares were last updated and now. | 
 | 		 */ | 
 | 		more_w = se->my_q->load.weight - se->my_q->rq_weight; | 
 | 		wl += more_w; | 
 | 		wg += more_w; | 
 |  | 
 | 		S = se->my_q->tg->shares; | 
 | 		s = se->my_q->shares; | 
 | 		rw = se->my_q->rq_weight; | 
 |  | 
 | 		a = S*(rw + wl); | 
 | 		b = S*rw + s*wg; | 
 |  | 
 | 		wl = s*(a-b); | 
 |  | 
 | 		if (likely(b)) | 
 | 			wl /= b; | 
 |  | 
 | 		/* | 
 | 		 * Assume the group is already running and will | 
 | 		 * thus already be accounted for in the weight. | 
 | 		 * | 
 | 		 * That is, moving shares between CPUs, does not | 
 | 		 * alter the group weight. | 
 | 		 */ | 
 | 		wg = 0; | 
 | 	} | 
 |  | 
 | 	return wl; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | 
 | 		unsigned long wl, unsigned long wg) | 
 | { | 
 | 	return wl; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int | 
 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | 
 | 	    struct task_struct *p, int prev_cpu, int this_cpu, int sync, | 
 | 	    int idx, unsigned long load, unsigned long this_load, | 
 | 	    unsigned int imbalance) | 
 | { | 
 | 	struct task_struct *curr = this_rq->curr; | 
 | 	struct task_group *tg; | 
 | 	unsigned long tl = this_load; | 
 | 	unsigned long tl_per_task; | 
 | 	unsigned long weight; | 
 | 	int balanced; | 
 |  | 
 | 	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 
 | 		return 0; | 
 |  | 
 | 	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 
 | 			p->se.avg_overlap > sysctl_sched_migration_cost)) | 
 | 		sync = 0; | 
 |  | 
 | 	/* | 
 | 	 * If sync wakeup then subtract the (maximum possible) | 
 | 	 * effect of the currently running task from the load | 
 | 	 * of the current CPU: | 
 | 	 */ | 
 | 	if (sync) { | 
 | 		tg = task_group(current); | 
 | 		weight = current->se.load.weight; | 
 |  | 
 | 		tl += effective_load(tg, this_cpu, -weight, -weight); | 
 | 		load += effective_load(tg, prev_cpu, 0, -weight); | 
 | 	} | 
 |  | 
 | 	tg = task_group(p); | 
 | 	weight = p->se.load.weight; | 
 |  | 
 | 	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 
 | 		imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 
 |  | 
 | 	/* | 
 | 	 * If the currently running task will sleep within | 
 | 	 * a reasonable amount of time then attract this newly | 
 | 	 * woken task: | 
 | 	 */ | 
 | 	if (sync && balanced) | 
 | 		return 1; | 
 |  | 
 | 	schedstat_inc(p, se.nr_wakeups_affine_attempts); | 
 | 	tl_per_task = cpu_avg_load_per_task(this_cpu); | 
 |  | 
 | 	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 
 | 			tl_per_task)) { | 
 | 		/* | 
 | 		 * This domain has SD_WAKE_AFFINE and | 
 | 		 * p is cache cold in this domain, and | 
 | 		 * there is no bad imbalance. | 
 | 		 */ | 
 | 		schedstat_inc(this_sd, ttwu_move_affine); | 
 | 		schedstat_inc(p, se.nr_wakeups_affine); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int select_task_rq_fair(struct task_struct *p, int sync) | 
 | { | 
 | 	struct sched_domain *sd, *this_sd = NULL; | 
 | 	int prev_cpu, this_cpu, new_cpu; | 
 | 	unsigned long load, this_load; | 
 | 	struct rq *this_rq; | 
 | 	unsigned int imbalance; | 
 | 	int idx; | 
 |  | 
 | 	prev_cpu	= task_cpu(p); | 
 | 	this_cpu	= smp_processor_id(); | 
 | 	this_rq		= cpu_rq(this_cpu); | 
 | 	new_cpu		= prev_cpu; | 
 |  | 
 | 	if (prev_cpu == this_cpu) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * 'this_sd' is the first domain that both | 
 | 	 * this_cpu and prev_cpu are present in: | 
 | 	 */ | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 
 | 			this_sd = sd; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check for affine wakeup and passive balancing possibilities. | 
 | 	 */ | 
 | 	if (!this_sd) | 
 | 		goto out; | 
 |  | 
 | 	idx = this_sd->wake_idx; | 
 |  | 
 | 	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
 |  | 
 | 	load = source_load(prev_cpu, idx); | 
 | 	this_load = target_load(this_cpu, idx); | 
 |  | 
 | 	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 
 | 				     load, this_load, imbalance)) | 
 | 		return this_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Start passive balancing when half the imbalance_pct | 
 | 	 * limit is reached. | 
 | 	 */ | 
 | 	if (this_sd->flags & SD_WAKE_BALANCE) { | 
 | 		if (imbalance*this_load <= 100*load) { | 
 | 			schedstat_inc(this_sd, ttwu_move_balance); | 
 | 			schedstat_inc(p, se.nr_wakeups_passive); | 
 | 			return this_cpu; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return wake_idle(new_cpu, p); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Adaptive granularity | 
 |  * | 
 |  * se->avg_wakeup gives the average time a task runs until it does a wakeup, | 
 |  * with the limit of wakeup_gran -- when it never does a wakeup. | 
 |  * | 
 |  * So the smaller avg_wakeup is the faster we want this task to preempt, | 
 |  * but we don't want to treat the preemptee unfairly and therefore allow it | 
 |  * to run for at least the amount of time we'd like to run. | 
 |  * | 
 |  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | 
 |  * | 
 |  * NOTE: we use *nr_running to scale with load, this nicely matches the | 
 |  *       degrading latency on load. | 
 |  */ | 
 | static unsigned long | 
 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
 | 	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | 
 | 	u64 gran = 0; | 
 |  | 
 | 	if (this_run < expected_wakeup) | 
 | 		gran = expected_wakeup - this_run; | 
 |  | 
 | 	return min_t(s64, gran, sysctl_sched_wakeup_granularity); | 
 | } | 
 |  | 
 | static unsigned long | 
 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	unsigned long gran = sysctl_sched_wakeup_granularity; | 
 |  | 
 | 	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | 
 | 		gran = adaptive_gran(curr, se); | 
 |  | 
 | 	/* | 
 | 	 * Since its curr running now, convert the gran from real-time | 
 | 	 * to virtual-time in his units. | 
 | 	 */ | 
 | 	if (sched_feat(ASYM_GRAN)) { | 
 | 		/* | 
 | 		 * By using 'se' instead of 'curr' we penalize light tasks, so | 
 | 		 * they get preempted easier. That is, if 'se' < 'curr' then | 
 | 		 * the resulting gran will be larger, therefore penalizing the | 
 | 		 * lighter, if otoh 'se' > 'curr' then the resulting gran will | 
 | 		 * be smaller, again penalizing the lighter task. | 
 | 		 * | 
 | 		 * This is especially important for buddies when the leftmost | 
 | 		 * task is higher priority than the buddy. | 
 | 		 */ | 
 | 		if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 			gran = calc_delta_fair(gran, se); | 
 | 	} else { | 
 | 		if (unlikely(curr->load.weight != NICE_0_LOAD)) | 
 | 			gran = calc_delta_fair(gran, curr); | 
 | 	} | 
 |  | 
 | 	return gran; | 
 | } | 
 |  | 
 | /* | 
 |  * Should 'se' preempt 'curr'. | 
 |  * | 
 |  *             |s1 | 
 |  *        |s2 | 
 |  *   |s3 | 
 |  *         g | 
 |  *      |<--->|c | 
 |  * | 
 |  *  w(c, s1) = -1 | 
 |  *  w(c, s2) =  0 | 
 |  *  w(c, s3) =  1 | 
 |  * | 
 |  */ | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	s64 gran, vdiff = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (vdiff <= 0) | 
 | 		return -1; | 
 |  | 
 | 	gran = wakeup_gran(curr, se); | 
 | 	if (vdiff > gran) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_last_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (likely(task_of(se)->policy != SCHED_IDLE)) { | 
 | 		for_each_sched_entity(se) | 
 | 			cfs_rq_of(se)->last = se; | 
 | 	} | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (likely(task_of(se)->policy != SCHED_IDLE)) { | 
 | 		for_each_sched_entity(se) | 
 | 			cfs_rq_of(se)->next = se; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_entity *se = &curr->se, *pse = &p->se; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 |  | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	if (unlikely(rt_prio(p->prio))) { | 
 | 		resched_task(curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (unlikely(p->sched_class != &fair_sched_class)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(se == pse)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Only set the backward buddy when the current task is still on the | 
 | 	 * rq. This can happen when a wakeup gets interleaved with schedule on | 
 | 	 * the ->pre_schedule() or idle_balance() point, either of which can | 
 | 	 * drop the rq lock. | 
 | 	 * | 
 | 	 * Also, during early boot the idle thread is in the fair class, for | 
 | 	 * obvious reasons its a bad idea to schedule back to the idle thread. | 
 | 	 */ | 
 | 	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 
 | 		set_last_buddy(se); | 
 | 	set_next_buddy(pse); | 
 |  | 
 | 	/* | 
 | 	 * We can come here with TIF_NEED_RESCHED already set from new task | 
 | 	 * wake up path. | 
 | 	 */ | 
 | 	if (test_tsk_need_resched(curr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Batch and idle tasks do not preempt (their preemption is driven by | 
 | 	 * the tick): | 
 | 	 */ | 
 | 	if (unlikely(p->policy != SCHED_NORMAL)) | 
 | 		return; | 
 |  | 
 | 	/* Idle tasks are by definition preempted by everybody. */ | 
 | 	if (unlikely(curr->policy == SCHED_IDLE)) { | 
 | 		resched_task(curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!sched_feat(WAKEUP_PREEMPT)) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(WAKEUP_OVERLAP) && (sync || | 
 | 			(se->avg_overlap < sysctl_sched_migration_cost && | 
 | 			 pse->avg_overlap < sysctl_sched_migration_cost))) { | 
 | 		resched_task(curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	find_matching_se(&se, &pse); | 
 |  | 
 | 	while (se) { | 
 | 		BUG_ON(!pse); | 
 |  | 
 | 		if (wakeup_preempt_entity(se, pse) == 1) { | 
 | 			resched_task(curr); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		se = parent_entity(se); | 
 | 		pse = parent_entity(pse); | 
 | 	} | 
 | } | 
 |  | 
 | static struct task_struct *pick_next_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct cfs_rq *cfs_rq = &rq->cfs; | 
 | 	struct sched_entity *se; | 
 |  | 
 | 	if (unlikely(!cfs_rq->nr_running)) | 
 | 		return NULL; | 
 |  | 
 | 	do { | 
 | 		se = pick_next_entity(cfs_rq); | 
 | 		/* | 
 | 		 * If se was a buddy, clear it so that it will have to earn | 
 | 		 * the favour again. | 
 | 		 */ | 
 | 		__clear_buddies(cfs_rq, se); | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 	} while (cfs_rq); | 
 |  | 
 | 	p = task_of(se); | 
 | 	hrtick_start_fair(rq, p); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * Account for a descheduled task: | 
 |  */ | 
 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	struct sched_entity *se = &prev->se; | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		put_prev_entity(cfs_rq, se); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /************************************************** | 
 |  * Fair scheduling class load-balancing methods: | 
 |  */ | 
 |  | 
 | /* | 
 |  * Load-balancing iterator. Note: while the runqueue stays locked | 
 |  * during the whole iteration, the current task might be | 
 |  * dequeued so the iterator has to be dequeue-safe. Here we | 
 |  * achieve that by always pre-iterating before returning | 
 |  * the current task: | 
 |  */ | 
 | static struct task_struct * | 
 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) | 
 | { | 
 | 	struct task_struct *p = NULL; | 
 | 	struct sched_entity *se; | 
 |  | 
 | 	if (next == &cfs_rq->tasks) | 
 | 		return NULL; | 
 |  | 
 | 	se = list_entry(next, struct sched_entity, group_node); | 
 | 	p = task_of(se); | 
 | 	cfs_rq->balance_iterator = next->next; | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct task_struct *load_balance_start_fair(void *arg) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = arg; | 
 |  | 
 | 	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); | 
 | } | 
 |  | 
 | static struct task_struct *load_balance_next_fair(void *arg) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = arg; | 
 |  | 
 | 	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 
 | } | 
 |  | 
 | static unsigned long | 
 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		unsigned long max_load_move, struct sched_domain *sd, | 
 | 		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | 
 | 		struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq_iterator cfs_rq_iterator; | 
 |  | 
 | 	cfs_rq_iterator.start = load_balance_start_fair; | 
 | 	cfs_rq_iterator.next = load_balance_next_fair; | 
 | 	cfs_rq_iterator.arg = cfs_rq; | 
 |  | 
 | 	return balance_tasks(this_rq, this_cpu, busiest, | 
 | 			max_load_move, sd, idle, all_pinned, | 
 | 			this_best_prio, &cfs_rq_iterator); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *all_pinned, int *this_best_prio) | 
 | { | 
 | 	long rem_load_move = max_load_move; | 
 | 	int busiest_cpu = cpu_of(busiest); | 
 | 	struct task_group *tg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	update_h_load(busiest_cpu); | 
 |  | 
 | 	list_for_each_entry_rcu(tg, &task_groups, list) { | 
 | 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; | 
 | 		unsigned long busiest_h_load = busiest_cfs_rq->h_load; | 
 | 		unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 
 | 		u64 rem_load, moved_load; | 
 |  | 
 | 		/* | 
 | 		 * empty group | 
 | 		 */ | 
 | 		if (!busiest_cfs_rq->task_weight) | 
 | 			continue; | 
 |  | 
 | 		rem_load = (u64)rem_load_move * busiest_weight; | 
 | 		rem_load = div_u64(rem_load, busiest_h_load + 1); | 
 |  | 
 | 		moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | 
 | 				rem_load, sd, idle, all_pinned, this_best_prio, | 
 | 				tg->cfs_rq[busiest_cpu]); | 
 |  | 
 | 		if (!moved_load) | 
 | 			continue; | 
 |  | 
 | 		moved_load *= busiest_h_load; | 
 | 		moved_load = div_u64(moved_load, busiest_weight + 1); | 
 |  | 
 | 		rem_load_move -= moved_load; | 
 | 		if (rem_load_move < 0) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return max_load_move - rem_load_move; | 
 | } | 
 | #else | 
 | static unsigned long | 
 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		  unsigned long max_load_move, | 
 | 		  struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 		  int *all_pinned, int *this_best_prio) | 
 | { | 
 | 	return __load_balance_fair(this_rq, this_cpu, busiest, | 
 | 			max_load_move, sd, idle, all_pinned, | 
 | 			this_best_prio, &busiest->cfs); | 
 | } | 
 | #endif | 
 |  | 
 | static int | 
 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
 | 		   struct sched_domain *sd, enum cpu_idle_type idle) | 
 | { | 
 | 	struct cfs_rq *busy_cfs_rq; | 
 | 	struct rq_iterator cfs_rq_iterator; | 
 |  | 
 | 	cfs_rq_iterator.start = load_balance_start_fair; | 
 | 	cfs_rq_iterator.next = load_balance_next_fair; | 
 |  | 
 | 	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | 
 | 		/* | 
 | 		 * pass busy_cfs_rq argument into | 
 | 		 * load_balance_[start|next]_fair iterators | 
 | 		 */ | 
 | 		cfs_rq_iterator.arg = busy_cfs_rq; | 
 | 		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, | 
 | 				       &cfs_rq_iterator)) | 
 | 		    return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class: | 
 |  */ | 
 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		entity_tick(cfs_rq, se, queued); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Share the fairness runtime between parent and child, thus the | 
 |  * total amount of pressure for CPU stays equal - new tasks | 
 |  * get a chance to run but frequent forkers are not allowed to | 
 |  * monopolize the CPU. Note: the parent runqueue is locked, | 
 |  * the child is not running yet. | 
 |  */ | 
 | static void task_new_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
 | 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | 
 | 	int this_cpu = smp_processor_id(); | 
 |  | 
 | 	sched_info_queued(p); | 
 |  | 
 | 	update_curr(cfs_rq); | 
 | 	place_entity(cfs_rq, se, 1); | 
 |  | 
 | 	/* 'curr' will be NULL if the child belongs to a different group */ | 
 | 	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && | 
 | 			curr && curr->vruntime < se->vruntime) { | 
 | 		/* | 
 | 		 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 		 * 'current' within the tree based on its new key value. | 
 | 		 */ | 
 | 		swap(curr->vruntime, se->vruntime); | 
 | 		resched_task(rq->curr); | 
 | 	} | 
 |  | 
 | 	enqueue_task_fair(rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Priority of the task has changed. Check to see if we preempt | 
 |  * the current task. | 
 |  */ | 
 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, | 
 | 			      int oldprio, int running) | 
 | { | 
 | 	/* | 
 | 	 * Reschedule if we are currently running on this runqueue and | 
 | 	 * our priority decreased, or if we are not currently running on | 
 | 	 * this runqueue and our priority is higher than the current's | 
 | 	 */ | 
 | 	if (running) { | 
 | 		if (p->prio > oldprio) | 
 | 			resched_task(rq->curr); | 
 | 	} else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * We switched to the sched_fair class. | 
 |  */ | 
 | static void switched_to_fair(struct rq *rq, struct task_struct *p, | 
 | 			     int running) | 
 | { | 
 | 	/* | 
 | 	 * We were most likely switched from sched_rt, so | 
 | 	 * kick off the schedule if running, otherwise just see | 
 | 	 * if we can still preempt the current task. | 
 | 	 */ | 
 | 	if (running) | 
 | 		resched_task(rq->curr); | 
 | 	else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* Account for a task changing its policy or group. | 
 |  * | 
 |  * This routine is mostly called to set cfs_rq->curr field when a task | 
 |  * migrates between groups/classes. | 
 |  */ | 
 | static void set_curr_task_fair(struct rq *rq) | 
 | { | 
 | 	struct sched_entity *se = &rq->curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		set_next_entity(cfs_rq_of(se), se); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void moved_group_fair(struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
 |  | 
 | 	update_curr(cfs_rq); | 
 | 	place_entity(cfs_rq, &p->se, 1); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * All the scheduling class methods: | 
 |  */ | 
 | static const struct sched_class fair_sched_class = { | 
 | 	.next			= &idle_sched_class, | 
 | 	.enqueue_task		= enqueue_task_fair, | 
 | 	.dequeue_task		= dequeue_task_fair, | 
 | 	.yield_task		= yield_task_fair, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_wakeup, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_fair, | 
 | 	.put_prev_task		= put_prev_task_fair, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.select_task_rq		= select_task_rq_fair, | 
 |  | 
 | 	.load_balance		= load_balance_fair, | 
 | 	.move_one_task		= move_one_task_fair, | 
 | #endif | 
 |  | 
 | 	.set_curr_task          = set_curr_task_fair, | 
 | 	.task_tick		= task_tick_fair, | 
 | 	.task_new		= task_new_fair, | 
 |  | 
 | 	.prio_changed		= prio_changed_fair, | 
 | 	.switched_to		= switched_to_fair, | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	.moved_group		= moved_group_fair, | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | static void print_cfs_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
 | 		print_cfs_rq(m, cpu, cfs_rq); | 
 | 	rcu_read_unlock(); | 
 | } | 
 | #endif |