| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __ASM_SH_UNALIGNED_SH4A_H |
| #define __ASM_SH_UNALIGNED_SH4A_H |
| |
| /* |
| * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only. |
| * Support for 64-bit accesses are done through shifting and masking |
| * relative to the endianness. Unaligned stores are not supported by the |
| * instruction encoding, so these continue to use the packed |
| * struct. |
| * |
| * The same note as with the movli.l/movco.l pair applies here, as long |
| * as the load is guaranteed to be inlined, nothing else will hook in to |
| * r0 and we get the return value for free. |
| * |
| * NOTE: Due to the fact we require r0 encoding, care should be taken to |
| * avoid mixing these heavily with other r0 consumers, such as the atomic |
| * ops. Failure to adhere to this can result in the compiler running out |
| * of spill registers and blowing up when building at low optimization |
| * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777. |
| */ |
| #include <linux/unaligned/packed_struct.h> |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| |
| static inline u16 sh4a_get_unaligned_cpu16(const u8 *p) |
| { |
| #ifdef __LITTLE_ENDIAN |
| return p[0] | p[1] << 8; |
| #else |
| return p[0] << 8 | p[1]; |
| #endif |
| } |
| |
| static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p) |
| { |
| unsigned long unaligned; |
| |
| __asm__ __volatile__ ( |
| "movua.l @%1, %0\n\t" |
| : "=z" (unaligned) |
| : "r" (p) |
| ); |
| |
| return unaligned; |
| } |
| |
| /* |
| * Even though movua.l supports auto-increment on the read side, it can |
| * only store to r0 due to instruction encoding constraints, so just let |
| * the compiler sort it out on its own. |
| */ |
| static inline u64 sh4a_get_unaligned_cpu64(const u8 *p) |
| { |
| #ifdef __LITTLE_ENDIAN |
| return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 | |
| sh4a_get_unaligned_cpu32(p); |
| #else |
| return (u64)sh4a_get_unaligned_cpu32(p) << 32 | |
| sh4a_get_unaligned_cpu32(p + 4); |
| #endif |
| } |
| |
| static inline u16 get_unaligned_le16(const void *p) |
| { |
| return le16_to_cpu(sh4a_get_unaligned_cpu16(p)); |
| } |
| |
| static inline u32 get_unaligned_le32(const void *p) |
| { |
| return le32_to_cpu(sh4a_get_unaligned_cpu32(p)); |
| } |
| |
| static inline u64 get_unaligned_le64(const void *p) |
| { |
| return le64_to_cpu(sh4a_get_unaligned_cpu64(p)); |
| } |
| |
| static inline u16 get_unaligned_be16(const void *p) |
| { |
| return be16_to_cpu(sh4a_get_unaligned_cpu16(p)); |
| } |
| |
| static inline u32 get_unaligned_be32(const void *p) |
| { |
| return be32_to_cpu(sh4a_get_unaligned_cpu32(p)); |
| } |
| |
| static inline u64 get_unaligned_be64(const void *p) |
| { |
| return be64_to_cpu(sh4a_get_unaligned_cpu64(p)); |
| } |
| |
| static inline void nonnative_put_le16(u16 val, u8 *p) |
| { |
| *p++ = val; |
| *p++ = val >> 8; |
| } |
| |
| static inline void nonnative_put_le32(u32 val, u8 *p) |
| { |
| nonnative_put_le16(val, p); |
| nonnative_put_le16(val >> 16, p + 2); |
| } |
| |
| static inline void nonnative_put_le64(u64 val, u8 *p) |
| { |
| nonnative_put_le32(val, p); |
| nonnative_put_le32(val >> 32, p + 4); |
| } |
| |
| static inline void nonnative_put_be16(u16 val, u8 *p) |
| { |
| *p++ = val >> 8; |
| *p++ = val; |
| } |
| |
| static inline void nonnative_put_be32(u32 val, u8 *p) |
| { |
| nonnative_put_be16(val >> 16, p); |
| nonnative_put_be16(val, p + 2); |
| } |
| |
| static inline void nonnative_put_be64(u64 val, u8 *p) |
| { |
| nonnative_put_be32(val >> 32, p); |
| nonnative_put_be32(val, p + 4); |
| } |
| |
| static inline void put_unaligned_le16(u16 val, void *p) |
| { |
| #ifdef __LITTLE_ENDIAN |
| __put_unaligned_cpu16(val, p); |
| #else |
| nonnative_put_le16(val, p); |
| #endif |
| } |
| |
| static inline void put_unaligned_le32(u32 val, void *p) |
| { |
| #ifdef __LITTLE_ENDIAN |
| __put_unaligned_cpu32(val, p); |
| #else |
| nonnative_put_le32(val, p); |
| #endif |
| } |
| |
| static inline void put_unaligned_le64(u64 val, void *p) |
| { |
| #ifdef __LITTLE_ENDIAN |
| __put_unaligned_cpu64(val, p); |
| #else |
| nonnative_put_le64(val, p); |
| #endif |
| } |
| |
| static inline void put_unaligned_be16(u16 val, void *p) |
| { |
| #ifdef __BIG_ENDIAN |
| __put_unaligned_cpu16(val, p); |
| #else |
| nonnative_put_be16(val, p); |
| #endif |
| } |
| |
| static inline void put_unaligned_be32(u32 val, void *p) |
| { |
| #ifdef __BIG_ENDIAN |
| __put_unaligned_cpu32(val, p); |
| #else |
| nonnative_put_be32(val, p); |
| #endif |
| } |
| |
| static inline void put_unaligned_be64(u64 val, void *p) |
| { |
| #ifdef __BIG_ENDIAN |
| __put_unaligned_cpu64(val, p); |
| #else |
| nonnative_put_be64(val, p); |
| #endif |
| } |
| |
| /* |
| * While it's a bit non-obvious, even though the generic le/be wrappers |
| * use the __get/put_xxx prefixing, they actually wrap in to the |
| * non-prefixed get/put_xxx variants as provided above. |
| */ |
| #include <linux/unaligned/generic.h> |
| |
| #ifdef __LITTLE_ENDIAN |
| # define get_unaligned __get_unaligned_le |
| # define put_unaligned __put_unaligned_le |
| #else |
| # define get_unaligned __get_unaligned_be |
| # define put_unaligned __put_unaligned_be |
| #endif |
| |
| #endif /* __ASM_SH_UNALIGNED_SH4A_H */ |