| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/fs/ext2/balloc.c |
| * |
| * Copyright (C) 1992, 1993, 1994, 1995 |
| * Remy Card (card@masi.ibp.fr) |
| * Laboratoire MASI - Institut Blaise Pascal |
| * Universite Pierre et Marie Curie (Paris VI) |
| * |
| * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 |
| * Big-endian to little-endian byte-swapping/bitmaps by |
| * David S. Miller (davem@caip.rutgers.edu), 1995 |
| */ |
| |
| #include "ext2.h" |
| #include <linux/quotaops.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/cred.h> |
| #include <linux/buffer_head.h> |
| #include <linux/capability.h> |
| |
| /* |
| * balloc.c contains the blocks allocation and deallocation routines |
| */ |
| |
| /* |
| * The free blocks are managed by bitmaps. A file system contains several |
| * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap |
| * block for inodes, N blocks for the inode table and data blocks. |
| * |
| * The file system contains group descriptors which are located after the |
| * super block. Each descriptor contains the number of the bitmap block and |
| * the free blocks count in the block. The descriptors are loaded in memory |
| * when a file system is mounted (see ext2_fill_super). |
| */ |
| |
| |
| #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) |
| |
| struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, |
| unsigned int block_group, |
| struct buffer_head ** bh) |
| { |
| unsigned long group_desc; |
| unsigned long offset; |
| struct ext2_group_desc * desc; |
| struct ext2_sb_info *sbi = EXT2_SB(sb); |
| |
| if (block_group >= sbi->s_groups_count) { |
| WARN(1, "block_group >= groups_count - " |
| "block_group = %d, groups_count = %lu", |
| block_group, sbi->s_groups_count); |
| |
| return NULL; |
| } |
| |
| group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb); |
| offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1); |
| if (!sbi->s_group_desc[group_desc]) { |
| WARN(1, "Group descriptor not loaded - " |
| "block_group = %d, group_desc = %lu, desc = %lu", |
| block_group, group_desc, offset); |
| return NULL; |
| } |
| |
| desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data; |
| if (bh) |
| *bh = sbi->s_group_desc[group_desc]; |
| return desc + offset; |
| } |
| |
| static int ext2_valid_block_bitmap(struct super_block *sb, |
| struct ext2_group_desc *desc, |
| unsigned int block_group, |
| struct buffer_head *bh) |
| { |
| ext2_grpblk_t offset; |
| ext2_grpblk_t next_zero_bit; |
| ext2_fsblk_t bitmap_blk; |
| ext2_fsblk_t group_first_block; |
| |
| group_first_block = ext2_group_first_block_no(sb, block_group); |
| |
| /* check whether block bitmap block number is set */ |
| bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); |
| offset = bitmap_blk - group_first_block; |
| if (!ext2_test_bit(offset, bh->b_data)) |
| /* bad block bitmap */ |
| goto err_out; |
| |
| /* check whether the inode bitmap block number is set */ |
| bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap); |
| offset = bitmap_blk - group_first_block; |
| if (!ext2_test_bit(offset, bh->b_data)) |
| /* bad block bitmap */ |
| goto err_out; |
| |
| /* check whether the inode table block number is set */ |
| bitmap_blk = le32_to_cpu(desc->bg_inode_table); |
| offset = bitmap_blk - group_first_block; |
| next_zero_bit = ext2_find_next_zero_bit(bh->b_data, |
| offset + EXT2_SB(sb)->s_itb_per_group, |
| offset); |
| if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group) |
| /* good bitmap for inode tables */ |
| return 1; |
| |
| err_out: |
| ext2_error(sb, __func__, |
| "Invalid block bitmap - " |
| "block_group = %d, block = %lu", |
| block_group, bitmap_blk); |
| return 0; |
| } |
| |
| /* |
| * Read the bitmap for a given block_group,and validate the |
| * bits for block/inode/inode tables are set in the bitmaps |
| * |
| * Return buffer_head on success or NULL in case of failure. |
| */ |
| static struct buffer_head * |
| read_block_bitmap(struct super_block *sb, unsigned int block_group) |
| { |
| struct ext2_group_desc * desc; |
| struct buffer_head * bh = NULL; |
| ext2_fsblk_t bitmap_blk; |
| |
| desc = ext2_get_group_desc(sb, block_group, NULL); |
| if (!desc) |
| return NULL; |
| bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); |
| bh = sb_getblk(sb, bitmap_blk); |
| if (unlikely(!bh)) { |
| ext2_error(sb, __func__, |
| "Cannot read block bitmap - " |
| "block_group = %d, block_bitmap = %u", |
| block_group, le32_to_cpu(desc->bg_block_bitmap)); |
| return NULL; |
| } |
| if (likely(bh_uptodate_or_lock(bh))) |
| return bh; |
| |
| if (bh_submit_read(bh) < 0) { |
| brelse(bh); |
| ext2_error(sb, __func__, |
| "Cannot read block bitmap - " |
| "block_group = %d, block_bitmap = %u", |
| block_group, le32_to_cpu(desc->bg_block_bitmap)); |
| return NULL; |
| } |
| |
| ext2_valid_block_bitmap(sb, desc, block_group, bh); |
| /* |
| * file system mounted not to panic on error, continue with corrupt |
| * bitmap |
| */ |
| return bh; |
| } |
| |
| static void group_adjust_blocks(struct super_block *sb, int group_no, |
| struct ext2_group_desc *desc, struct buffer_head *bh, int count) |
| { |
| if (count) { |
| struct ext2_sb_info *sbi = EXT2_SB(sb); |
| unsigned free_blocks; |
| |
| spin_lock(sb_bgl_lock(sbi, group_no)); |
| free_blocks = le16_to_cpu(desc->bg_free_blocks_count); |
| desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); |
| spin_unlock(sb_bgl_lock(sbi, group_no)); |
| mark_buffer_dirty(bh); |
| } |
| } |
| |
| /* |
| * The reservation window structure operations |
| * -------------------------------------------- |
| * Operations include: |
| * dump, find, add, remove, is_empty, find_next_reservable_window, etc. |
| * |
| * We use a red-black tree to represent per-filesystem reservation |
| * windows. |
| * |
| */ |
| |
| /** |
| * __rsv_window_dump() -- Dump the filesystem block allocation reservation map |
| * @rb_root: root of per-filesystem reservation rb tree |
| * @verbose: verbose mode |
| * @fn: function which wishes to dump the reservation map |
| * |
| * If verbose is turned on, it will print the whole block reservation |
| * windows(start, end). Otherwise, it will only print out the "bad" windows, |
| * those windows that overlap with their immediate neighbors. |
| */ |
| #if 1 |
| static void __rsv_window_dump(struct rb_root *root, int verbose, |
| const char *fn) |
| { |
| struct rb_node *n; |
| struct ext2_reserve_window_node *rsv, *prev; |
| int bad; |
| |
| restart: |
| n = rb_first(root); |
| bad = 0; |
| prev = NULL; |
| |
| printk("Block Allocation Reservation Windows Map (%s):\n", fn); |
| while (n) { |
| rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); |
| if (verbose) |
| printk("reservation window 0x%p " |
| "start: %lu, end: %lu\n", |
| rsv, rsv->rsv_start, rsv->rsv_end); |
| if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { |
| printk("Bad reservation %p (start >= end)\n", |
| rsv); |
| bad = 1; |
| } |
| if (prev && prev->rsv_end >= rsv->rsv_start) { |
| printk("Bad reservation %p (prev->end >= start)\n", |
| rsv); |
| bad = 1; |
| } |
| if (bad) { |
| if (!verbose) { |
| printk("Restarting reservation walk in verbose mode\n"); |
| verbose = 1; |
| goto restart; |
| } |
| } |
| n = rb_next(n); |
| prev = rsv; |
| } |
| printk("Window map complete.\n"); |
| BUG_ON(bad); |
| } |
| #define rsv_window_dump(root, verbose) \ |
| __rsv_window_dump((root), (verbose), __func__) |
| #else |
| #define rsv_window_dump(root, verbose) do {} while (0) |
| #endif |
| |
| /** |
| * goal_in_my_reservation() |
| * @rsv: inode's reservation window |
| * @grp_goal: given goal block relative to the allocation block group |
| * @group: the current allocation block group |
| * @sb: filesystem super block |
| * |
| * Test if the given goal block (group relative) is within the file's |
| * own block reservation window range. |
| * |
| * If the reservation window is outside the goal allocation group, return 0; |
| * grp_goal (given goal block) could be -1, which means no specific |
| * goal block. In this case, always return 1. |
| * If the goal block is within the reservation window, return 1; |
| * otherwise, return 0; |
| */ |
| static int |
| goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal, |
| unsigned int group, struct super_block * sb) |
| { |
| ext2_fsblk_t group_first_block, group_last_block; |
| |
| group_first_block = ext2_group_first_block_no(sb, group); |
| group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; |
| |
| if ((rsv->_rsv_start > group_last_block) || |
| (rsv->_rsv_end < group_first_block)) |
| return 0; |
| if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) |
| || (grp_goal + group_first_block > rsv->_rsv_end))) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * search_reserve_window() |
| * @rb_root: root of reservation tree |
| * @goal: target allocation block |
| * |
| * Find the reserved window which includes the goal, or the previous one |
| * if the goal is not in any window. |
| * Returns NULL if there are no windows or if all windows start after the goal. |
| */ |
| static struct ext2_reserve_window_node * |
| search_reserve_window(struct rb_root *root, ext2_fsblk_t goal) |
| { |
| struct rb_node *n = root->rb_node; |
| struct ext2_reserve_window_node *rsv; |
| |
| if (!n) |
| return NULL; |
| |
| do { |
| rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); |
| |
| if (goal < rsv->rsv_start) |
| n = n->rb_left; |
| else if (goal > rsv->rsv_end) |
| n = n->rb_right; |
| else |
| return rsv; |
| } while (n); |
| /* |
| * We've fallen off the end of the tree: the goal wasn't inside |
| * any particular node. OK, the previous node must be to one |
| * side of the interval containing the goal. If it's the RHS, |
| * we need to back up one. |
| */ |
| if (rsv->rsv_start > goal) { |
| n = rb_prev(&rsv->rsv_node); |
| rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); |
| } |
| return rsv; |
| } |
| |
| /* |
| * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree. |
| * @sb: super block |
| * @rsv: reservation window to add |
| * |
| * Must be called with rsv_lock held. |
| */ |
| void ext2_rsv_window_add(struct super_block *sb, |
| struct ext2_reserve_window_node *rsv) |
| { |
| struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; |
| struct rb_node *node = &rsv->rsv_node; |
| ext2_fsblk_t start = rsv->rsv_start; |
| |
| struct rb_node ** p = &root->rb_node; |
| struct rb_node * parent = NULL; |
| struct ext2_reserve_window_node *this; |
| |
| while (*p) |
| { |
| parent = *p; |
| this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); |
| |
| if (start < this->rsv_start) |
| p = &(*p)->rb_left; |
| else if (start > this->rsv_end) |
| p = &(*p)->rb_right; |
| else { |
| rsv_window_dump(root, 1); |
| BUG(); |
| } |
| } |
| |
| rb_link_node(node, parent, p); |
| rb_insert_color(node, root); |
| } |
| |
| /** |
| * rsv_window_remove() -- unlink a window from the reservation rb tree |
| * @sb: super block |
| * @rsv: reservation window to remove |
| * |
| * Mark the block reservation window as not allocated, and unlink it |
| * from the filesystem reservation window rb tree. Must be called with |
| * rsv_lock held. |
| */ |
| static void rsv_window_remove(struct super_block *sb, |
| struct ext2_reserve_window_node *rsv) |
| { |
| rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; |
| rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; |
| rsv->rsv_alloc_hit = 0; |
| rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); |
| } |
| |
| /* |
| * rsv_is_empty() -- Check if the reservation window is allocated. |
| * @rsv: given reservation window to check |
| * |
| * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED. |
| */ |
| static inline int rsv_is_empty(struct ext2_reserve_window *rsv) |
| { |
| /* a valid reservation end block could not be 0 */ |
| return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); |
| } |
| |
| /** |
| * ext2_init_block_alloc_info() |
| * @inode: file inode structure |
| * |
| * Allocate and initialize the reservation window structure, and |
| * link the window to the ext2 inode structure at last |
| * |
| * The reservation window structure is only dynamically allocated |
| * and linked to ext2 inode the first time the open file |
| * needs a new block. So, before every ext2_new_block(s) call, for |
| * regular files, we should check whether the reservation window |
| * structure exists or not. In the latter case, this function is called. |
| * Fail to do so will result in block reservation being turned off for that |
| * open file. |
| * |
| * This function is called from ext2_get_blocks_handle(), also called |
| * when setting the reservation window size through ioctl before the file |
| * is open for write (needs block allocation). |
| * |
| * Needs truncate_mutex protection prior to calling this function. |
| */ |
| void ext2_init_block_alloc_info(struct inode *inode) |
| { |
| struct ext2_inode_info *ei = EXT2_I(inode); |
| struct ext2_block_alloc_info *block_i; |
| struct super_block *sb = inode->i_sb; |
| |
| block_i = kmalloc(sizeof(*block_i), GFP_NOFS); |
| if (block_i) { |
| struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; |
| |
| rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; |
| rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; |
| |
| /* |
| * if filesystem is mounted with NORESERVATION, the goal |
| * reservation window size is set to zero to indicate |
| * block reservation is off |
| */ |
| if (!test_opt(sb, RESERVATION)) |
| rsv->rsv_goal_size = 0; |
| else |
| rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; |
| rsv->rsv_alloc_hit = 0; |
| block_i->last_alloc_logical_block = 0; |
| block_i->last_alloc_physical_block = 0; |
| } |
| ei->i_block_alloc_info = block_i; |
| } |
| |
| /** |
| * ext2_discard_reservation() |
| * @inode: inode |
| * |
| * Discard(free) block reservation window on last file close, or truncate |
| * or at last iput(). |
| * |
| * It is being called in three cases: |
| * ext2_release_file(): last writer closes the file |
| * ext2_clear_inode(): last iput(), when nobody links to this file. |
| * ext2_truncate(): when the block indirect map is about to change. |
| */ |
| void ext2_discard_reservation(struct inode *inode) |
| { |
| struct ext2_inode_info *ei = EXT2_I(inode); |
| struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; |
| struct ext2_reserve_window_node *rsv; |
| spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; |
| |
| if (!block_i) |
| return; |
| |
| rsv = &block_i->rsv_window_node; |
| if (!rsv_is_empty(&rsv->rsv_window)) { |
| spin_lock(rsv_lock); |
| if (!rsv_is_empty(&rsv->rsv_window)) |
| rsv_window_remove(inode->i_sb, rsv); |
| spin_unlock(rsv_lock); |
| } |
| } |
| |
| /** |
| * ext2_free_blocks() -- Free given blocks and update quota and i_blocks |
| * @inode: inode |
| * @block: start physical block to free |
| * @count: number of blocks to free |
| */ |
| void ext2_free_blocks (struct inode * inode, unsigned long block, |
| unsigned long count) |
| { |
| struct buffer_head *bitmap_bh = NULL; |
| struct buffer_head * bh2; |
| unsigned long block_group; |
| unsigned long bit; |
| unsigned long i; |
| unsigned long overflow; |
| struct super_block * sb = inode->i_sb; |
| struct ext2_sb_info * sbi = EXT2_SB(sb); |
| struct ext2_group_desc * desc; |
| struct ext2_super_block * es = sbi->s_es; |
| unsigned freed = 0, group_freed; |
| |
| if (!ext2_data_block_valid(sbi, block, count)) { |
| ext2_error (sb, "ext2_free_blocks", |
| "Freeing blocks not in datazone - " |
| "block = %lu, count = %lu", block, count); |
| goto error_return; |
| } |
| |
| ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); |
| |
| do_more: |
| overflow = 0; |
| block_group = (block - le32_to_cpu(es->s_first_data_block)) / |
| EXT2_BLOCKS_PER_GROUP(sb); |
| bit = (block - le32_to_cpu(es->s_first_data_block)) % |
| EXT2_BLOCKS_PER_GROUP(sb); |
| /* |
| * Check to see if we are freeing blocks across a group |
| * boundary. |
| */ |
| if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) { |
| overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb); |
| count -= overflow; |
| } |
| brelse(bitmap_bh); |
| bitmap_bh = read_block_bitmap(sb, block_group); |
| if (!bitmap_bh) |
| goto error_return; |
| |
| desc = ext2_get_group_desc (sb, block_group, &bh2); |
| if (!desc) |
| goto error_return; |
| |
| if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || |
| in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || |
| in_range (block, le32_to_cpu(desc->bg_inode_table), |
| sbi->s_itb_per_group) || |
| in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), |
| sbi->s_itb_per_group)) { |
| ext2_error (sb, "ext2_free_blocks", |
| "Freeing blocks in system zones - " |
| "Block = %lu, count = %lu", |
| block, count); |
| goto error_return; |
| } |
| |
| for (i = 0, group_freed = 0; i < count; i++) { |
| if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group), |
| bit + i, bitmap_bh->b_data)) { |
| ext2_error(sb, __func__, |
| "bit already cleared for block %lu", block + i); |
| } else { |
| group_freed++; |
| } |
| } |
| |
| mark_buffer_dirty(bitmap_bh); |
| if (sb->s_flags & SB_SYNCHRONOUS) |
| sync_dirty_buffer(bitmap_bh); |
| |
| group_adjust_blocks(sb, block_group, desc, bh2, group_freed); |
| freed += group_freed; |
| |
| if (overflow) { |
| block += count; |
| count = overflow; |
| goto do_more; |
| } |
| error_return: |
| brelse(bitmap_bh); |
| if (freed) { |
| percpu_counter_add(&sbi->s_freeblocks_counter, freed); |
| dquot_free_block_nodirty(inode, freed); |
| mark_inode_dirty(inode); |
| } |
| } |
| |
| /** |
| * bitmap_search_next_usable_block() |
| * @start: the starting block (group relative) of the search |
| * @bh: bufferhead contains the block group bitmap |
| * @maxblocks: the ending block (group relative) of the reservation |
| * |
| * The bitmap search --- search forward through the actual bitmap on disk until |
| * we find a bit free. |
| */ |
| static ext2_grpblk_t |
| bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh, |
| ext2_grpblk_t maxblocks) |
| { |
| ext2_grpblk_t next; |
| |
| next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); |
| if (next >= maxblocks) |
| return -1; |
| return next; |
| } |
| |
| /** |
| * find_next_usable_block() |
| * @start: the starting block (group relative) to find next |
| * allocatable block in bitmap. |
| * @bh: bufferhead contains the block group bitmap |
| * @maxblocks: the ending block (group relative) for the search |
| * |
| * Find an allocatable block in a bitmap. We perform the "most |
| * appropriate allocation" algorithm of looking for a free block near |
| * the initial goal; then for a free byte somewhere in the bitmap; |
| * then for any free bit in the bitmap. |
| */ |
| static ext2_grpblk_t |
| find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) |
| { |
| ext2_grpblk_t here, next; |
| char *p, *r; |
| |
| if (start > 0) { |
| /* |
| * The goal was occupied; search forward for a free |
| * block within the next XX blocks. |
| * |
| * end_goal is more or less random, but it has to be |
| * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the |
| * next 64-bit boundary is simple.. |
| */ |
| ext2_grpblk_t end_goal = (start + 63) & ~63; |
| if (end_goal > maxblocks) |
| end_goal = maxblocks; |
| here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); |
| if (here < end_goal) |
| return here; |
| ext2_debug("Bit not found near goal\n"); |
| } |
| |
| here = start; |
| if (here < 0) |
| here = 0; |
| |
| p = ((char *)bh->b_data) + (here >> 3); |
| r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); |
| next = (r - ((char *)bh->b_data)) << 3; |
| |
| if (next < maxblocks && next >= here) |
| return next; |
| |
| here = bitmap_search_next_usable_block(here, bh, maxblocks); |
| return here; |
| } |
| |
| /** |
| * ext2_try_to_allocate() |
| * @sb: superblock |
| * @group: given allocation block group |
| * @bitmap_bh: bufferhead holds the block bitmap |
| * @grp_goal: given target block within the group |
| * @count: target number of blocks to allocate |
| * @my_rsv: reservation window |
| * |
| * Attempt to allocate blocks within a give range. Set the range of allocation |
| * first, then find the first free bit(s) from the bitmap (within the range), |
| * and at last, allocate the blocks by claiming the found free bit as allocated. |
| * |
| * To set the range of this allocation: |
| * if there is a reservation window, only try to allocate block(s) |
| * from the file's own reservation window; |
| * Otherwise, the allocation range starts from the give goal block, |
| * ends at the block group's last block. |
| * |
| * If we failed to allocate the desired block then we may end up crossing to a |
| * new bitmap. |
| */ |
| static int |
| ext2_try_to_allocate(struct super_block *sb, int group, |
| struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, |
| unsigned long *count, |
| struct ext2_reserve_window *my_rsv) |
| { |
| ext2_fsblk_t group_first_block; |
| ext2_grpblk_t start, end; |
| unsigned long num = 0; |
| |
| /* we do allocation within the reservation window if we have a window */ |
| if (my_rsv) { |
| group_first_block = ext2_group_first_block_no(sb, group); |
| if (my_rsv->_rsv_start >= group_first_block) |
| start = my_rsv->_rsv_start - group_first_block; |
| else |
| /* reservation window cross group boundary */ |
| start = 0; |
| end = my_rsv->_rsv_end - group_first_block + 1; |
| if (end > EXT2_BLOCKS_PER_GROUP(sb)) |
| /* reservation window crosses group boundary */ |
| end = EXT2_BLOCKS_PER_GROUP(sb); |
| if ((start <= grp_goal) && (grp_goal < end)) |
| start = grp_goal; |
| else |
| grp_goal = -1; |
| } else { |
| if (grp_goal > 0) |
| start = grp_goal; |
| else |
| start = 0; |
| end = EXT2_BLOCKS_PER_GROUP(sb); |
| } |
| |
| BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); |
| |
| repeat: |
| if (grp_goal < 0) { |
| grp_goal = find_next_usable_block(start, bitmap_bh, end); |
| if (grp_goal < 0) |
| goto fail_access; |
| if (!my_rsv) { |
| int i; |
| |
| for (i = 0; i < 7 && grp_goal > start && |
| !ext2_test_bit(grp_goal - 1, |
| bitmap_bh->b_data); |
| i++, grp_goal--) |
| ; |
| } |
| } |
| start = grp_goal; |
| |
| if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal, |
| bitmap_bh->b_data)) { |
| /* |
| * The block was allocated by another thread, or it was |
| * allocated and then freed by another thread |
| */ |
| start++; |
| grp_goal++; |
| if (start >= end) |
| goto fail_access; |
| goto repeat; |
| } |
| num++; |
| grp_goal++; |
| while (num < *count && grp_goal < end |
| && !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), |
| grp_goal, bitmap_bh->b_data)) { |
| num++; |
| grp_goal++; |
| } |
| *count = num; |
| return grp_goal - num; |
| fail_access: |
| *count = num; |
| return -1; |
| } |
| |
| /** |
| * find_next_reservable_window(): |
| * find a reservable space within the given range. |
| * It does not allocate the reservation window for now: |
| * alloc_new_reservation() will do the work later. |
| * |
| * @search_head: the head of the searching list; |
| * This is not necessarily the list head of the whole filesystem |
| * |
| * We have both head and start_block to assist the search |
| * for the reservable space. The list starts from head, |
| * but we will shift to the place where start_block is, |
| * then start from there, when looking for a reservable space. |
| * |
| * @size: the target new reservation window size |
| * |
| * @group_first_block: the first block we consider to start |
| * the real search from |
| * |
| * @last_block: |
| * the maximum block number that our goal reservable space |
| * could start from. This is normally the last block in this |
| * group. The search will end when we found the start of next |
| * possible reservable space is out of this boundary. |
| * This could handle the cross boundary reservation window |
| * request. |
| * |
| * basically we search from the given range, rather than the whole |
| * reservation double linked list, (start_block, last_block) |
| * to find a free region that is of my size and has not |
| * been reserved. |
| * |
| */ |
| static int find_next_reservable_window( |
| struct ext2_reserve_window_node *search_head, |
| struct ext2_reserve_window_node *my_rsv, |
| struct super_block * sb, |
| ext2_fsblk_t start_block, |
| ext2_fsblk_t last_block) |
| { |
| struct rb_node *next; |
| struct ext2_reserve_window_node *rsv, *prev; |
| ext2_fsblk_t cur; |
| int size = my_rsv->rsv_goal_size; |
| |
| /* TODO: make the start of the reservation window byte-aligned */ |
| /* cur = *start_block & ~7;*/ |
| cur = start_block; |
| rsv = search_head; |
| if (!rsv) |
| return -1; |
| |
| while (1) { |
| if (cur <= rsv->rsv_end) |
| cur = rsv->rsv_end + 1; |
| |
| /* TODO? |
| * in the case we could not find a reservable space |
| * that is what is expected, during the re-search, we could |
| * remember what's the largest reservable space we could have |
| * and return that one. |
| * |
| * For now it will fail if we could not find the reservable |
| * space with expected-size (or more)... |
| */ |
| if (cur > last_block) |
| return -1; /* fail */ |
| |
| prev = rsv; |
| next = rb_next(&rsv->rsv_node); |
| rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node); |
| |
| /* |
| * Reached the last reservation, we can just append to the |
| * previous one. |
| */ |
| if (!next) |
| break; |
| |
| if (cur + size <= rsv->rsv_start) { |
| /* |
| * Found a reserveable space big enough. We could |
| * have a reservation across the group boundary here |
| */ |
| break; |
| } |
| } |
| /* |
| * we come here either : |
| * when we reach the end of the whole list, |
| * and there is empty reservable space after last entry in the list. |
| * append it to the end of the list. |
| * |
| * or we found one reservable space in the middle of the list, |
| * return the reservation window that we could append to. |
| * succeed. |
| */ |
| |
| if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) |
| rsv_window_remove(sb, my_rsv); |
| |
| /* |
| * Let's book the whole available window for now. We will check the |
| * disk bitmap later and then, if there are free blocks then we adjust |
| * the window size if it's larger than requested. |
| * Otherwise, we will remove this node from the tree next time |
| * call find_next_reservable_window. |
| */ |
| my_rsv->rsv_start = cur; |
| my_rsv->rsv_end = cur + size - 1; |
| my_rsv->rsv_alloc_hit = 0; |
| |
| if (prev != my_rsv) |
| ext2_rsv_window_add(sb, my_rsv); |
| |
| return 0; |
| } |
| |
| /** |
| * alloc_new_reservation()--allocate a new reservation window |
| * |
| * To make a new reservation, we search part of the filesystem |
| * reservation list (the list that inside the group). We try to |
| * allocate a new reservation window near the allocation goal, |
| * or the beginning of the group, if there is no goal. |
| * |
| * We first find a reservable space after the goal, then from |
| * there, we check the bitmap for the first free block after |
| * it. If there is no free block until the end of group, then the |
| * whole group is full, we failed. Otherwise, check if the free |
| * block is inside the expected reservable space, if so, we |
| * succeed. |
| * If the first free block is outside the reservable space, then |
| * start from the first free block, we search for next available |
| * space, and go on. |
| * |
| * on succeed, a new reservation will be found and inserted into the list |
| * It contains at least one free block, and it does not overlap with other |
| * reservation windows. |
| * |
| * failed: we failed to find a reservation window in this group |
| * |
| * @rsv: the reservation |
| * |
| * @grp_goal: The goal (group-relative). It is where the search for a |
| * free reservable space should start from. |
| * if we have a goal(goal >0 ), then start from there, |
| * no goal(goal = -1), we start from the first block |
| * of the group. |
| * |
| * @sb: the super block |
| * @group: the group we are trying to allocate in |
| * @bitmap_bh: the block group block bitmap |
| * |
| */ |
| static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, |
| ext2_grpblk_t grp_goal, struct super_block *sb, |
| unsigned int group, struct buffer_head *bitmap_bh) |
| { |
| struct ext2_reserve_window_node *search_head; |
| ext2_fsblk_t group_first_block, group_end_block, start_block; |
| ext2_grpblk_t first_free_block; |
| struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; |
| unsigned long size; |
| int ret; |
| spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; |
| |
| group_first_block = ext2_group_first_block_no(sb, group); |
| group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); |
| |
| if (grp_goal < 0) |
| start_block = group_first_block; |
| else |
| start_block = grp_goal + group_first_block; |
| |
| size = my_rsv->rsv_goal_size; |
| |
| if (!rsv_is_empty(&my_rsv->rsv_window)) { |
| /* |
| * if the old reservation is cross group boundary |
| * and if the goal is inside the old reservation window, |
| * we will come here when we just failed to allocate from |
| * the first part of the window. We still have another part |
| * that belongs to the next group. In this case, there is no |
| * point to discard our window and try to allocate a new one |
| * in this group(which will fail). we should |
| * keep the reservation window, just simply move on. |
| * |
| * Maybe we could shift the start block of the reservation |
| * window to the first block of next group. |
| */ |
| |
| if ((my_rsv->rsv_start <= group_end_block) && |
| (my_rsv->rsv_end > group_end_block) && |
| (start_block >= my_rsv->rsv_start)) |
| return -1; |
| |
| if ((my_rsv->rsv_alloc_hit > |
| (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { |
| /* |
| * if the previously allocation hit ratio is |
| * greater than 1/2, then we double the size of |
| * the reservation window the next time, |
| * otherwise we keep the same size window |
| */ |
| size = size * 2; |
| if (size > EXT2_MAX_RESERVE_BLOCKS) |
| size = EXT2_MAX_RESERVE_BLOCKS; |
| my_rsv->rsv_goal_size= size; |
| } |
| } |
| |
| spin_lock(rsv_lock); |
| /* |
| * shift the search start to the window near the goal block |
| */ |
| search_head = search_reserve_window(fs_rsv_root, start_block); |
| |
| /* |
| * find_next_reservable_window() simply finds a reservable window |
| * inside the given range(start_block, group_end_block). |
| * |
| * To make sure the reservation window has a free bit inside it, we |
| * need to check the bitmap after we found a reservable window. |
| */ |
| retry: |
| ret = find_next_reservable_window(search_head, my_rsv, sb, |
| start_block, group_end_block); |
| |
| if (ret == -1) { |
| if (!rsv_is_empty(&my_rsv->rsv_window)) |
| rsv_window_remove(sb, my_rsv); |
| spin_unlock(rsv_lock); |
| return -1; |
| } |
| |
| /* |
| * On success, find_next_reservable_window() returns the |
| * reservation window where there is a reservable space after it. |
| * Before we reserve this reservable space, we need |
| * to make sure there is at least a free block inside this region. |
| * |
| * Search the first free bit on the block bitmap. Search starts from |
| * the start block of the reservable space we just found. |
| */ |
| spin_unlock(rsv_lock); |
| first_free_block = bitmap_search_next_usable_block( |
| my_rsv->rsv_start - group_first_block, |
| bitmap_bh, group_end_block - group_first_block + 1); |
| |
| if (first_free_block < 0) { |
| /* |
| * no free block left on the bitmap, no point |
| * to reserve the space. return failed. |
| */ |
| spin_lock(rsv_lock); |
| if (!rsv_is_empty(&my_rsv->rsv_window)) |
| rsv_window_remove(sb, my_rsv); |
| spin_unlock(rsv_lock); |
| return -1; /* failed */ |
| } |
| |
| start_block = first_free_block + group_first_block; |
| /* |
| * check if the first free block is within the |
| * free space we just reserved |
| */ |
| if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) |
| return 0; /* success */ |
| /* |
| * if the first free bit we found is out of the reservable space |
| * continue search for next reservable space, |
| * start from where the free block is, |
| * we also shift the list head to where we stopped last time |
| */ |
| search_head = my_rsv; |
| spin_lock(rsv_lock); |
| goto retry; |
| } |
| |
| /** |
| * try_to_extend_reservation() |
| * @my_rsv: given reservation window |
| * @sb: super block |
| * @size: the delta to extend |
| * |
| * Attempt to expand the reservation window large enough to have |
| * required number of free blocks |
| * |
| * Since ext2_try_to_allocate() will always allocate blocks within |
| * the reservation window range, if the window size is too small, |
| * multiple blocks allocation has to stop at the end of the reservation |
| * window. To make this more efficient, given the total number of |
| * blocks needed and the current size of the window, we try to |
| * expand the reservation window size if necessary on a best-effort |
| * basis before ext2_new_blocks() tries to allocate blocks. |
| */ |
| static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, |
| struct super_block *sb, int size) |
| { |
| struct ext2_reserve_window_node *next_rsv; |
| struct rb_node *next; |
| spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; |
| |
| if (!spin_trylock(rsv_lock)) |
| return; |
| |
| next = rb_next(&my_rsv->rsv_node); |
| |
| if (!next) |
| my_rsv->rsv_end += size; |
| else { |
| next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node); |
| |
| if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) |
| my_rsv->rsv_end += size; |
| else |
| my_rsv->rsv_end = next_rsv->rsv_start - 1; |
| } |
| spin_unlock(rsv_lock); |
| } |
| |
| /** |
| * ext2_try_to_allocate_with_rsv() |
| * @sb: superblock |
| * @group: given allocation block group |
| * @bitmap_bh: bufferhead holds the block bitmap |
| * @grp_goal: given target block within the group |
| * @count: target number of blocks to allocate |
| * @my_rsv: reservation window |
| * |
| * This is the main function used to allocate a new block and its reservation |
| * window. |
| * |
| * Each time when a new block allocation is need, first try to allocate from |
| * its own reservation. If it does not have a reservation window, instead of |
| * looking for a free bit on bitmap first, then look up the reservation list to |
| * see if it is inside somebody else's reservation window, we try to allocate a |
| * reservation window for it starting from the goal first. Then do the block |
| * allocation within the reservation window. |
| * |
| * This will avoid keeping on searching the reservation list again and |
| * again when somebody is looking for a free block (without |
| * reservation), and there are lots of free blocks, but they are all |
| * being reserved. |
| * |
| * We use a red-black tree for the per-filesystem reservation list. |
| */ |
| static ext2_grpblk_t |
| ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group, |
| struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, |
| struct ext2_reserve_window_node * my_rsv, |
| unsigned long *count) |
| { |
| ext2_fsblk_t group_first_block, group_last_block; |
| ext2_grpblk_t ret = 0; |
| unsigned long num = *count; |
| |
| /* |
| * we don't deal with reservation when |
| * filesystem is mounted without reservation |
| * or the file is not a regular file |
| * or last attempt to allocate a block with reservation turned on failed |
| */ |
| if (my_rsv == NULL) { |
| return ext2_try_to_allocate(sb, group, bitmap_bh, |
| grp_goal, count, NULL); |
| } |
| /* |
| * grp_goal is a group relative block number (if there is a goal) |
| * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb) |
| * first block is a filesystem wide block number |
| * first block is the block number of the first block in this group |
| */ |
| group_first_block = ext2_group_first_block_no(sb, group); |
| group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); |
| |
| /* |
| * Basically we will allocate a new block from inode's reservation |
| * window. |
| * |
| * We need to allocate a new reservation window, if: |
| * a) inode does not have a reservation window; or |
| * b) last attempt to allocate a block from existing reservation |
| * failed; or |
| * c) we come here with a goal and with a reservation window |
| * |
| * We do not need to allocate a new reservation window if we come here |
| * at the beginning with a goal and the goal is inside the window, or |
| * we don't have a goal but already have a reservation window. |
| * then we could go to allocate from the reservation window directly. |
| */ |
| while (1) { |
| if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || |
| !goal_in_my_reservation(&my_rsv->rsv_window, |
| grp_goal, group, sb)) { |
| if (my_rsv->rsv_goal_size < *count) |
| my_rsv->rsv_goal_size = *count; |
| ret = alloc_new_reservation(my_rsv, grp_goal, sb, |
| group, bitmap_bh); |
| if (ret < 0) |
| break; /* failed */ |
| |
| if (!goal_in_my_reservation(&my_rsv->rsv_window, |
| grp_goal, group, sb)) |
| grp_goal = -1; |
| } else if (grp_goal >= 0) { |
| int curr = my_rsv->rsv_end - |
| (grp_goal + group_first_block) + 1; |
| |
| if (curr < *count) |
| try_to_extend_reservation(my_rsv, sb, |
| *count - curr); |
| } |
| |
| if ((my_rsv->rsv_start > group_last_block) || |
| (my_rsv->rsv_end < group_first_block)) { |
| rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1); |
| BUG(); |
| } |
| ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal, |
| &num, &my_rsv->rsv_window); |
| if (ret >= 0) { |
| my_rsv->rsv_alloc_hit += num; |
| *count = num; |
| break; /* succeed */ |
| } |
| num = *count; |
| } |
| return ret; |
| } |
| |
| /** |
| * ext2_has_free_blocks() |
| * @sbi: in-core super block structure. |
| * |
| * Check if filesystem has at least 1 free block available for allocation. |
| */ |
| static int ext2_has_free_blocks(struct ext2_sb_info *sbi) |
| { |
| ext2_fsblk_t free_blocks, root_blocks; |
| |
| free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); |
| root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); |
| if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && |
| !uid_eq(sbi->s_resuid, current_fsuid()) && |
| (gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) || |
| !in_group_p (sbi->s_resgid))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Returns 1 if the passed-in block region is valid; 0 if some part overlaps |
| * with filesystem metadata blocks. |
| */ |
| int ext2_data_block_valid(struct ext2_sb_info *sbi, ext2_fsblk_t start_blk, |
| unsigned int count) |
| { |
| if ((start_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || |
| (start_blk + count - 1 < start_blk) || |
| (start_blk + count - 1 >= le32_to_cpu(sbi->s_es->s_blocks_count))) |
| return 0; |
| |
| /* Ensure we do not step over superblock */ |
| if ((start_blk <= sbi->s_sb_block) && |
| (start_blk + count - 1 >= sbi->s_sb_block)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * ext2_new_blocks() -- core block(s) allocation function |
| * @inode: file inode |
| * @goal: given target block(filesystem wide) |
| * @count: target number of blocks to allocate |
| * @errp: error code |
| * |
| * ext2_new_blocks uses a goal block to assist allocation. If the goal is |
| * free, or there is a free block within 32 blocks of the goal, that block |
| * is allocated. Otherwise a forward search is made for a free block; within |
| * each block group the search first looks for an entire free byte in the block |
| * bitmap, and then for any free bit if that fails. |
| * This function also updates quota and i_blocks field. |
| */ |
| ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal, |
| unsigned long *count, int *errp) |
| { |
| struct buffer_head *bitmap_bh = NULL; |
| struct buffer_head *gdp_bh; |
| int group_no; |
| int goal_group; |
| ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */ |
| ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ |
| ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */ |
| int bgi; /* blockgroup iteration index */ |
| int performed_allocation = 0; |
| ext2_grpblk_t free_blocks; /* number of free blocks in a group */ |
| struct super_block *sb; |
| struct ext2_group_desc *gdp; |
| struct ext2_super_block *es; |
| struct ext2_sb_info *sbi; |
| struct ext2_reserve_window_node *my_rsv = NULL; |
| struct ext2_block_alloc_info *block_i; |
| unsigned short windowsz = 0; |
| unsigned long ngroups; |
| unsigned long num = *count; |
| int ret; |
| |
| *errp = -ENOSPC; |
| sb = inode->i_sb; |
| |
| /* |
| * Check quota for allocation of this block. |
| */ |
| ret = dquot_alloc_block(inode, num); |
| if (ret) { |
| *errp = ret; |
| return 0; |
| } |
| |
| sbi = EXT2_SB(sb); |
| es = EXT2_SB(sb)->s_es; |
| ext2_debug("goal=%lu.\n", goal); |
| /* |
| * Allocate a block from reservation only when |
| * filesystem is mounted with reservation(default,-o reservation), and |
| * it's a regular file, and |
| * the desired window size is greater than 0 (One could use ioctl |
| * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off |
| * reservation on that particular file) |
| */ |
| block_i = EXT2_I(inode)->i_block_alloc_info; |
| if (block_i) { |
| windowsz = block_i->rsv_window_node.rsv_goal_size; |
| if (windowsz > 0) |
| my_rsv = &block_i->rsv_window_node; |
| } |
| |
| if (!ext2_has_free_blocks(sbi)) { |
| *errp = -ENOSPC; |
| goto out; |
| } |
| |
| /* |
| * First, test whether the goal block is free. |
| */ |
| if (goal < le32_to_cpu(es->s_first_data_block) || |
| goal >= le32_to_cpu(es->s_blocks_count)) |
| goal = le32_to_cpu(es->s_first_data_block); |
| group_no = (goal - le32_to_cpu(es->s_first_data_block)) / |
| EXT2_BLOCKS_PER_GROUP(sb); |
| goal_group = group_no; |
| retry_alloc: |
| gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); |
| if (!gdp) |
| goto io_error; |
| |
| free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); |
| /* |
| * if there is not enough free blocks to make a new resevation |
| * turn off reservation for this allocation |
| */ |
| if (my_rsv && (free_blocks < windowsz) |
| && (free_blocks > 0) |
| && (rsv_is_empty(&my_rsv->rsv_window))) |
| my_rsv = NULL; |
| |
| if (free_blocks > 0) { |
| grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) % |
| EXT2_BLOCKS_PER_GROUP(sb)); |
| bitmap_bh = read_block_bitmap(sb, group_no); |
| if (!bitmap_bh) |
| goto io_error; |
| grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, |
| bitmap_bh, grp_target_blk, |
| my_rsv, &num); |
| if (grp_alloc_blk >= 0) |
| goto allocated; |
| } |
| |
| ngroups = EXT2_SB(sb)->s_groups_count; |
| smp_rmb(); |
| |
| /* |
| * Now search the rest of the groups. We assume that |
| * group_no and gdp correctly point to the last group visited. |
| */ |
| for (bgi = 0; bgi < ngroups; bgi++) { |
| group_no++; |
| if (group_no >= ngroups) |
| group_no = 0; |
| gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); |
| if (!gdp) |
| goto io_error; |
| |
| free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); |
| /* |
| * skip this group (and avoid loading bitmap) if there |
| * are no free blocks |
| */ |
| if (!free_blocks) |
| continue; |
| /* |
| * skip this group if the number of |
| * free blocks is less than half of the reservation |
| * window size. |
| */ |
| if (my_rsv && (free_blocks <= (windowsz/2))) |
| continue; |
| |
| brelse(bitmap_bh); |
| bitmap_bh = read_block_bitmap(sb, group_no); |
| if (!bitmap_bh) |
| goto io_error; |
| /* |
| * try to allocate block(s) from this group, without a goal(-1). |
| */ |
| grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, |
| bitmap_bh, -1, my_rsv, &num); |
| if (grp_alloc_blk >= 0) |
| goto allocated; |
| } |
| /* |
| * We may end up a bogus earlier ENOSPC error due to |
| * filesystem is "full" of reservations, but |
| * there maybe indeed free blocks available on disk |
| * In this case, we just forget about the reservations |
| * just do block allocation as without reservations. |
| */ |
| if (my_rsv) { |
| my_rsv = NULL; |
| windowsz = 0; |
| group_no = goal_group; |
| goto retry_alloc; |
| } |
| /* No space left on the device */ |
| *errp = -ENOSPC; |
| goto out; |
| |
| allocated: |
| |
| ext2_debug("using block group %d(%d)\n", |
| group_no, gdp->bg_free_blocks_count); |
| |
| ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no); |
| |
| if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) || |
| in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) || |
| in_range(ret_block, le32_to_cpu(gdp->bg_inode_table), |
| EXT2_SB(sb)->s_itb_per_group) || |
| in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table), |
| EXT2_SB(sb)->s_itb_per_group)) { |
| ext2_error(sb, "ext2_new_blocks", |
| "Allocating block in system zone - " |
| "blocks from "E2FSBLK", length %lu", |
| ret_block, num); |
| /* |
| * ext2_try_to_allocate marked the blocks we allocated as in |
| * use. So we may want to selectively mark some of the blocks |
| * as free |
| */ |
| goto retry_alloc; |
| } |
| |
| performed_allocation = 1; |
| |
| if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { |
| ext2_error(sb, "ext2_new_blocks", |
| "block("E2FSBLK") >= blocks count(%d) - " |
| "block_group = %d, es == %p ", ret_block, |
| le32_to_cpu(es->s_blocks_count), group_no, es); |
| goto out; |
| } |
| |
| group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num); |
| percpu_counter_sub(&sbi->s_freeblocks_counter, num); |
| |
| mark_buffer_dirty(bitmap_bh); |
| if (sb->s_flags & SB_SYNCHRONOUS) |
| sync_dirty_buffer(bitmap_bh); |
| |
| *errp = 0; |
| brelse(bitmap_bh); |
| if (num < *count) { |
| dquot_free_block_nodirty(inode, *count-num); |
| mark_inode_dirty(inode); |
| *count = num; |
| } |
| return ret_block; |
| |
| io_error: |
| *errp = -EIO; |
| out: |
| /* |
| * Undo the block allocation |
| */ |
| if (!performed_allocation) { |
| dquot_free_block_nodirty(inode, *count); |
| mark_inode_dirty(inode); |
| } |
| brelse(bitmap_bh); |
| return 0; |
| } |
| |
| ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp) |
| { |
| unsigned long count = 1; |
| |
| return ext2_new_blocks(inode, goal, &count, errp); |
| } |
| |
| #ifdef EXT2FS_DEBUG |
| |
| unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars) |
| { |
| return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars); |
| } |
| |
| #endif /* EXT2FS_DEBUG */ |
| |
| unsigned long ext2_count_free_blocks (struct super_block * sb) |
| { |
| struct ext2_group_desc * desc; |
| unsigned long desc_count = 0; |
| int i; |
| #ifdef EXT2FS_DEBUG |
| unsigned long bitmap_count, x; |
| struct ext2_super_block *es; |
| |
| es = EXT2_SB(sb)->s_es; |
| desc_count = 0; |
| bitmap_count = 0; |
| desc = NULL; |
| for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { |
| struct buffer_head *bitmap_bh; |
| desc = ext2_get_group_desc (sb, i, NULL); |
| if (!desc) |
| continue; |
| desc_count += le16_to_cpu(desc->bg_free_blocks_count); |
| bitmap_bh = read_block_bitmap(sb, i); |
| if (!bitmap_bh) |
| continue; |
| |
| x = ext2_count_free(bitmap_bh, sb->s_blocksize); |
| printk ("group %d: stored = %d, counted = %lu\n", |
| i, le16_to_cpu(desc->bg_free_blocks_count), x); |
| bitmap_count += x; |
| brelse(bitmap_bh); |
| } |
| printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n", |
| (long)le32_to_cpu(es->s_free_blocks_count), |
| desc_count, bitmap_count); |
| return bitmap_count; |
| #else |
| for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { |
| desc = ext2_get_group_desc (sb, i, NULL); |
| if (!desc) |
| continue; |
| desc_count += le16_to_cpu(desc->bg_free_blocks_count); |
| } |
| return desc_count; |
| #endif |
| } |
| |
| static inline int test_root(int a, int b) |
| { |
| int num = b; |
| |
| while (a > num) |
| num *= b; |
| return num == a; |
| } |
| |
| static int ext2_group_sparse(int group) |
| { |
| if (group <= 1) |
| return 1; |
| return (test_root(group, 3) || test_root(group, 5) || |
| test_root(group, 7)); |
| } |
| |
| /** |
| * ext2_bg_has_super - number of blocks used by the superblock in group |
| * @sb: superblock for filesystem |
| * @group: group number to check |
| * |
| * Return the number of blocks used by the superblock (primary or backup) |
| * in this group. Currently this will be only 0 or 1. |
| */ |
| int ext2_bg_has_super(struct super_block *sb, int group) |
| { |
| if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& |
| !ext2_group_sparse(group)) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * ext2_bg_num_gdb - number of blocks used by the group table in group |
| * @sb: superblock for filesystem |
| * @group: group number to check |
| * |
| * Return the number of blocks used by the group descriptor table |
| * (primary or backup) in this group. In the future there may be a |
| * different number of descriptor blocks in each group. |
| */ |
| unsigned long ext2_bg_num_gdb(struct super_block *sb, int group) |
| { |
| return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0; |
| } |
| |