|  | /* | 
|  | * Read-Copy Update mechanism for mutual exclusion | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, you can access it online at | 
|  | * http://www.gnu.org/licenses/gpl-2.0.html. | 
|  | * | 
|  | * Copyright IBM Corporation, 2001 | 
|  | * | 
|  | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
|  | *	    Manfred Spraul <manfred@colorfullife.com> | 
|  | * | 
|  | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 
|  | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
|  | * Papers: | 
|  | * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | 
|  | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 
|  | * | 
|  | * For detailed explanation of Read-Copy Update mechanism see - | 
|  | *		http://lse.sourceforge.net/locking/rcupdate.html | 
|  | * | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/tick.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  |  | 
|  | #include "rcu.h" | 
|  |  | 
|  | MODULE_ALIAS("rcupdate"); | 
|  | #ifdef MODULE_PARAM_PREFIX | 
|  | #undef MODULE_PARAM_PREFIX | 
|  | #endif | 
|  | #define MODULE_PARAM_PREFIX "rcupdate." | 
|  |  | 
|  | module_param(rcu_expedited, int, 0); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT) | 
|  | /** | 
|  | * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? | 
|  | * | 
|  | * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an | 
|  | * RCU-sched read-side critical section.  In absence of | 
|  | * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side | 
|  | * critical section unless it can prove otherwise.  Note that disabling | 
|  | * of preemption (including disabling irqs) counts as an RCU-sched | 
|  | * read-side critical section.  This is useful for debug checks in functions | 
|  | * that required that they be called within an RCU-sched read-side | 
|  | * critical section. | 
|  | * | 
|  | * Check debug_lockdep_rcu_enabled() to prevent false positives during boot | 
|  | * and while lockdep is disabled. | 
|  | * | 
|  | * Note that if the CPU is in the idle loop from an RCU point of | 
|  | * view (ie: that we are in the section between rcu_idle_enter() and | 
|  | * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU | 
|  | * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs | 
|  | * that are in such a section, considering these as in extended quiescent | 
|  | * state, so such a CPU is effectively never in an RCU read-side critical | 
|  | * section regardless of what RCU primitives it invokes.  This state of | 
|  | * affairs is required --- we need to keep an RCU-free window in idle | 
|  | * where the CPU may possibly enter into low power mode. This way we can | 
|  | * notice an extended quiescent state to other CPUs that started a grace | 
|  | * period. Otherwise we would delay any grace period as long as we run in | 
|  | * the idle task. | 
|  | * | 
|  | * Similarly, we avoid claiming an SRCU read lock held if the current | 
|  | * CPU is offline. | 
|  | */ | 
|  | int rcu_read_lock_sched_held(void) | 
|  | { | 
|  | int lockdep_opinion = 0; | 
|  |  | 
|  | if (!debug_lockdep_rcu_enabled()) | 
|  | return 1; | 
|  | if (!rcu_is_watching()) | 
|  | return 0; | 
|  | if (!rcu_lockdep_current_cpu_online()) | 
|  | return 0; | 
|  | if (debug_locks) | 
|  | lockdep_opinion = lock_is_held(&rcu_sched_lock_map); | 
|  | return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); | 
|  | } | 
|  | EXPORT_SYMBOL(rcu_read_lock_sched_held); | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_TINY_RCU | 
|  |  | 
|  | static atomic_t rcu_expedited_nesting = | 
|  | ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); | 
|  |  | 
|  | /* | 
|  | * Should normal grace-period primitives be expedited?  Intended for | 
|  | * use within RCU.  Note that this function takes the rcu_expedited | 
|  | * sysfs/boot variable into account as well as the rcu_expedite_gp() | 
|  | * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() | 
|  | * returns false is a -really- bad idea. | 
|  | */ | 
|  | bool rcu_gp_is_expedited(void) | 
|  | { | 
|  | return rcu_expedited || atomic_read(&rcu_expedited_nesting); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); | 
|  |  | 
|  | /** | 
|  | * rcu_expedite_gp - Expedite future RCU grace periods | 
|  | * | 
|  | * After a call to this function, future calls to synchronize_rcu() and | 
|  | * friends act as the corresponding synchronize_rcu_expedited() function | 
|  | * had instead been called. | 
|  | */ | 
|  | void rcu_expedite_gp(void) | 
|  | { | 
|  | atomic_inc(&rcu_expedited_nesting); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_expedite_gp); | 
|  |  | 
|  | /** | 
|  | * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation | 
|  | * | 
|  | * Undo a prior call to rcu_expedite_gp().  If all prior calls to | 
|  | * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), | 
|  | * and if the rcu_expedited sysfs/boot parameter is not set, then all | 
|  | * subsequent calls to synchronize_rcu() and friends will return to | 
|  | * their normal non-expedited behavior. | 
|  | */ | 
|  | void rcu_unexpedite_gp(void) | 
|  | { | 
|  | atomic_dec(&rcu_expedited_nesting); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); | 
|  |  | 
|  | #endif /* #ifndef CONFIG_TINY_RCU */ | 
|  |  | 
|  | /* | 
|  | * Inform RCU of the end of the in-kernel boot sequence. | 
|  | */ | 
|  | void rcu_end_inkernel_boot(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) | 
|  | rcu_unexpedite_gp(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_RCU | 
|  |  | 
|  | /* | 
|  | * Preemptible RCU implementation for rcu_read_lock(). | 
|  | * Just increment ->rcu_read_lock_nesting, shared state will be updated | 
|  | * if we block. | 
|  | */ | 
|  | void __rcu_read_lock(void) | 
|  | { | 
|  | current->rcu_read_lock_nesting++; | 
|  | barrier();  /* critical section after entry code. */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 
|  |  | 
|  | /* | 
|  | * Preemptible RCU implementation for rcu_read_unlock(). | 
|  | * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost | 
|  | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 
|  | * invoke rcu_read_unlock_special() to clean up after a context switch | 
|  | * in an RCU read-side critical section and other special cases. | 
|  | */ | 
|  | void __rcu_read_unlock(void) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | if (t->rcu_read_lock_nesting != 1) { | 
|  | --t->rcu_read_lock_nesting; | 
|  | } else { | 
|  | barrier();  /* critical section before exit code. */ | 
|  | t->rcu_read_lock_nesting = INT_MIN; | 
|  | barrier();  /* assign before ->rcu_read_unlock_special load */ | 
|  | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) | 
|  | rcu_read_unlock_special(t); | 
|  | barrier();  /* ->rcu_read_unlock_special load before assign */ | 
|  | t->rcu_read_lock_nesting = 0; | 
|  | } | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | { | 
|  | int rrln = READ_ONCE(t->rcu_read_lock_nesting); | 
|  |  | 
|  | WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); | 
|  | } | 
|  | #endif /* #ifdef CONFIG_PROVE_LOCKING */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 
|  |  | 
|  | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | static struct lock_class_key rcu_lock_key; | 
|  | struct lockdep_map rcu_lock_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | 
|  | EXPORT_SYMBOL_GPL(rcu_lock_map); | 
|  |  | 
|  | static struct lock_class_key rcu_bh_lock_key; | 
|  | struct lockdep_map rcu_bh_lock_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); | 
|  | EXPORT_SYMBOL_GPL(rcu_bh_lock_map); | 
|  |  | 
|  | static struct lock_class_key rcu_sched_lock_key; | 
|  | struct lockdep_map rcu_sched_lock_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); | 
|  | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); | 
|  |  | 
|  | static struct lock_class_key rcu_callback_key; | 
|  | struct lockdep_map rcu_callback_map = | 
|  | STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); | 
|  | EXPORT_SYMBOL_GPL(rcu_callback_map); | 
|  |  | 
|  | int notrace debug_lockdep_rcu_enabled(void) | 
|  | { | 
|  | return rcu_scheduler_active && debug_locks && | 
|  | current->lockdep_recursion == 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); | 
|  |  | 
|  | /** | 
|  | * rcu_read_lock_held() - might we be in RCU read-side critical section? | 
|  | * | 
|  | * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU | 
|  | * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC, | 
|  | * this assumes we are in an RCU read-side critical section unless it can | 
|  | * prove otherwise.  This is useful for debug checks in functions that | 
|  | * require that they be called within an RCU read-side critical section. | 
|  | * | 
|  | * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot | 
|  | * and while lockdep is disabled. | 
|  | * | 
|  | * Note that rcu_read_lock() and the matching rcu_read_unlock() must | 
|  | * occur in the same context, for example, it is illegal to invoke | 
|  | * rcu_read_unlock() in process context if the matching rcu_read_lock() | 
|  | * was invoked from within an irq handler. | 
|  | * | 
|  | * Note that rcu_read_lock() is disallowed if the CPU is either idle or | 
|  | * offline from an RCU perspective, so check for those as well. | 
|  | */ | 
|  | int rcu_read_lock_held(void) | 
|  | { | 
|  | if (!debug_lockdep_rcu_enabled()) | 
|  | return 1; | 
|  | if (!rcu_is_watching()) | 
|  | return 0; | 
|  | if (!rcu_lockdep_current_cpu_online()) | 
|  | return 0; | 
|  | return lock_is_held(&rcu_lock_map); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_read_lock_held); | 
|  |  | 
|  | /** | 
|  | * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? | 
|  | * | 
|  | * Check for bottom half being disabled, which covers both the | 
|  | * CONFIG_PROVE_RCU and not cases.  Note that if someone uses | 
|  | * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) | 
|  | * will show the situation.  This is useful for debug checks in functions | 
|  | * that require that they be called within an RCU read-side critical | 
|  | * section. | 
|  | * | 
|  | * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. | 
|  | * | 
|  | * Note that rcu_read_lock() is disallowed if the CPU is either idle or | 
|  | * offline from an RCU perspective, so check for those as well. | 
|  | */ | 
|  | int rcu_read_lock_bh_held(void) | 
|  | { | 
|  | if (!debug_lockdep_rcu_enabled()) | 
|  | return 1; | 
|  | if (!rcu_is_watching()) | 
|  | return 0; | 
|  | if (!rcu_lockdep_current_cpu_online()) | 
|  | return 0; | 
|  | return in_softirq() || irqs_disabled(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); | 
|  |  | 
|  | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | 
|  |  | 
|  | /** | 
|  | * wakeme_after_rcu() - Callback function to awaken a task after grace period | 
|  | * @head: Pointer to rcu_head member within rcu_synchronize structure | 
|  | * | 
|  | * Awaken the corresponding task now that a grace period has elapsed. | 
|  | */ | 
|  | void wakeme_after_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct rcu_synchronize *rcu; | 
|  |  | 
|  | rcu = container_of(head, struct rcu_synchronize, head); | 
|  | complete(&rcu->completion); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(wakeme_after_rcu); | 
|  |  | 
|  | void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, | 
|  | struct rcu_synchronize *rs_array) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Initialize and register callbacks for each flavor specified. */ | 
|  | for (i = 0; i < n; i++) { | 
|  | if (checktiny && | 
|  | (crcu_array[i] == call_rcu || | 
|  | crcu_array[i] == call_rcu_bh)) { | 
|  | might_sleep(); | 
|  | continue; | 
|  | } | 
|  | init_rcu_head_on_stack(&rs_array[i].head); | 
|  | init_completion(&rs_array[i].completion); | 
|  | (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); | 
|  | } | 
|  |  | 
|  | /* Wait for all callbacks to be invoked. */ | 
|  | for (i = 0; i < n; i++) { | 
|  | if (checktiny && | 
|  | (crcu_array[i] == call_rcu || | 
|  | crcu_array[i] == call_rcu_bh)) | 
|  | continue; | 
|  | wait_for_completion(&rs_array[i].completion); | 
|  | destroy_rcu_head_on_stack(&rs_array[i].head); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wait_rcu_gp); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | 
|  | void init_rcu_head(struct rcu_head *head) | 
|  | { | 
|  | debug_object_init(head, &rcuhead_debug_descr); | 
|  | } | 
|  |  | 
|  | void destroy_rcu_head(struct rcu_head *head) | 
|  | { | 
|  | debug_object_free(head, &rcuhead_debug_descr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_activate is called when: | 
|  | * - an active object is activated | 
|  | * - an unknown object is activated (might be a statically initialized object) | 
|  | * Activation is performed internally by call_rcu(). | 
|  | */ | 
|  | static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) | 
|  | { | 
|  | struct rcu_head *head = addr; | 
|  |  | 
|  | switch (state) { | 
|  |  | 
|  | case ODEBUG_STATE_NOTAVAILABLE: | 
|  | /* | 
|  | * This is not really a fixup. We just make sure that it is | 
|  | * tracked in the object tracker. | 
|  | */ | 
|  | debug_object_init(head, &rcuhead_debug_descr); | 
|  | debug_object_activate(head, &rcuhead_debug_descr); | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects | 
|  | * @head: pointer to rcu_head structure to be initialized | 
|  | * | 
|  | * This function informs debugobjects of a new rcu_head structure that | 
|  | * has been allocated as an auto variable on the stack.  This function | 
|  | * is not required for rcu_head structures that are statically defined or | 
|  | * that are dynamically allocated on the heap.  This function has no | 
|  | * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
|  | */ | 
|  | void init_rcu_head_on_stack(struct rcu_head *head) | 
|  | { | 
|  | debug_object_init_on_stack(head, &rcuhead_debug_descr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); | 
|  |  | 
|  | /** | 
|  | * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects | 
|  | * @head: pointer to rcu_head structure to be initialized | 
|  | * | 
|  | * This function informs debugobjects that an on-stack rcu_head structure | 
|  | * is about to go out of scope.  As with init_rcu_head_on_stack(), this | 
|  | * function is not required for rcu_head structures that are statically | 
|  | * defined or that are dynamically allocated on the heap.  Also as with | 
|  | * init_rcu_head_on_stack(), this function has no effect for | 
|  | * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
|  | */ | 
|  | void destroy_rcu_head_on_stack(struct rcu_head *head) | 
|  | { | 
|  | debug_object_free(head, &rcuhead_debug_descr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); | 
|  |  | 
|  | struct debug_obj_descr rcuhead_debug_descr = { | 
|  | .name = "rcu_head", | 
|  | .fixup_activate = rcuhead_fixup_activate, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(rcuhead_debug_descr); | 
|  | #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ | 
|  |  | 
|  | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) | 
|  | void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, | 
|  | unsigned long secs, | 
|  | unsigned long c_old, unsigned long c) | 
|  | { | 
|  | trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); | 
|  | #else | 
|  | #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RCU_STALL_COMMON | 
|  |  | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | #define RCU_STALL_DELAY_DELTA	       (5 * HZ) | 
|  | #else | 
|  | #define RCU_STALL_DELAY_DELTA	       0 | 
|  | #endif | 
|  |  | 
|  | int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ | 
|  | static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; | 
|  |  | 
|  | module_param(rcu_cpu_stall_suppress, int, 0644); | 
|  | module_param(rcu_cpu_stall_timeout, int, 0644); | 
|  |  | 
|  | int rcu_jiffies_till_stall_check(void) | 
|  | { | 
|  | int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout); | 
|  |  | 
|  | /* | 
|  | * Limit check must be consistent with the Kconfig limits | 
|  | * for CONFIG_RCU_CPU_STALL_TIMEOUT. | 
|  | */ | 
|  | if (till_stall_check < 3) { | 
|  | WRITE_ONCE(rcu_cpu_stall_timeout, 3); | 
|  | till_stall_check = 3; | 
|  | } else if (till_stall_check > 300) { | 
|  | WRITE_ONCE(rcu_cpu_stall_timeout, 300); | 
|  | till_stall_check = 300; | 
|  | } | 
|  | return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; | 
|  | } | 
|  |  | 
|  | void rcu_sysrq_start(void) | 
|  | { | 
|  | if (!rcu_cpu_stall_suppress) | 
|  | rcu_cpu_stall_suppress = 2; | 
|  | } | 
|  |  | 
|  | void rcu_sysrq_end(void) | 
|  | { | 
|  | if (rcu_cpu_stall_suppress == 2) | 
|  | rcu_cpu_stall_suppress = 0; | 
|  | } | 
|  |  | 
|  | static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) | 
|  | { | 
|  | rcu_cpu_stall_suppress = 1; | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block rcu_panic_block = { | 
|  | .notifier_call = rcu_panic, | 
|  | }; | 
|  |  | 
|  | static int __init check_cpu_stall_init(void) | 
|  | { | 
|  | atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(check_cpu_stall_init); | 
|  |  | 
|  | #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ | 
|  |  | 
|  | #ifdef CONFIG_TASKS_RCU | 
|  |  | 
|  | /* | 
|  | * Simple variant of RCU whose quiescent states are voluntary context switch, | 
|  | * user-space execution, and idle.  As such, grace periods can take one good | 
|  | * long time.  There are no read-side primitives similar to rcu_read_lock() | 
|  | * and rcu_read_unlock() because this implementation is intended to get | 
|  | * the system into a safe state for some of the manipulations involved in | 
|  | * tracing and the like.  Finally, this implementation does not support | 
|  | * high call_rcu_tasks() rates from multiple CPUs.  If this is required, | 
|  | * per-CPU callback lists will be needed. | 
|  | */ | 
|  |  | 
|  | /* Global list of callbacks and associated lock. */ | 
|  | static struct rcu_head *rcu_tasks_cbs_head; | 
|  | static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
|  | static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); | 
|  | static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); | 
|  |  | 
|  | /* Track exiting tasks in order to allow them to be waited for. */ | 
|  | DEFINE_SRCU(tasks_rcu_exit_srcu); | 
|  |  | 
|  | /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */ | 
|  | static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; | 
|  | module_param(rcu_task_stall_timeout, int, 0644); | 
|  |  | 
|  | static void rcu_spawn_tasks_kthread(void); | 
|  |  | 
|  | /* | 
|  | * Post an RCU-tasks callback.  First call must be from process context | 
|  | * after the scheduler if fully operational. | 
|  | */ | 
|  | void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp)) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool needwake; | 
|  |  | 
|  | rhp->next = NULL; | 
|  | rhp->func = func; | 
|  | raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
|  | needwake = !rcu_tasks_cbs_head; | 
|  | *rcu_tasks_cbs_tail = rhp; | 
|  | rcu_tasks_cbs_tail = &rhp->next; | 
|  | raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
|  | if (needwake) { | 
|  | rcu_spawn_tasks_kthread(); | 
|  | wake_up(&rcu_tasks_cbs_wq); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu_tasks); | 
|  |  | 
|  | /** | 
|  | * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. | 
|  | * | 
|  | * Control will return to the caller some time after a full rcu-tasks | 
|  | * grace period has elapsed, in other words after all currently | 
|  | * executing rcu-tasks read-side critical sections have elapsed.  These | 
|  | * read-side critical sections are delimited by calls to schedule(), | 
|  | * cond_resched_rcu_qs(), idle execution, userspace execution, calls | 
|  | * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). | 
|  | * | 
|  | * This is a very specialized primitive, intended only for a few uses in | 
|  | * tracing and other situations requiring manipulation of function | 
|  | * preambles and profiling hooks.  The synchronize_rcu_tasks() function | 
|  | * is not (yet) intended for heavy use from multiple CPUs. | 
|  | * | 
|  | * Note that this guarantee implies further memory-ordering guarantees. | 
|  | * On systems with more than one CPU, when synchronize_rcu_tasks() returns, | 
|  | * each CPU is guaranteed to have executed a full memory barrier since the | 
|  | * end of its last RCU-tasks read-side critical section whose beginning | 
|  | * preceded the call to synchronize_rcu_tasks().  In addition, each CPU | 
|  | * having an RCU-tasks read-side critical section that extends beyond | 
|  | * the return from synchronize_rcu_tasks() is guaranteed to have executed | 
|  | * a full memory barrier after the beginning of synchronize_rcu_tasks() | 
|  | * and before the beginning of that RCU-tasks read-side critical section. | 
|  | * Note that these guarantees include CPUs that are offline, idle, or | 
|  | * executing in user mode, as well as CPUs that are executing in the kernel. | 
|  | * | 
|  | * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned | 
|  | * to its caller on CPU B, then both CPU A and CPU B are guaranteed | 
|  | * to have executed a full memory barrier during the execution of | 
|  | * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU | 
|  | * (but again only if the system has more than one CPU). | 
|  | */ | 
|  | void synchronize_rcu_tasks(void) | 
|  | { | 
|  | /* Complain if the scheduler has not started.  */ | 
|  | RCU_LOCKDEP_WARN(!rcu_scheduler_active, | 
|  | "synchronize_rcu_tasks called too soon"); | 
|  |  | 
|  | /* Wait for the grace period. */ | 
|  | wait_rcu_gp(call_rcu_tasks); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); | 
|  |  | 
|  | /** | 
|  | * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. | 
|  | * | 
|  | * Although the current implementation is guaranteed to wait, it is not | 
|  | * obligated to, for example, if there are no pending callbacks. | 
|  | */ | 
|  | void rcu_barrier_tasks(void) | 
|  | { | 
|  | /* There is only one callback queue, so this is easy.  ;-) */ | 
|  | synchronize_rcu_tasks(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_barrier_tasks); | 
|  |  | 
|  | /* See if tasks are still holding out, complain if so. */ | 
|  | static void check_holdout_task(struct task_struct *t, | 
|  | bool needreport, bool *firstreport) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (!READ_ONCE(t->rcu_tasks_holdout) || | 
|  | t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || | 
|  | !READ_ONCE(t->on_rq) || | 
|  | (IS_ENABLED(CONFIG_NO_HZ_FULL) && | 
|  | !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { | 
|  | WRITE_ONCE(t->rcu_tasks_holdout, false); | 
|  | list_del_init(&t->rcu_tasks_holdout_list); | 
|  | put_task_struct(t); | 
|  | return; | 
|  | } | 
|  | if (!needreport) | 
|  | return; | 
|  | if (*firstreport) { | 
|  | pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); | 
|  | *firstreport = false; | 
|  | } | 
|  | cpu = task_cpu(t); | 
|  | pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", | 
|  | t, ".I"[is_idle_task(t)], | 
|  | "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], | 
|  | t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, | 
|  | t->rcu_tasks_idle_cpu, cpu); | 
|  | sched_show_task(t); | 
|  | } | 
|  |  | 
|  | /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ | 
|  | static int __noreturn rcu_tasks_kthread(void *arg) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct task_struct *g, *t; | 
|  | unsigned long lastreport; | 
|  | struct rcu_head *list; | 
|  | struct rcu_head *next; | 
|  | LIST_HEAD(rcu_tasks_holdouts); | 
|  |  | 
|  | /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */ | 
|  | housekeeping_affine(current); | 
|  |  | 
|  | /* | 
|  | * Each pass through the following loop makes one check for | 
|  | * newly arrived callbacks, and, if there are some, waits for | 
|  | * one RCU-tasks grace period and then invokes the callbacks. | 
|  | * This loop is terminated by the system going down.  ;-) | 
|  | */ | 
|  | for (;;) { | 
|  |  | 
|  | /* Pick up any new callbacks. */ | 
|  | raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
|  | list = rcu_tasks_cbs_head; | 
|  | rcu_tasks_cbs_head = NULL; | 
|  | rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
|  | raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
|  |  | 
|  | /* If there were none, wait a bit and start over. */ | 
|  | if (!list) { | 
|  | wait_event_interruptible(rcu_tasks_cbs_wq, | 
|  | rcu_tasks_cbs_head); | 
|  | if (!rcu_tasks_cbs_head) { | 
|  | WARN_ON(signal_pending(current)); | 
|  | schedule_timeout_interruptible(HZ/10); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for all pre-existing t->on_rq and t->nvcsw | 
|  | * transitions to complete.  Invoking synchronize_sched() | 
|  | * suffices because all these transitions occur with | 
|  | * interrupts disabled.  Without this synchronize_sched(), | 
|  | * a read-side critical section that started before the | 
|  | * grace period might be incorrectly seen as having started | 
|  | * after the grace period. | 
|  | * | 
|  | * This synchronize_sched() also dispenses with the | 
|  | * need for a memory barrier on the first store to | 
|  | * ->rcu_tasks_holdout, as it forces the store to happen | 
|  | * after the beginning of the grace period. | 
|  | */ | 
|  | synchronize_sched(); | 
|  |  | 
|  | /* | 
|  | * There were callbacks, so we need to wait for an | 
|  | * RCU-tasks grace period.  Start off by scanning | 
|  | * the task list for tasks that are not already | 
|  | * voluntarily blocked.  Mark these tasks and make | 
|  | * a list of them in rcu_tasks_holdouts. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for_each_process_thread(g, t) { | 
|  | if (t != current && READ_ONCE(t->on_rq) && | 
|  | !is_idle_task(t)) { | 
|  | get_task_struct(t); | 
|  | t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); | 
|  | WRITE_ONCE(t->rcu_tasks_holdout, true); | 
|  | list_add(&t->rcu_tasks_holdout_list, | 
|  | &rcu_tasks_holdouts); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Wait for tasks that are in the process of exiting. | 
|  | * This does only part of the job, ensuring that all | 
|  | * tasks that were previously exiting reach the point | 
|  | * where they have disabled preemption, allowing the | 
|  | * later synchronize_sched() to finish the job. | 
|  | */ | 
|  | synchronize_srcu(&tasks_rcu_exit_srcu); | 
|  |  | 
|  | /* | 
|  | * Each pass through the following loop scans the list | 
|  | * of holdout tasks, removing any that are no longer | 
|  | * holdouts.  When the list is empty, we are done. | 
|  | */ | 
|  | lastreport = jiffies; | 
|  | while (!list_empty(&rcu_tasks_holdouts)) { | 
|  | bool firstreport; | 
|  | bool needreport; | 
|  | int rtst; | 
|  | struct task_struct *t1; | 
|  |  | 
|  | schedule_timeout_interruptible(HZ); | 
|  | rtst = READ_ONCE(rcu_task_stall_timeout); | 
|  | needreport = rtst > 0 && | 
|  | time_after(jiffies, lastreport + rtst); | 
|  | if (needreport) | 
|  | lastreport = jiffies; | 
|  | firstreport = true; | 
|  | WARN_ON(signal_pending(current)); | 
|  | list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, | 
|  | rcu_tasks_holdout_list) { | 
|  | check_holdout_task(t, needreport, &firstreport); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because ->on_rq and ->nvcsw are not guaranteed | 
|  | * to have a full memory barriers prior to them in the | 
|  | * schedule() path, memory reordering on other CPUs could | 
|  | * cause their RCU-tasks read-side critical sections to | 
|  | * extend past the end of the grace period.  However, | 
|  | * because these ->nvcsw updates are carried out with | 
|  | * interrupts disabled, we can use synchronize_sched() | 
|  | * to force the needed ordering on all such CPUs. | 
|  | * | 
|  | * This synchronize_sched() also confines all | 
|  | * ->rcu_tasks_holdout accesses to be within the grace | 
|  | * period, avoiding the need for memory barriers for | 
|  | * ->rcu_tasks_holdout accesses. | 
|  | * | 
|  | * In addition, this synchronize_sched() waits for exiting | 
|  | * tasks to complete their final preempt_disable() region | 
|  | * of execution, cleaning up after the synchronize_srcu() | 
|  | * above. | 
|  | */ | 
|  | synchronize_sched(); | 
|  |  | 
|  | /* Invoke the callbacks. */ | 
|  | while (list) { | 
|  | next = list->next; | 
|  | local_bh_disable(); | 
|  | list->func(list); | 
|  | local_bh_enable(); | 
|  | list = next; | 
|  | cond_resched(); | 
|  | } | 
|  | schedule_timeout_uninterruptible(HZ/10); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ | 
|  | static void rcu_spawn_tasks_kthread(void) | 
|  | { | 
|  | static DEFINE_MUTEX(rcu_tasks_kthread_mutex); | 
|  | static struct task_struct *rcu_tasks_kthread_ptr; | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (READ_ONCE(rcu_tasks_kthread_ptr)) { | 
|  | smp_mb(); /* Ensure caller sees full kthread. */ | 
|  | return; | 
|  | } | 
|  | mutex_lock(&rcu_tasks_kthread_mutex); | 
|  | if (rcu_tasks_kthread_ptr) { | 
|  | mutex_unlock(&rcu_tasks_kthread_mutex); | 
|  | return; | 
|  | } | 
|  | t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); | 
|  | BUG_ON(IS_ERR(t)); | 
|  | smp_mb(); /* Ensure others see full kthread. */ | 
|  | WRITE_ONCE(rcu_tasks_kthread_ptr, t); | 
|  | mutex_unlock(&rcu_tasks_kthread_mutex); | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  |  | 
|  | /* | 
|  | * Early boot self test parameters, one for each flavor | 
|  | */ | 
|  | static bool rcu_self_test; | 
|  | static bool rcu_self_test_bh; | 
|  | static bool rcu_self_test_sched; | 
|  |  | 
|  | module_param(rcu_self_test, bool, 0444); | 
|  | module_param(rcu_self_test_bh, bool, 0444); | 
|  | module_param(rcu_self_test_sched, bool, 0444); | 
|  |  | 
|  | static int rcu_self_test_counter; | 
|  |  | 
|  | static void test_callback(struct rcu_head *r) | 
|  | { | 
|  | rcu_self_test_counter++; | 
|  | pr_info("RCU test callback executed %d\n", rcu_self_test_counter); | 
|  | } | 
|  |  | 
|  | static void early_boot_test_call_rcu(void) | 
|  | { | 
|  | static struct rcu_head head; | 
|  |  | 
|  | call_rcu(&head, test_callback); | 
|  | } | 
|  |  | 
|  | static void early_boot_test_call_rcu_bh(void) | 
|  | { | 
|  | static struct rcu_head head; | 
|  |  | 
|  | call_rcu_bh(&head, test_callback); | 
|  | } | 
|  |  | 
|  | static void early_boot_test_call_rcu_sched(void) | 
|  | { | 
|  | static struct rcu_head head; | 
|  |  | 
|  | call_rcu_sched(&head, test_callback); | 
|  | } | 
|  |  | 
|  | void rcu_early_boot_tests(void) | 
|  | { | 
|  | pr_info("Running RCU self tests\n"); | 
|  |  | 
|  | if (rcu_self_test) | 
|  | early_boot_test_call_rcu(); | 
|  | if (rcu_self_test_bh) | 
|  | early_boot_test_call_rcu_bh(); | 
|  | if (rcu_self_test_sched) | 
|  | early_boot_test_call_rcu_sched(); | 
|  | } | 
|  |  | 
|  | static int rcu_verify_early_boot_tests(void) | 
|  | { | 
|  | int ret = 0; | 
|  | int early_boot_test_counter = 0; | 
|  |  | 
|  | if (rcu_self_test) { | 
|  | early_boot_test_counter++; | 
|  | rcu_barrier(); | 
|  | } | 
|  | if (rcu_self_test_bh) { | 
|  | early_boot_test_counter++; | 
|  | rcu_barrier_bh(); | 
|  | } | 
|  | if (rcu_self_test_sched) { | 
|  | early_boot_test_counter++; | 
|  | rcu_barrier_sched(); | 
|  | } | 
|  |  | 
|  | if (rcu_self_test_counter != early_boot_test_counter) { | 
|  | WARN_ON(1); | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | late_initcall(rcu_verify_early_boot_tests); | 
|  | #else | 
|  | void rcu_early_boot_tests(void) {} | 
|  | #endif /* CONFIG_PROVE_RCU */ |