|  | /* | 
|  | * Longest prefix match list implementation | 
|  | * | 
|  | * Copyright (c) 2016,2017 Daniel Mack | 
|  | * Copyright (c) 2016 David Herrmann | 
|  | * | 
|  | * This file is subject to the terms and conditions of version 2 of the GNU | 
|  | * General Public License.  See the file COPYING in the main directory of the | 
|  | * Linux distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <net/ipv6.h> | 
|  |  | 
|  | /* Intermediate node */ | 
|  | #define LPM_TREE_NODE_FLAG_IM BIT(0) | 
|  |  | 
|  | struct lpm_trie_node; | 
|  |  | 
|  | struct lpm_trie_node { | 
|  | struct rcu_head rcu; | 
|  | struct lpm_trie_node __rcu	*child[2]; | 
|  | u32				prefixlen; | 
|  | u32				flags; | 
|  | u8				data[0]; | 
|  | }; | 
|  |  | 
|  | struct lpm_trie { | 
|  | struct bpf_map			map; | 
|  | struct lpm_trie_node __rcu	*root; | 
|  | size_t				n_entries; | 
|  | size_t				max_prefixlen; | 
|  | size_t				data_size; | 
|  | raw_spinlock_t			lock; | 
|  | }; | 
|  |  | 
|  | /* This trie implements a longest prefix match algorithm that can be used to | 
|  | * match IP addresses to a stored set of ranges. | 
|  | * | 
|  | * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is | 
|  | * interpreted as big endian, so data[0] stores the most significant byte. | 
|  | * | 
|  | * Match ranges are internally stored in instances of struct lpm_trie_node | 
|  | * which each contain their prefix length as well as two pointers that may | 
|  | * lead to more nodes containing more specific matches. Each node also stores | 
|  | * a value that is defined by and returned to userspace via the update_elem | 
|  | * and lookup functions. | 
|  | * | 
|  | * For instance, let's start with a trie that was created with a prefix length | 
|  | * of 32, so it can be used for IPv4 addresses, and one single element that | 
|  | * matches 192.168.0.0/16. The data array would hence contain | 
|  | * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will | 
|  | * stick to IP-address notation for readability though. | 
|  | * | 
|  | * As the trie is empty initially, the new node (1) will be places as root | 
|  | * node, denoted as (R) in the example below. As there are no other node, both | 
|  | * child pointers are %NULL. | 
|  | * | 
|  | *              +----------------+ | 
|  | *              |       (1)  (R) | | 
|  | *              | 192.168.0.0/16 | | 
|  | *              |    value: 1    | | 
|  | *              |   [0]    [1]   | | 
|  | *              +----------------+ | 
|  | * | 
|  | * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already | 
|  | * a node with the same data and a smaller prefix (ie, a less specific one), | 
|  | * node (2) will become a child of (1). In child index depends on the next bit | 
|  | * that is outside of what (1) matches, and that bit is 0, so (2) will be | 
|  | * child[0] of (1): | 
|  | * | 
|  | *              +----------------+ | 
|  | *              |       (1)  (R) | | 
|  | *              | 192.168.0.0/16 | | 
|  | *              |    value: 1    | | 
|  | *              |   [0]    [1]   | | 
|  | *              +----------------+ | 
|  | *                   | | 
|  | *    +----------------+ | 
|  | *    |       (2)      | | 
|  | *    | 192.168.0.0/24 | | 
|  | *    |    value: 2    | | 
|  | *    |   [0]    [1]   | | 
|  | *    +----------------+ | 
|  | * | 
|  | * The child[1] slot of (1) could be filled with another node which has bit #17 | 
|  | * (the next bit after the ones that (1) matches on) set to 1. For instance, | 
|  | * 192.168.128.0/24: | 
|  | * | 
|  | *              +----------------+ | 
|  | *              |       (1)  (R) | | 
|  | *              | 192.168.0.0/16 | | 
|  | *              |    value: 1    | | 
|  | *              |   [0]    [1]   | | 
|  | *              +----------------+ | 
|  | *                   |      | | 
|  | *    +----------------+  +------------------+ | 
|  | *    |       (2)      |  |        (3)       | | 
|  | *    | 192.168.0.0/24 |  | 192.168.128.0/24 | | 
|  | *    |    value: 2    |  |     value: 3     | | 
|  | *    |   [0]    [1]   |  |    [0]    [1]    | | 
|  | *    +----------------+  +------------------+ | 
|  | * | 
|  | * Let's add another node (4) to the game for 192.168.1.0/24. In order to place | 
|  | * it, node (1) is looked at first, and because (4) of the semantics laid out | 
|  | * above (bit #17 is 0), it would normally be attached to (1) as child[0]. | 
|  | * However, that slot is already allocated, so a new node is needed in between. | 
|  | * That node does not have a value attached to it and it will never be | 
|  | * returned to users as result of a lookup. It is only there to differentiate | 
|  | * the traversal further. It will get a prefix as wide as necessary to | 
|  | * distinguish its two children: | 
|  | * | 
|  | *                      +----------------+ | 
|  | *                      |       (1)  (R) | | 
|  | *                      | 192.168.0.0/16 | | 
|  | *                      |    value: 1    | | 
|  | *                      |   [0]    [1]   | | 
|  | *                      +----------------+ | 
|  | *                           |      | | 
|  | *            +----------------+  +------------------+ | 
|  | *            |       (4)  (I) |  |        (3)       | | 
|  | *            | 192.168.0.0/23 |  | 192.168.128.0/24 | | 
|  | *            |    value: ---  |  |     value: 3     | | 
|  | *            |   [0]    [1]   |  |    [0]    [1]    | | 
|  | *            +----------------+  +------------------+ | 
|  | *                 |      | | 
|  | *  +----------------+  +----------------+ | 
|  | *  |       (2)      |  |       (5)      | | 
|  | *  | 192.168.0.0/24 |  | 192.168.1.0/24 | | 
|  | *  |    value: 2    |  |     value: 5   | | 
|  | *  |   [0]    [1]   |  |   [0]    [1]   | | 
|  | *  +----------------+  +----------------+ | 
|  | * | 
|  | * 192.168.1.1/32 would be a child of (5) etc. | 
|  | * | 
|  | * An intermediate node will be turned into a 'real' node on demand. In the | 
|  | * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. | 
|  | * | 
|  | * A fully populated trie would have a height of 32 nodes, as the trie was | 
|  | * created with a prefix length of 32. | 
|  | * | 
|  | * The lookup starts at the root node. If the current node matches and if there | 
|  | * is a child that can be used to become more specific, the trie is traversed | 
|  | * downwards. The last node in the traversal that is a non-intermediate one is | 
|  | * returned. | 
|  | */ | 
|  |  | 
|  | static inline int extract_bit(const u8 *data, size_t index) | 
|  | { | 
|  | return !!(data[index / 8] & (1 << (7 - (index % 8)))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * longest_prefix_match() - determine the longest prefix | 
|  | * @trie:	The trie to get internal sizes from | 
|  | * @node:	The node to operate on | 
|  | * @key:	The key to compare to @node | 
|  | * | 
|  | * Determine the longest prefix of @node that matches the bits in @key. | 
|  | */ | 
|  | static size_t longest_prefix_match(const struct lpm_trie *trie, | 
|  | const struct lpm_trie_node *node, | 
|  | const struct bpf_lpm_trie_key *key) | 
|  | { | 
|  | size_t prefixlen = 0; | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < trie->data_size; i++) { | 
|  | size_t b; | 
|  |  | 
|  | b = 8 - fls(node->data[i] ^ key->data[i]); | 
|  | prefixlen += b; | 
|  |  | 
|  | if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen) | 
|  | return min(node->prefixlen, key->prefixlen); | 
|  |  | 
|  | if (b < 8) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return prefixlen; | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program */ | 
|  | static void *trie_lookup_elem(struct bpf_map *map, void *_key) | 
|  | { | 
|  | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
|  | struct lpm_trie_node *node, *found = NULL; | 
|  | struct bpf_lpm_trie_key *key = _key; | 
|  |  | 
|  | /* Start walking the trie from the root node ... */ | 
|  |  | 
|  | for (node = rcu_dereference(trie->root); node;) { | 
|  | unsigned int next_bit; | 
|  | size_t matchlen; | 
|  |  | 
|  | /* Determine the longest prefix of @node that matches @key. | 
|  | * If it's the maximum possible prefix for this trie, we have | 
|  | * an exact match and can return it directly. | 
|  | */ | 
|  | matchlen = longest_prefix_match(trie, node, key); | 
|  | if (matchlen == trie->max_prefixlen) { | 
|  | found = node; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If the number of bits that match is smaller than the prefix | 
|  | * length of @node, bail out and return the node we have seen | 
|  | * last in the traversal (ie, the parent). | 
|  | */ | 
|  | if (matchlen < node->prefixlen) | 
|  | break; | 
|  |  | 
|  | /* Consider this node as return candidate unless it is an | 
|  | * artificially added intermediate one. | 
|  | */ | 
|  | if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | 
|  | found = node; | 
|  |  | 
|  | /* If the node match is fully satisfied, let's see if we can | 
|  | * become more specific. Determine the next bit in the key and | 
|  | * traverse down. | 
|  | */ | 
|  | next_bit = extract_bit(key->data, node->prefixlen); | 
|  | node = rcu_dereference(node->child[next_bit]); | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | return NULL; | 
|  |  | 
|  | return found->data + trie->data_size; | 
|  | } | 
|  |  | 
|  | static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, | 
|  | const void *value) | 
|  | { | 
|  | struct lpm_trie_node *node; | 
|  | size_t size = sizeof(struct lpm_trie_node) + trie->data_size; | 
|  |  | 
|  | if (value) | 
|  | size += trie->map.value_size; | 
|  |  | 
|  | node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN, | 
|  | trie->map.numa_node); | 
|  | if (!node) | 
|  | return NULL; | 
|  |  | 
|  | node->flags = 0; | 
|  |  | 
|  | if (value) | 
|  | memcpy(node->data + trie->data_size, value, | 
|  | trie->map.value_size); | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program */ | 
|  | static int trie_update_elem(struct bpf_map *map, | 
|  | void *_key, void *value, u64 flags) | 
|  | { | 
|  | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
|  | struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; | 
|  | struct lpm_trie_node __rcu **slot; | 
|  | struct bpf_lpm_trie_key *key = _key; | 
|  | unsigned long irq_flags; | 
|  | unsigned int next_bit; | 
|  | size_t matchlen = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(flags > BPF_EXIST)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (key->prefixlen > trie->max_prefixlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&trie->lock, irq_flags); | 
|  |  | 
|  | /* Allocate and fill a new node */ | 
|  |  | 
|  | if (trie->n_entries == trie->map.max_entries) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | new_node = lpm_trie_node_alloc(trie, value); | 
|  | if (!new_node) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trie->n_entries++; | 
|  |  | 
|  | new_node->prefixlen = key->prefixlen; | 
|  | RCU_INIT_POINTER(new_node->child[0], NULL); | 
|  | RCU_INIT_POINTER(new_node->child[1], NULL); | 
|  | memcpy(new_node->data, key->data, trie->data_size); | 
|  |  | 
|  | /* Now find a slot to attach the new node. To do that, walk the tree | 
|  | * from the root and match as many bits as possible for each node until | 
|  | * we either find an empty slot or a slot that needs to be replaced by | 
|  | * an intermediate node. | 
|  | */ | 
|  | slot = &trie->root; | 
|  |  | 
|  | while ((node = rcu_dereference_protected(*slot, | 
|  | lockdep_is_held(&trie->lock)))) { | 
|  | matchlen = longest_prefix_match(trie, node, key); | 
|  |  | 
|  | if (node->prefixlen != matchlen || | 
|  | node->prefixlen == key->prefixlen || | 
|  | node->prefixlen == trie->max_prefixlen) | 
|  | break; | 
|  |  | 
|  | next_bit = extract_bit(key->data, node->prefixlen); | 
|  | slot = &node->child[next_bit]; | 
|  | } | 
|  |  | 
|  | /* If the slot is empty (a free child pointer or an empty root), | 
|  | * simply assign the @new_node to that slot and be done. | 
|  | */ | 
|  | if (!node) { | 
|  | rcu_assign_pointer(*slot, new_node); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* If the slot we picked already exists, replace it with @new_node | 
|  | * which already has the correct data array set. | 
|  | */ | 
|  | if (node->prefixlen == matchlen) { | 
|  | new_node->child[0] = node->child[0]; | 
|  | new_node->child[1] = node->child[1]; | 
|  |  | 
|  | if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | 
|  | trie->n_entries--; | 
|  |  | 
|  | rcu_assign_pointer(*slot, new_node); | 
|  | kfree_rcu(node, rcu); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* If the new node matches the prefix completely, it must be inserted | 
|  | * as an ancestor. Simply insert it between @node and *@slot. | 
|  | */ | 
|  | if (matchlen == key->prefixlen) { | 
|  | next_bit = extract_bit(node->data, matchlen); | 
|  | rcu_assign_pointer(new_node->child[next_bit], node); | 
|  | rcu_assign_pointer(*slot, new_node); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | im_node = lpm_trie_node_alloc(trie, NULL); | 
|  | if (!im_node) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | im_node->prefixlen = matchlen; | 
|  | im_node->flags |= LPM_TREE_NODE_FLAG_IM; | 
|  | memcpy(im_node->data, node->data, trie->data_size); | 
|  |  | 
|  | /* Now determine which child to install in which slot */ | 
|  | if (extract_bit(key->data, matchlen)) { | 
|  | rcu_assign_pointer(im_node->child[0], node); | 
|  | rcu_assign_pointer(im_node->child[1], new_node); | 
|  | } else { | 
|  | rcu_assign_pointer(im_node->child[0], new_node); | 
|  | rcu_assign_pointer(im_node->child[1], node); | 
|  | } | 
|  |  | 
|  | /* Finally, assign the intermediate node to the determined spot */ | 
|  | rcu_assign_pointer(*slot, im_node); | 
|  |  | 
|  | out: | 
|  | if (ret) { | 
|  | if (new_node) | 
|  | trie->n_entries--; | 
|  |  | 
|  | kfree(new_node); | 
|  | kfree(im_node); | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&trie->lock, irq_flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program */ | 
|  | static int trie_delete_elem(struct bpf_map *map, void *_key) | 
|  | { | 
|  | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
|  | struct bpf_lpm_trie_key *key = _key; | 
|  | struct lpm_trie_node __rcu **trim, **trim2; | 
|  | struct lpm_trie_node *node, *parent; | 
|  | unsigned long irq_flags; | 
|  | unsigned int next_bit; | 
|  | size_t matchlen = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (key->prefixlen > trie->max_prefixlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&trie->lock, irq_flags); | 
|  |  | 
|  | /* Walk the tree looking for an exact key/length match and keeping | 
|  | * track of the path we traverse.  We will need to know the node | 
|  | * we wish to delete, and the slot that points to the node we want | 
|  | * to delete.  We may also need to know the nodes parent and the | 
|  | * slot that contains it. | 
|  | */ | 
|  | trim = &trie->root; | 
|  | trim2 = trim; | 
|  | parent = NULL; | 
|  | while ((node = rcu_dereference_protected( | 
|  | *trim, lockdep_is_held(&trie->lock)))) { | 
|  | matchlen = longest_prefix_match(trie, node, key); | 
|  |  | 
|  | if (node->prefixlen != matchlen || | 
|  | node->prefixlen == key->prefixlen) | 
|  | break; | 
|  |  | 
|  | parent = node; | 
|  | trim2 = trim; | 
|  | next_bit = extract_bit(key->data, node->prefixlen); | 
|  | trim = &node->child[next_bit]; | 
|  | } | 
|  |  | 
|  | if (!node || node->prefixlen != key->prefixlen || | 
|  | (node->flags & LPM_TREE_NODE_FLAG_IM)) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trie->n_entries--; | 
|  |  | 
|  | /* If the node we are removing has two children, simply mark it | 
|  | * as intermediate and we are done. | 
|  | */ | 
|  | if (rcu_access_pointer(node->child[0]) && | 
|  | rcu_access_pointer(node->child[1])) { | 
|  | node->flags |= LPM_TREE_NODE_FLAG_IM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* If the parent of the node we are about to delete is an intermediate | 
|  | * node, and the deleted node doesn't have any children, we can delete | 
|  | * the intermediate parent as well and promote its other child | 
|  | * up the tree.  Doing this maintains the invariant that all | 
|  | * intermediate nodes have exactly 2 children and that there are no | 
|  | * unnecessary intermediate nodes in the tree. | 
|  | */ | 
|  | if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && | 
|  | !node->child[0] && !node->child[1]) { | 
|  | if (node == rcu_access_pointer(parent->child[0])) | 
|  | rcu_assign_pointer( | 
|  | *trim2, rcu_access_pointer(parent->child[1])); | 
|  | else | 
|  | rcu_assign_pointer( | 
|  | *trim2, rcu_access_pointer(parent->child[0])); | 
|  | kfree_rcu(parent, rcu); | 
|  | kfree_rcu(node, rcu); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* The node we are removing has either zero or one child. If there | 
|  | * is a child, move it into the removed node's slot then delete | 
|  | * the node.  Otherwise just clear the slot and delete the node. | 
|  | */ | 
|  | if (node->child[0]) | 
|  | rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); | 
|  | else if (node->child[1]) | 
|  | rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); | 
|  | else | 
|  | RCU_INIT_POINTER(*trim, NULL); | 
|  | kfree_rcu(node, rcu); | 
|  |  | 
|  | out: | 
|  | raw_spin_unlock_irqrestore(&trie->lock, irq_flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define LPM_DATA_SIZE_MAX	256 | 
|  | #define LPM_DATA_SIZE_MIN	1 | 
|  |  | 
|  | #define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ | 
|  | sizeof(struct lpm_trie_node)) | 
|  | #define LPM_VAL_SIZE_MIN	1 | 
|  |  | 
|  | #define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X)) | 
|  | #define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) | 
|  | #define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) | 
|  |  | 
|  | #define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\ | 
|  | BPF_F_RDONLY | BPF_F_WRONLY) | 
|  |  | 
|  | static struct bpf_map *trie_alloc(union bpf_attr *attr) | 
|  | { | 
|  | struct lpm_trie *trie; | 
|  | u64 cost = sizeof(*trie), cost_per_node; | 
|  | int ret; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | /* check sanity of attributes */ | 
|  | if (attr->max_entries == 0 || | 
|  | !(attr->map_flags & BPF_F_NO_PREALLOC) || | 
|  | attr->map_flags & ~LPM_CREATE_FLAG_MASK || | 
|  | attr->key_size < LPM_KEY_SIZE_MIN || | 
|  | attr->key_size > LPM_KEY_SIZE_MAX || | 
|  | attr->value_size < LPM_VAL_SIZE_MIN || | 
|  | attr->value_size > LPM_VAL_SIZE_MAX) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); | 
|  | if (!trie) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* copy mandatory map attributes */ | 
|  | trie->map.map_type = attr->map_type; | 
|  | trie->map.key_size = attr->key_size; | 
|  | trie->map.value_size = attr->value_size; | 
|  | trie->map.max_entries = attr->max_entries; | 
|  | trie->map.map_flags = attr->map_flags; | 
|  | trie->map.numa_node = bpf_map_attr_numa_node(attr); | 
|  | trie->data_size = attr->key_size - | 
|  | offsetof(struct bpf_lpm_trie_key, data); | 
|  | trie->max_prefixlen = trie->data_size * 8; | 
|  |  | 
|  | cost_per_node = sizeof(struct lpm_trie_node) + | 
|  | attr->value_size + trie->data_size; | 
|  | cost += (u64) attr->max_entries * cost_per_node; | 
|  | if (cost >= U32_MAX - PAGE_SIZE) { | 
|  | ret = -E2BIG; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; | 
|  |  | 
|  | ret = bpf_map_precharge_memlock(trie->map.pages); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | raw_spin_lock_init(&trie->lock); | 
|  |  | 
|  | return &trie->map; | 
|  | out_err: | 
|  | kfree(trie); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void trie_free(struct bpf_map *map) | 
|  | { | 
|  | struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
|  | struct lpm_trie_node __rcu **slot; | 
|  | struct lpm_trie_node *node; | 
|  |  | 
|  | raw_spin_lock(&trie->lock); | 
|  |  | 
|  | /* Always start at the root and walk down to a node that has no | 
|  | * children. Then free that node, nullify its reference in the parent | 
|  | * and start over. | 
|  | */ | 
|  |  | 
|  | for (;;) { | 
|  | slot = &trie->root; | 
|  |  | 
|  | for (;;) { | 
|  | node = rcu_dereference_protected(*slot, | 
|  | lockdep_is_held(&trie->lock)); | 
|  | if (!node) | 
|  | goto unlock; | 
|  |  | 
|  | if (rcu_access_pointer(node->child[0])) { | 
|  | slot = &node->child[0]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (rcu_access_pointer(node->child[1])) { | 
|  | slot = &node->child[1]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | kfree(node); | 
|  | RCU_INIT_POINTER(*slot, NULL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | raw_spin_unlock(&trie->lock); | 
|  | } | 
|  |  | 
|  | static int trie_get_next_key(struct bpf_map *map, void *key, void *next_key) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | const struct bpf_map_ops trie_map_ops = { | 
|  | .map_alloc = trie_alloc, | 
|  | .map_free = trie_free, | 
|  | .map_get_next_key = trie_get_next_key, | 
|  | .map_lookup_elem = trie_lookup_elem, | 
|  | .map_update_elem = trie_update_elem, | 
|  | .map_delete_elem = trie_delete_elem, | 
|  | }; |