|  | /* | 
|  | * PowerPC64 port by Mike Corrigan and Dave Engebretsen | 
|  | *   {mikejc|engebret}@us.ibm.com | 
|  | * | 
|  | *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> | 
|  | * | 
|  | * SMP scalability work: | 
|  | *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | *    Module name: htab.c | 
|  | * | 
|  | *    Description: | 
|  | *      PowerPC Hashed Page Table functions | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  | #undef DEBUG_LOW | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/memblock.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/types.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/abs_addr.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/eeh.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/spu.h> | 
|  | #include <asm/udbg.h> | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DBG(fmt...) udbg_printf(fmt) | 
|  | #else | 
|  | #define DBG(fmt...) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_LOW | 
|  | #define DBG_LOW(fmt...) udbg_printf(fmt) | 
|  | #else | 
|  | #define DBG_LOW(fmt...) | 
|  | #endif | 
|  |  | 
|  | #define KB (1024) | 
|  | #define MB (1024*KB) | 
|  | #define GB (1024L*MB) | 
|  |  | 
|  | /* | 
|  | * Note:  pte   --> Linux PTE | 
|  | *        HPTE  --> PowerPC Hashed Page Table Entry | 
|  | * | 
|  | * Execution context: | 
|  | *   htab_initialize is called with the MMU off (of course), but | 
|  | *   the kernel has been copied down to zero so it can directly | 
|  | *   reference global data.  At this point it is very difficult | 
|  | *   to print debug info. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_U3_DART | 
|  | extern unsigned long dart_tablebase; | 
|  | #endif /* CONFIG_U3_DART */ | 
|  |  | 
|  | static unsigned long _SDR1; | 
|  | struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | 
|  |  | 
|  | struct hash_pte *htab_address; | 
|  | unsigned long htab_size_bytes; | 
|  | unsigned long htab_hash_mask; | 
|  | EXPORT_SYMBOL_GPL(htab_hash_mask); | 
|  | int mmu_linear_psize = MMU_PAGE_4K; | 
|  | int mmu_virtual_psize = MMU_PAGE_4K; | 
|  | int mmu_vmalloc_psize = MMU_PAGE_4K; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | int mmu_vmemmap_psize = MMU_PAGE_4K; | 
|  | #endif | 
|  | int mmu_io_psize = MMU_PAGE_4K; | 
|  | int mmu_kernel_ssize = MMU_SEGSIZE_256M; | 
|  | int mmu_highuser_ssize = MMU_SEGSIZE_256M; | 
|  | u16 mmu_slb_size = 64; | 
|  | EXPORT_SYMBOL_GPL(mmu_slb_size); | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | unsigned int HPAGE_SHIFT; | 
|  | #endif | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | int mmu_ci_restrictions; | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static u8 *linear_map_hash_slots; | 
|  | static unsigned long linear_map_hash_count; | 
|  | static DEFINE_SPINLOCK(linear_map_hash_lock); | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | /* There are definitions of page sizes arrays to be used when none | 
|  | * is provided by the firmware. | 
|  | */ | 
|  |  | 
|  | /* Pre-POWER4 CPUs (4k pages only) | 
|  | */ | 
|  | static struct mmu_psize_def mmu_psize_defaults_old[] = { | 
|  | [MMU_PAGE_4K] = { | 
|  | .shift	= 12, | 
|  | .sllp	= 0, | 
|  | .penc	= 0, | 
|  | .avpnm	= 0, | 
|  | .tlbiel = 0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* POWER4, GPUL, POWER5 | 
|  | * | 
|  | * Support for 16Mb large pages | 
|  | */ | 
|  | static struct mmu_psize_def mmu_psize_defaults_gp[] = { | 
|  | [MMU_PAGE_4K] = { | 
|  | .shift	= 12, | 
|  | .sllp	= 0, | 
|  | .penc	= 0, | 
|  | .avpnm	= 0, | 
|  | .tlbiel = 1, | 
|  | }, | 
|  | [MMU_PAGE_16M] = { | 
|  | .shift	= 24, | 
|  | .sllp	= SLB_VSID_L, | 
|  | .penc	= 0, | 
|  | .avpnm	= 0x1UL, | 
|  | .tlbiel = 0, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static unsigned long htab_convert_pte_flags(unsigned long pteflags) | 
|  | { | 
|  | unsigned long rflags = pteflags & 0x1fa; | 
|  |  | 
|  | /* _PAGE_EXEC -> NOEXEC */ | 
|  | if ((pteflags & _PAGE_EXEC) == 0) | 
|  | rflags |= HPTE_R_N; | 
|  |  | 
|  | /* PP bits. PAGE_USER is already PP bit 0x2, so we only | 
|  | * need to add in 0x1 if it's a read-only user page | 
|  | */ | 
|  | if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) && | 
|  | (pteflags & _PAGE_DIRTY))) | 
|  | rflags |= 1; | 
|  |  | 
|  | /* Always add C */ | 
|  | return rflags | HPTE_R_C; | 
|  | } | 
|  |  | 
|  | int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | 
|  | unsigned long pstart, unsigned long prot, | 
|  | int psize, int ssize) | 
|  | { | 
|  | unsigned long vaddr, paddr; | 
|  | unsigned int step, shift; | 
|  | int ret = 0; | 
|  |  | 
|  | shift = mmu_psize_defs[psize].shift; | 
|  | step = 1 << shift; | 
|  |  | 
|  | prot = htab_convert_pte_flags(prot); | 
|  |  | 
|  | DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", | 
|  | vstart, vend, pstart, prot, psize, ssize); | 
|  |  | 
|  | for (vaddr = vstart, paddr = pstart; vaddr < vend; | 
|  | vaddr += step, paddr += step) { | 
|  | unsigned long hash, hpteg; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, ssize); | 
|  | unsigned long va = hpt_va(vaddr, vsid, ssize); | 
|  | unsigned long tprot = prot; | 
|  |  | 
|  | /* Make kernel text executable */ | 
|  | if (overlaps_kernel_text(vaddr, vaddr + step)) | 
|  | tprot &= ~HPTE_R_N; | 
|  |  | 
|  | hash = hpt_hash(va, shift, ssize); | 
|  | hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); | 
|  |  | 
|  | BUG_ON(!ppc_md.hpte_insert); | 
|  | ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot, | 
|  | HPTE_V_BOLTED, psize, ssize); | 
|  |  | 
|  | if (ret < 0) | 
|  | break; | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if ((paddr >> PAGE_SHIFT) < linear_map_hash_count) | 
|  | linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  | } | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static int htab_remove_mapping(unsigned long vstart, unsigned long vend, | 
|  | int psize, int ssize) | 
|  | { | 
|  | unsigned long vaddr; | 
|  | unsigned int step, shift; | 
|  |  | 
|  | shift = mmu_psize_defs[psize].shift; | 
|  | step = 1 << shift; | 
|  |  | 
|  | if (!ppc_md.hpte_removebolted) { | 
|  | printk(KERN_WARNING "Platform doesn't implement " | 
|  | "hpte_removebolted\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (vaddr = vstart; vaddr < vend; vaddr += step) | 
|  | ppc_md.hpte_removebolted(vaddr, psize, ssize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | static int __init htab_dt_scan_seg_sizes(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | u32 *prop; | 
|  | unsigned long size = 0; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", | 
|  | &size); | 
|  | if (prop == NULL) | 
|  | return 0; | 
|  | for (; size >= 4; size -= 4, ++prop) { | 
|  | if (prop[0] == 40) { | 
|  | DBG("1T segment support detected\n"); | 
|  | cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init htab_init_seg_sizes(void) | 
|  | { | 
|  | of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); | 
|  | } | 
|  |  | 
|  | static int __init htab_dt_scan_page_sizes(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | u32 *prop; | 
|  | unsigned long size = 0; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = (u32 *)of_get_flat_dt_prop(node, | 
|  | "ibm,segment-page-sizes", &size); | 
|  | if (prop != NULL) { | 
|  | DBG("Page sizes from device-tree:\n"); | 
|  | size /= 4; | 
|  | cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE); | 
|  | while(size > 0) { | 
|  | unsigned int shift = prop[0]; | 
|  | unsigned int slbenc = prop[1]; | 
|  | unsigned int lpnum = prop[2]; | 
|  | unsigned int lpenc = 0; | 
|  | struct mmu_psize_def *def; | 
|  | int idx = -1; | 
|  |  | 
|  | size -= 3; prop += 3; | 
|  | while(size > 0 && lpnum) { | 
|  | if (prop[0] == shift) | 
|  | lpenc = prop[1]; | 
|  | prop += 2; size -= 2; | 
|  | lpnum--; | 
|  | } | 
|  | switch(shift) { | 
|  | case 0xc: | 
|  | idx = MMU_PAGE_4K; | 
|  | break; | 
|  | case 0x10: | 
|  | idx = MMU_PAGE_64K; | 
|  | break; | 
|  | case 0x14: | 
|  | idx = MMU_PAGE_1M; | 
|  | break; | 
|  | case 0x18: | 
|  | idx = MMU_PAGE_16M; | 
|  | cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE; | 
|  | break; | 
|  | case 0x22: | 
|  | idx = MMU_PAGE_16G; | 
|  | break; | 
|  | } | 
|  | if (idx < 0) | 
|  | continue; | 
|  | def = &mmu_psize_defs[idx]; | 
|  | def->shift = shift; | 
|  | if (shift <= 23) | 
|  | def->avpnm = 0; | 
|  | else | 
|  | def->avpnm = (1 << (shift - 23)) - 1; | 
|  | def->sllp = slbenc; | 
|  | def->penc = lpenc; | 
|  | /* We don't know for sure what's up with tlbiel, so | 
|  | * for now we only set it for 4K and 64K pages | 
|  | */ | 
|  | if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K) | 
|  | def->tlbiel = 1; | 
|  | else | 
|  | def->tlbiel = 0; | 
|  |  | 
|  | DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, " | 
|  | "tlbiel=%d, penc=%d\n", | 
|  | idx, shift, def->sllp, def->avpnm, def->tlbiel, | 
|  | def->penc); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* Scan for 16G memory blocks that have been set aside for huge pages | 
|  | * and reserve those blocks for 16G huge pages. | 
|  | */ | 
|  | static int __init htab_dt_scan_hugepage_blocks(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) { | 
|  | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | unsigned long *addr_prop; | 
|  | u32 *page_count_prop; | 
|  | unsigned int expected_pages; | 
|  | long unsigned int phys_addr; | 
|  | long unsigned int block_size; | 
|  |  | 
|  | /* We are scanning "memory" nodes only */ | 
|  | if (type == NULL || strcmp(type, "memory") != 0) | 
|  | return 0; | 
|  |  | 
|  | /* This property is the log base 2 of the number of virtual pages that | 
|  | * will represent this memory block. */ | 
|  | page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); | 
|  | if (page_count_prop == NULL) | 
|  | return 0; | 
|  | expected_pages = (1 << page_count_prop[0]); | 
|  | addr_prop = of_get_flat_dt_prop(node, "reg", NULL); | 
|  | if (addr_prop == NULL) | 
|  | return 0; | 
|  | phys_addr = addr_prop[0]; | 
|  | block_size = addr_prop[1]; | 
|  | if (block_size != (16 * GB)) | 
|  | return 0; | 
|  | printk(KERN_INFO "Huge page(16GB) memory: " | 
|  | "addr = 0x%lX size = 0x%lX pages = %d\n", | 
|  | phys_addr, block_size, expected_pages); | 
|  | if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) { | 
|  | memblock_reserve(phys_addr, block_size * expected_pages); | 
|  | add_gpage(phys_addr, block_size, expected_pages); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | static void __init htab_init_page_sizes(void) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* Default to 4K pages only */ | 
|  | memcpy(mmu_psize_defs, mmu_psize_defaults_old, | 
|  | sizeof(mmu_psize_defaults_old)); | 
|  |  | 
|  | /* | 
|  | * Try to find the available page sizes in the device-tree | 
|  | */ | 
|  | rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); | 
|  | if (rc != 0)  /* Found */ | 
|  | goto found; | 
|  |  | 
|  | /* | 
|  | * Not in the device-tree, let's fallback on known size | 
|  | * list for 16M capable GP & GR | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_16M_PAGE)) | 
|  | memcpy(mmu_psize_defs, mmu_psize_defaults_gp, | 
|  | sizeof(mmu_psize_defaults_gp)); | 
|  | found: | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | /* | 
|  | * Pick a size for the linear mapping. Currently, we only support | 
|  | * 16M, 1M and 4K which is the default | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
|  | mmu_linear_psize = MMU_PAGE_16M; | 
|  | else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
|  | mmu_linear_psize = MMU_PAGE_1M; | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* | 
|  | * Pick a size for the ordinary pages. Default is 4K, we support | 
|  | * 64K for user mappings and vmalloc if supported by the processor. | 
|  | * We only use 64k for ioremap if the processor | 
|  | * (and firmware) support cache-inhibited large pages. | 
|  | * If not, we use 4k and set mmu_ci_restrictions so that | 
|  | * hash_page knows to switch processes that use cache-inhibited | 
|  | * mappings to 4k pages. | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_64K].shift) { | 
|  | mmu_virtual_psize = MMU_PAGE_64K; | 
|  | mmu_vmalloc_psize = MMU_PAGE_64K; | 
|  | if (mmu_linear_psize == MMU_PAGE_4K) | 
|  | mmu_linear_psize = MMU_PAGE_64K; | 
|  | if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) { | 
|  | /* | 
|  | * Don't use 64k pages for ioremap on pSeries, since | 
|  | * that would stop us accessing the HEA ethernet. | 
|  | */ | 
|  | if (!machine_is(pseries)) | 
|  | mmu_io_psize = MMU_PAGE_64K; | 
|  | } else | 
|  | mmu_ci_restrictions = 1; | 
|  | } | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | /* We try to use 16M pages for vmemmap if that is supported | 
|  | * and we have at least 1G of RAM at boot | 
|  | */ | 
|  | if (mmu_psize_defs[MMU_PAGE_16M].shift && | 
|  | memblock_phys_mem_size() >= 0x40000000) | 
|  | mmu_vmemmap_psize = MMU_PAGE_16M; | 
|  | else if (mmu_psize_defs[MMU_PAGE_64K].shift) | 
|  | mmu_vmemmap_psize = MMU_PAGE_64K; | 
|  | else | 
|  | mmu_vmemmap_psize = MMU_PAGE_4K; | 
|  | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
|  |  | 
|  | printk(KERN_DEBUG "Page orders: linear mapping = %d, " | 
|  | "virtual = %d, io = %d" | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | ", vmemmap = %d" | 
|  | #endif | 
|  | "\n", | 
|  | mmu_psize_defs[mmu_linear_psize].shift, | 
|  | mmu_psize_defs[mmu_virtual_psize].shift, | 
|  | mmu_psize_defs[mmu_io_psize].shift | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | ,mmu_psize_defs[mmu_vmemmap_psize].shift | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* Reserve 16G huge page memory sections for huge pages */ | 
|  | of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  | } | 
|  |  | 
|  | static int __init htab_dt_scan_pftsize(unsigned long node, | 
|  | const char *uname, int depth, | 
|  | void *data) | 
|  | { | 
|  | char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
|  | u32 *prop; | 
|  |  | 
|  | /* We are scanning "cpu" nodes only */ | 
|  | if (type == NULL || strcmp(type, "cpu") != 0) | 
|  | return 0; | 
|  |  | 
|  | prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL); | 
|  | if (prop != NULL) { | 
|  | /* pft_size[0] is the NUMA CEC cookie */ | 
|  | ppc64_pft_size = prop[1]; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long __init htab_get_table_size(void) | 
|  | { | 
|  | unsigned long mem_size, rnd_mem_size, pteg_count, psize; | 
|  |  | 
|  | /* If hash size isn't already provided by the platform, we try to | 
|  | * retrieve it from the device-tree. If it's not there neither, we | 
|  | * calculate it now based on the total RAM size | 
|  | */ | 
|  | if (ppc64_pft_size == 0) | 
|  | of_scan_flat_dt(htab_dt_scan_pftsize, NULL); | 
|  | if (ppc64_pft_size) | 
|  | return 1UL << ppc64_pft_size; | 
|  |  | 
|  | /* round mem_size up to next power of 2 */ | 
|  | mem_size = memblock_phys_mem_size(); | 
|  | rnd_mem_size = 1UL << __ilog2(mem_size); | 
|  | if (rnd_mem_size < mem_size) | 
|  | rnd_mem_size <<= 1; | 
|  |  | 
|  | /* # pages / 2 */ | 
|  | psize = mmu_psize_defs[mmu_virtual_psize].shift; | 
|  | pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11); | 
|  |  | 
|  | return pteg_count << 7; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | void create_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | BUG_ON(htab_bolt_mapping(start, end, __pa(start), | 
|  | pgprot_val(PAGE_KERNEL), mmu_linear_psize, | 
|  | mmu_kernel_ssize)); | 
|  | } | 
|  |  | 
|  | int remove_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | return htab_remove_mapping(start, end, mmu_linear_psize, | 
|  | mmu_kernel_ssize); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | static inline void make_bl(unsigned int *insn_addr, void *func) | 
|  | { | 
|  | unsigned long funcp = *((unsigned long *)func); | 
|  | int offset = funcp - (unsigned long)insn_addr; | 
|  |  | 
|  | *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc)); | 
|  | flush_icache_range((unsigned long)insn_addr, 4+ | 
|  | (unsigned long)insn_addr); | 
|  | } | 
|  |  | 
|  | static void __init htab_finish_init(void) | 
|  | { | 
|  | extern unsigned int *htab_call_hpte_insert1; | 
|  | extern unsigned int *htab_call_hpte_insert2; | 
|  | extern unsigned int *htab_call_hpte_remove; | 
|  | extern unsigned int *htab_call_hpte_updatepp; | 
|  |  | 
|  | #ifdef CONFIG_PPC_HAS_HASH_64K | 
|  | extern unsigned int *ht64_call_hpte_insert1; | 
|  | extern unsigned int *ht64_call_hpte_insert2; | 
|  | extern unsigned int *ht64_call_hpte_remove; | 
|  | extern unsigned int *ht64_call_hpte_updatepp; | 
|  |  | 
|  | make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert); | 
|  | make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert); | 
|  | make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove); | 
|  | make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp); | 
|  | #endif /* CONFIG_PPC_HAS_HASH_64K */ | 
|  |  | 
|  | make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert); | 
|  | make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert); | 
|  | make_bl(htab_call_hpte_remove, ppc_md.hpte_remove); | 
|  | make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp); | 
|  | } | 
|  |  | 
|  | static void __init htab_initialize(void) | 
|  | { | 
|  | unsigned long table; | 
|  | unsigned long pteg_count; | 
|  | unsigned long prot; | 
|  | unsigned long base = 0, size = 0, limit; | 
|  | int i; | 
|  |  | 
|  | DBG(" -> htab_initialize()\n"); | 
|  |  | 
|  | /* Initialize segment sizes */ | 
|  | htab_init_seg_sizes(); | 
|  |  | 
|  | /* Initialize page sizes */ | 
|  | htab_init_page_sizes(); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) { | 
|  | mmu_kernel_ssize = MMU_SEGSIZE_1T; | 
|  | mmu_highuser_ssize = MMU_SEGSIZE_1T; | 
|  | printk(KERN_INFO "Using 1TB segments\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the required size of the htab.  We want the number of | 
|  | * PTEGs to equal one half the number of real pages. | 
|  | */ | 
|  | htab_size_bytes = htab_get_table_size(); | 
|  | pteg_count = htab_size_bytes >> 7; | 
|  |  | 
|  | htab_hash_mask = pteg_count - 1; | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_LPAR)) { | 
|  | /* Using a hypervisor which owns the htab */ | 
|  | htab_address = NULL; | 
|  | _SDR1 = 0; | 
|  | } else { | 
|  | /* Find storage for the HPT.  Must be contiguous in | 
|  | * the absolute address space. On cell we want it to be | 
|  | * in the first 2 Gig so we can use it for IOMMU hacks. | 
|  | */ | 
|  | if (machine_is(cell)) | 
|  | limit = 0x80000000; | 
|  | else | 
|  | limit = 0; | 
|  |  | 
|  | table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit); | 
|  |  | 
|  | DBG("Hash table allocated at %lx, size: %lx\n", table, | 
|  | htab_size_bytes); | 
|  |  | 
|  | htab_address = abs_to_virt(table); | 
|  |  | 
|  | /* htab absolute addr + encoded htabsize */ | 
|  | _SDR1 = table + __ilog2(pteg_count) - 11; | 
|  |  | 
|  | /* Initialize the HPT with no entries */ | 
|  | memset((void *)table, 0, htab_size_bytes); | 
|  |  | 
|  | /* Set SDR1 */ | 
|  | mtspr(SPRN_SDR1, _SDR1); | 
|  | } | 
|  |  | 
|  | prot = pgprot_val(PAGE_KERNEL); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
|  | linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count, | 
|  | 1, memblock.rmo_size)); | 
|  | memset(linear_map_hash_slots, 0, linear_map_hash_count); | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
|  |  | 
|  | /* On U3 based machines, we need to reserve the DART area and | 
|  | * _NOT_ map it to avoid cache paradoxes as it's remapped non | 
|  | * cacheable later on | 
|  | */ | 
|  |  | 
|  | /* create bolted the linear mapping in the hash table */ | 
|  | for (i=0; i < memblock.memory.cnt; i++) { | 
|  | base = (unsigned long)__va(memblock.memory.region[i].base); | 
|  | size = memblock.memory.region[i].size; | 
|  |  | 
|  | DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", | 
|  | base, size, prot); | 
|  |  | 
|  | #ifdef CONFIG_U3_DART | 
|  | /* Do not map the DART space. Fortunately, it will be aligned | 
|  | * in such a way that it will not cross two memblock regions and | 
|  | * will fit within a single 16Mb page. | 
|  | * The DART space is assumed to be a full 16Mb region even if | 
|  | * we only use 2Mb of that space. We will use more of it later | 
|  | * for AGP GART. We have to use a full 16Mb large page. | 
|  | */ | 
|  | DBG("DART base: %lx\n", dart_tablebase); | 
|  |  | 
|  | if (dart_tablebase != 0 && dart_tablebase >= base | 
|  | && dart_tablebase < (base + size)) { | 
|  | unsigned long dart_table_end = dart_tablebase + 16 * MB; | 
|  | if (base != dart_tablebase) | 
|  | BUG_ON(htab_bolt_mapping(base, dart_tablebase, | 
|  | __pa(base), prot, | 
|  | mmu_linear_psize, | 
|  | mmu_kernel_ssize)); | 
|  | if ((base + size) > dart_table_end) | 
|  | BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB, | 
|  | base + size, | 
|  | __pa(dart_table_end), | 
|  | prot, | 
|  | mmu_linear_psize, | 
|  | mmu_kernel_ssize)); | 
|  | continue; | 
|  | } | 
|  | #endif /* CONFIG_U3_DART */ | 
|  | BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), | 
|  | prot, mmu_linear_psize, mmu_kernel_ssize)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have a memory_limit and we've allocated TCEs then we need to | 
|  | * explicitly map the TCE area at the top of RAM. We also cope with the | 
|  | * case that the TCEs start below memory_limit. | 
|  | * tce_alloc_start/end are 16MB aligned so the mapping should work | 
|  | * for either 4K or 16MB pages. | 
|  | */ | 
|  | if (tce_alloc_start) { | 
|  | tce_alloc_start = (unsigned long)__va(tce_alloc_start); | 
|  | tce_alloc_end = (unsigned long)__va(tce_alloc_end); | 
|  |  | 
|  | if (base + size >= tce_alloc_start) | 
|  | tce_alloc_start = base + size + 1; | 
|  |  | 
|  | BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, | 
|  | __pa(tce_alloc_start), prot, | 
|  | mmu_linear_psize, mmu_kernel_ssize)); | 
|  | } | 
|  |  | 
|  | htab_finish_init(); | 
|  |  | 
|  | DBG(" <- htab_initialize()\n"); | 
|  | } | 
|  | #undef KB | 
|  | #undef MB | 
|  |  | 
|  | void __init early_init_mmu(void) | 
|  | { | 
|  | /* Setup initial STAB address in the PACA */ | 
|  | get_paca()->stab_real = __pa((u64)&initial_stab); | 
|  | get_paca()->stab_addr = (u64)&initial_stab; | 
|  |  | 
|  | /* Initialize the MMU Hash table and create the linear mapping | 
|  | * of memory. Has to be done before stab/slb initialization as | 
|  | * this is currently where the page size encoding is obtained | 
|  | */ | 
|  | htab_initialize(); | 
|  |  | 
|  | /* Initialize stab / SLB management except on iSeries | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_SLB)) | 
|  | slb_initialize(); | 
|  | else if (!firmware_has_feature(FW_FEATURE_ISERIES)) | 
|  | stab_initialize(get_paca()->stab_real); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void __cpuinit early_init_mmu_secondary(void) | 
|  | { | 
|  | /* Initialize hash table for that CPU */ | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) | 
|  | mtspr(SPRN_SDR1, _SDR1); | 
|  |  | 
|  | /* Initialize STAB/SLB. We use a virtual address as it works | 
|  | * in real mode on pSeries and we want a virutal address on | 
|  | * iSeries anyway | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_SLB)) | 
|  | slb_initialize(); | 
|  | else | 
|  | stab_initialize(get_paca()->stab_addr); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Called by asm hashtable.S for doing lazy icache flush | 
|  | */ | 
|  | unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pte_pfn(pte))) | 
|  | return pp; | 
|  |  | 
|  | page = pte_page(pte); | 
|  |  | 
|  | /* page is dirty */ | 
|  | if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
|  | if (trap == 0x400) { | 
|  | flush_dcache_icache_page(page); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | } else | 
|  | pp |= HPTE_R_N; | 
|  | } | 
|  | return pp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | unsigned int get_paca_psize(unsigned long addr) | 
|  | { | 
|  | unsigned long index, slices; | 
|  |  | 
|  | if (addr < SLICE_LOW_TOP) { | 
|  | slices = get_paca()->context.low_slices_psize; | 
|  | index = GET_LOW_SLICE_INDEX(addr); | 
|  | } else { | 
|  | slices = get_paca()->context.high_slices_psize; | 
|  | index = GET_HIGH_SLICE_INDEX(addr); | 
|  | } | 
|  | return (slices >> (index * 4)) & 0xF; | 
|  | } | 
|  |  | 
|  | #else | 
|  | unsigned int get_paca_psize(unsigned long addr) | 
|  | { | 
|  | return get_paca()->context.user_psize; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Demote a segment to using 4k pages. | 
|  | * For now this makes the whole process use 4k pages. | 
|  | */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | void demote_segment_4k(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | if (get_slice_psize(mm, addr) == MMU_PAGE_4K) | 
|  | return; | 
|  | slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); | 
|  | #ifdef CONFIG_SPU_BASE | 
|  | spu_flush_all_slbs(mm); | 
|  | #endif | 
|  | if (get_paca_psize(addr) != MMU_PAGE_4K) { | 
|  | get_paca()->context = mm->context; | 
|  | slb_flush_and_rebolt(); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
|  | /* | 
|  | * This looks up a 2-bit protection code for a 4k subpage of a 64k page. | 
|  | * Userspace sets the subpage permissions using the subpage_prot system call. | 
|  | * | 
|  | * Result is 0: full permissions, _PAGE_RW: read-only, | 
|  | * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access. | 
|  | */ | 
|  | static int subpage_protection(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | struct subpage_prot_table *spt = &mm->context.spt; | 
|  | u32 spp = 0; | 
|  | u32 **sbpm, *sbpp; | 
|  |  | 
|  | if (ea >= spt->maxaddr) | 
|  | return 0; | 
|  | if (ea < 0x100000000) { | 
|  | /* addresses below 4GB use spt->low_prot */ | 
|  | sbpm = spt->low_prot; | 
|  | } else { | 
|  | sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; | 
|  | if (!sbpm) | 
|  | return 0; | 
|  | } | 
|  | sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; | 
|  | if (!sbpp) | 
|  | return 0; | 
|  | spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; | 
|  |  | 
|  | /* extract 2-bit bitfield for this 4k subpage */ | 
|  | spp >>= 30 - 2 * ((ea >> 12) & 0xf); | 
|  |  | 
|  | /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */ | 
|  | spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0); | 
|  | return spp; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PPC_SUBPAGE_PROT */ | 
|  | static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void hash_failure_debug(unsigned long ea, unsigned long access, | 
|  | unsigned long vsid, unsigned long trap, | 
|  | int ssize, int psize, unsigned long pte) | 
|  | { | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  | pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", | 
|  | ea, access, current->comm); | 
|  | pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n", | 
|  | trap, vsid, ssize, psize, pte); | 
|  | } | 
|  |  | 
|  | /* Result code is: | 
|  | *  0 - handled | 
|  | *  1 - normal page fault | 
|  | * -1 - critical hash insertion error | 
|  | * -2 - access not permitted by subpage protection mechanism | 
|  | */ | 
|  | int hash_page(unsigned long ea, unsigned long access, unsigned long trap) | 
|  | { | 
|  | pgd_t *pgdir; | 
|  | unsigned long vsid; | 
|  | struct mm_struct *mm; | 
|  | pte_t *ptep; | 
|  | unsigned hugeshift; | 
|  | const struct cpumask *tmp; | 
|  | int rc, user_region = 0, local = 0; | 
|  | int psize, ssize; | 
|  |  | 
|  | DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", | 
|  | ea, access, trap); | 
|  |  | 
|  | if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) { | 
|  | DBG_LOW(" out of pgtable range !\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Get region & vsid */ | 
|  | switch (REGION_ID(ea)) { | 
|  | case USER_REGION_ID: | 
|  | user_region = 1; | 
|  | mm = current->mm; | 
|  | if (! mm) { | 
|  | DBG_LOW(" user region with no mm !\n"); | 
|  | return 1; | 
|  | } | 
|  | psize = get_slice_psize(mm, ea); | 
|  | ssize = user_segment_size(ea); | 
|  | vsid = get_vsid(mm->context.id, ea, ssize); | 
|  | break; | 
|  | case VMALLOC_REGION_ID: | 
|  | mm = &init_mm; | 
|  | vsid = get_kernel_vsid(ea, mmu_kernel_ssize); | 
|  | if (ea < VMALLOC_END) | 
|  | psize = mmu_vmalloc_psize; | 
|  | else | 
|  | psize = mmu_io_psize; | 
|  | ssize = mmu_kernel_ssize; | 
|  | break; | 
|  | default: | 
|  | /* Not a valid range | 
|  | * Send the problem up to do_page_fault | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); | 
|  |  | 
|  | /* Get pgdir */ | 
|  | pgdir = mm->pgd; | 
|  | if (pgdir == NULL) | 
|  | return 1; | 
|  |  | 
|  | /* Check CPU locality */ | 
|  | tmp = cpumask_of(smp_processor_id()); | 
|  | if (user_region && cpumask_equal(mm_cpumask(mm), tmp)) | 
|  | local = 1; | 
|  |  | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | /* If we use 4K pages and our psize is not 4K, then we might | 
|  | * be hitting a special driver mapping, and need to align the | 
|  | * address before we fetch the PTE. | 
|  | * | 
|  | * It could also be a hugepage mapping, in which case this is | 
|  | * not necessary, but it's not harmful, either. | 
|  | */ | 
|  | if (psize != MMU_PAGE_4K) | 
|  | ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | /* Get PTE and page size from page tables */ | 
|  | ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift); | 
|  | if (ptep == NULL || !pte_present(*ptep)) { | 
|  | DBG_LOW(" no PTE !\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Add _PAGE_PRESENT to the required access perm */ | 
|  | access |= _PAGE_PRESENT; | 
|  |  | 
|  | /* Pre-check access permissions (will be re-checked atomically | 
|  | * in __hash_page_XX but this pre-check is a fast path | 
|  | */ | 
|  | if (access & ~pte_val(*ptep)) { | 
|  | DBG_LOW(" no access !\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | if (hugeshift) | 
|  | return __hash_page_huge(ea, access, vsid, ptep, trap, local, | 
|  | ssize, hugeshift, psize); | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); | 
|  | #else | 
|  | DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), | 
|  | pte_val(*(ptep + PTRS_PER_PTE))); | 
|  | #endif | 
|  | /* Do actual hashing */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */ | 
|  | if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) { | 
|  | demote_segment_4k(mm, ea); | 
|  | psize = MMU_PAGE_4K; | 
|  | } | 
|  |  | 
|  | /* If this PTE is non-cacheable and we have restrictions on | 
|  | * using non cacheable large pages, then we switch to 4k | 
|  | */ | 
|  | if (mmu_ci_restrictions && psize == MMU_PAGE_64K && | 
|  | (pte_val(*ptep) & _PAGE_NO_CACHE)) { | 
|  | if (user_region) { | 
|  | demote_segment_4k(mm, ea); | 
|  | psize = MMU_PAGE_4K; | 
|  | } else if (ea < VMALLOC_END) { | 
|  | /* | 
|  | * some driver did a non-cacheable mapping | 
|  | * in vmalloc space, so switch vmalloc | 
|  | * to 4k pages | 
|  | */ | 
|  | printk(KERN_ALERT "Reducing vmalloc segment " | 
|  | "to 4kB pages because of " | 
|  | "non-cacheable mapping\n"); | 
|  | psize = mmu_vmalloc_psize = MMU_PAGE_4K; | 
|  | #ifdef CONFIG_SPU_BASE | 
|  | spu_flush_all_slbs(mm); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | if (user_region) { | 
|  | if (psize != get_paca_psize(ea)) { | 
|  | get_paca()->context = mm->context; | 
|  | slb_flush_and_rebolt(); | 
|  | } | 
|  | } else if (get_paca()->vmalloc_sllp != | 
|  | mmu_psize_defs[mmu_vmalloc_psize].sllp) { | 
|  | get_paca()->vmalloc_sllp = | 
|  | mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | slb_vmalloc_update(); | 
|  | } | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_HAS_HASH_64K | 
|  | if (psize == MMU_PAGE_64K) | 
|  | rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize); | 
|  | else | 
|  | #endif /* CONFIG_PPC_HAS_HASH_64K */ | 
|  | { | 
|  | int spp = subpage_protection(mm, ea); | 
|  | if (access & spp) | 
|  | rc = -2; | 
|  | else | 
|  | rc = __hash_page_4K(ea, access, vsid, ptep, trap, | 
|  | local, ssize, spp); | 
|  | } | 
|  |  | 
|  | /* Dump some info in case of hash insertion failure, they should | 
|  | * never happen so it is really useful to know if/when they do | 
|  | */ | 
|  | if (rc == -1) | 
|  | hash_failure_debug(ea, access, vsid, trap, ssize, psize, | 
|  | pte_val(*ptep)); | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); | 
|  | #else | 
|  | DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), | 
|  | pte_val(*(ptep + PTRS_PER_PTE))); | 
|  | #endif | 
|  | DBG_LOW(" -> rc=%d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hash_page); | 
|  |  | 
|  | void hash_preload(struct mm_struct *mm, unsigned long ea, | 
|  | unsigned long access, unsigned long trap) | 
|  | { | 
|  | unsigned long vsid; | 
|  | void *pgdir; | 
|  | pte_t *ptep; | 
|  | unsigned long flags; | 
|  | int rc, ssize, local = 0; | 
|  |  | 
|  | BUG_ON(REGION_ID(ea) != USER_REGION_ID); | 
|  |  | 
|  | #ifdef CONFIG_PPC_MM_SLICES | 
|  | /* We only prefault standard pages for now */ | 
|  | if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," | 
|  | " trap=%lx\n", mm, mm->pgd, ea, access, trap); | 
|  |  | 
|  | /* Get Linux PTE if available */ | 
|  | pgdir = mm->pgd; | 
|  | if (pgdir == NULL) | 
|  | return; | 
|  | ptep = find_linux_pte(pgdir, ea); | 
|  | if (!ptep) | 
|  | return; | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on | 
|  | * a 64K kernel), then we don't preload, hash_page() will take | 
|  | * care of it once we actually try to access the page. | 
|  | * That way we don't have to duplicate all of the logic for segment | 
|  | * page size demotion here | 
|  | */ | 
|  | if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE)) | 
|  | return; | 
|  | #endif /* CONFIG_PPC_64K_PAGES */ | 
|  |  | 
|  | /* Get VSID */ | 
|  | ssize = user_segment_size(ea); | 
|  | vsid = get_vsid(mm->context.id, ea, ssize); | 
|  |  | 
|  | /* Hash doesn't like irqs */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* Is that local to this CPU ? */ | 
|  | if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) | 
|  | local = 1; | 
|  |  | 
|  | /* Hash it in */ | 
|  | #ifdef CONFIG_PPC_HAS_HASH_64K | 
|  | if (mm->context.user_psize == MMU_PAGE_64K) | 
|  | rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize); | 
|  | else | 
|  | #endif /* CONFIG_PPC_HAS_HASH_64K */ | 
|  | rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize, | 
|  | subpage_protection(pgdir, ea)); | 
|  |  | 
|  | /* Dump some info in case of hash insertion failure, they should | 
|  | * never happen so it is really useful to know if/when they do | 
|  | */ | 
|  | if (rc == -1) | 
|  | hash_failure_debug(ea, access, vsid, trap, ssize, | 
|  | mm->context.user_psize, pte_val(*ptep)); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* WARNING: This is called from hash_low_64.S, if you change this prototype, | 
|  | *          do not forget to update the assembly call site ! | 
|  | */ | 
|  | void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize, | 
|  | int local) | 
|  | { | 
|  | unsigned long hash, index, shift, hidx, slot; | 
|  |  | 
|  | DBG_LOW("flush_hash_page(va=%016lx)\n", va); | 
|  | pte_iterate_hashed_subpages(pte, psize, va, index, shift) { | 
|  | hash = hpt_hash(va, shift, ssize); | 
|  | hidx = __rpte_to_hidx(pte, index); | 
|  | if (hidx & _PTEIDX_SECONDARY) | 
|  | hash = ~hash; | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += hidx & _PTEIDX_GROUP_IX; | 
|  | DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx); | 
|  | ppc_md.hpte_invalidate(slot, va, psize, ssize, local); | 
|  | } pte_iterate_hashed_end(); | 
|  | } | 
|  |  | 
|  | void flush_hash_range(unsigned long number, int local) | 
|  | { | 
|  | if (ppc_md.flush_hash_range) | 
|  | ppc_md.flush_hash_range(number, local); | 
|  | else { | 
|  | int i; | 
|  | struct ppc64_tlb_batch *batch = | 
|  | &__get_cpu_var(ppc64_tlb_batch); | 
|  |  | 
|  | for (i = 0; i < number; i++) | 
|  | flush_hash_page(batch->vaddr[i], batch->pte[i], | 
|  | batch->psize, batch->ssize, local); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * low_hash_fault is called when we the low level hash code failed | 
|  | * to instert a PTE due to an hypervisor error | 
|  | */ | 
|  | void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc) | 
|  | { | 
|  | if (user_mode(regs)) { | 
|  | #ifdef CONFIG_PPC_SUBPAGE_PROT | 
|  | if (rc == -2) | 
|  | _exception(SIGSEGV, regs, SEGV_ACCERR, address); | 
|  | else | 
|  | #endif | 
|  | _exception(SIGBUS, regs, BUS_ADRERR, address); | 
|  | } else | 
|  | bad_page_fault(regs, address, SIGBUS); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) | 
|  | { | 
|  | unsigned long hash, hpteg; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); | 
|  | unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize); | 
|  | unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL); | 
|  | int ret; | 
|  |  | 
|  | hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize); | 
|  | hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); | 
|  |  | 
|  | ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr), | 
|  | mode, HPTE_V_BOLTED, | 
|  | mmu_linear_psize, mmu_kernel_ssize); | 
|  | BUG_ON (ret < 0); | 
|  | spin_lock(&linear_map_hash_lock); | 
|  | BUG_ON(linear_map_hash_slots[lmi] & 0x80); | 
|  | linear_map_hash_slots[lmi] = ret | 0x80; | 
|  | spin_unlock(&linear_map_hash_lock); | 
|  | } | 
|  |  | 
|  | static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) | 
|  | { | 
|  | unsigned long hash, hidx, slot; | 
|  | unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); | 
|  | unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize); | 
|  |  | 
|  | hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize); | 
|  | spin_lock(&linear_map_hash_lock); | 
|  | BUG_ON(!(linear_map_hash_slots[lmi] & 0x80)); | 
|  | hidx = linear_map_hash_slots[lmi] & 0x7f; | 
|  | linear_map_hash_slots[lmi] = 0; | 
|  | spin_unlock(&linear_map_hash_lock); | 
|  | if (hidx & _PTEIDX_SECONDARY) | 
|  | hash = ~hash; | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += hidx & _PTEIDX_GROUP_IX; | 
|  | ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0); | 
|  | } | 
|  |  | 
|  | void kernel_map_pages(struct page *page, int numpages, int enable) | 
|  | { | 
|  | unsigned long flags, vaddr, lmi; | 
|  | int i; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | for (i = 0; i < numpages; i++, page++) { | 
|  | vaddr = (unsigned long)page_address(page); | 
|  | lmi = __pa(vaddr) >> PAGE_SHIFT; | 
|  | if (lmi >= linear_map_hash_count) | 
|  | continue; | 
|  | if (enable) | 
|  | kernel_map_linear_page(vaddr, lmi); | 
|  | else | 
|  | kernel_unmap_linear_page(vaddr, lmi); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif /* CONFIG_DEBUG_PAGEALLOC */ |